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Abstract

Background: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and
research tool for understanding the neuropsychiatric complications of COVID-19. For maximum
impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV2 infection
on the brain by diverse potentially pathogenic mechanisms, and with high reliability across
multiple sites and scanner manufacturers.

Methods: A multi-modal brain MRI protocol comprising sequences for T1-weighted MR,
T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted
imaging (swMRI) and arterial spin labelling (ASL) was defined in close approximation to prior UK
Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a
comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility
and between-site variability of this protocol, N=8 healthy participants were each scanned at 4 UK
sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE
scanner (King’'s College London). Over 2,000 Imaging Derived Phenotypes (IDPs) measuring
both data quality and regional image properties of interest were automatically estimated by
customised UKB image processing pipelines. Components of variance and intra-class correlations
were estimated for each IDP by linear mixed effects models and benchmarked by comparison to
repeated measurements of the same IDPs from UKB participants.

Results: Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability.
First considering only data from the Siemens sites, between-site reliability generally matched the
high levels of test-retest reliability of the same IDPs estimated in repeated, within-site,
within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent
reliability for many IDPs, but there were significant between-site differences in mean and scaling,
and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived
measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs
derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory
bulb structure IDPs from T1, T2-FLAIR and dMRI data.

Conclusion: These results give confidence that large, multi-site MRI datasets can be collected
reliably at different sites across the diverse range of MRI modalities and IDPs that could be
mechanistically informative in COVID brain research. We discuss limitations of the study and
strategies for further harmonization of data collected from sites using scanners supplied by
different manufacturers. These protocols have already been adopted for MRI assessments of
post-COVID patients in the UK as part of the COVID-CNS consortium.


https://doi.org/10.1101/2021.10.13.21264967
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.13.21264967; this version posted October 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Reliability of imaging derived phenotypes for post-COVID MRI
Duff et al medRxiv October 2021

Introduction

It is increasingly clear that systemic infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is often associated with acute neurological complications at the time of infection,
as well as post-acute neurological, cognitive and mental health sequelae that can persist for at
least 6 months after infection(Paterson et al., 2020). It seems likely that SARS-CoV-2 infection
can have adverse effects on healthy brain function and structure that account for its broad
spectrum of neuropsychiatric complications. The causal or pathogenic mechanisms are not yet
defined but are likely to be several, including at least (i) viral infection of the central nervous
system (CNS), (ii) host immune response to infection, and (iii) cerebrovascular disruption. For
precisely targeted interventions, it will be important to know which pathogenic mechanisms are
most relevant for which individual patients, or for which syndromically typical groups of patients.

Magnetic resonance imaging (MRI) could be a key diagnostic tool in understanding the impacts of
systemic SARS-CoV2 infection on the brain and advancing to better treatments for
neuropsychiatric complications of COVID-19 in future. Large-scale post-COVID MRI databases
will be important because of the geographic, demographic and clinical heterogeneity of
neurological, mental health and cognitive syndromes that have been reported as acute or
post-acute outcomes of SARS-CoV-2 infection. To acquire such databases requires multi-modal
acquisition protocols and analysis pipelines that can be reliably implemented across a variety of
scanner manufacturers and models. Ideally, multi-modal MRI protocols for post-COVID research
should also be well matched to existing large-scale neuroimaging databases with relevant
demographic profiles, such as the UK Biobank database of adults with mean age of 50 years.
Here we describe the technical development and validation by a “travelling heads” study of a
multi-site protocol for the COVID-CNS consortium, which aims to collect data on ~700
post-COVID neurological cases and controls from a national network of UK sites.

We started from the principle that a standard brain MRI protocol, robust enough to be reliably
implemented across multiple sites and scanners, should also be inclusive of different modalities of
MRI that can provide distinct or complementary insights into candidate pathogenic mechanisms.
For example, the C-MORE consortium for multi-organ MRI studies of post-hospitalised COVID
cases (3) has used a set of 7 brain MRI sequences (Table 1) to measure T1-weighted MR,
T2-FLAIR, diffusion MRI (dMRI), susceptibility-weighted MRI (swMRI), and arterial spin labelling
(ASL). The inclusion of each of these sequences was justified by their diagnostic relevance to
distinct pathogenic mechanisms: e.g., swMRI is a marker of iron deposition and
micro-haemorrhages and ASL measures parameters of regional cerebral blood flow, so both are
relevant to vascular mechanisms; T2-FLAIR is a widely used measure of inflammation-related
changes in white matter; T1- and dMRI-derived brain structural phenotypes have been found to
be associated with immune cell counts in blood samples from post-COVID patients (Griffanti et
al., 2021). T1-weighted data have also been used to measure volume and tissue contrast of the
olfactory bulb and brain stem structures that are most likely to be neurotropically infected via
olfactory nerve terminals and other specialist sensory receptors. Thus, the inclusion of sequences
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in the C-MORE neuro-MRI protocol was well-motivated; but the requirement to complete all
neuroimaging sequences in less than 20 mins, as part of a 70 min multi-organ MRI protocol,
meant that some potentially informative sequences were excluded (fMRI) or abbreviated (dMRI,

ASL).

In this context, we designed a multi-modal MRI protocol specifically for neuroimaging of
post-COVID cases. To optimise comparability with data collected by UKB and C-MORE protocols,
we selected Siemens 3T sequences that were as close as possible to these standards, including
a multiband sequence for resting state fMRI (implemented in UKB but not in C-MORE) and
increasing the scanning time for dMRI and ASL sequences to improve data quality compared to
C-MORE. We also iteratively defined a set of General Electric (GE) 3T sequences that
approximated as closely as possible the parameters of the Siemens sequences (Table 1). Based
on our clinical experience to date (2), we rationed the total scanning time of all sequences
combined to 30 mins, expecting this to require less than 40 mins of in-scanner time for patients to
complete.

To assess the multi-site feasibility and between-site reliability of these protocols, we conducted a
“travelling heads” experiment(Weiskopf et al., 2013) whereby N=8 healthy volunteers were
scanned once at each of 4 UK sites: 3 using Siemens PRISMA 3T systems (Cambridge, Liverpool
and Oxford) and 1 using a GE MR750 Discovery 3T system (King’'s College London). Multi-site
consistency of neuroimaging data was evaluated along several domains including quality control
(QC) criteria, tissue contrast metrics, and multiple categories of imaging-derived phenotypes
(IDPs), estimated using customised UKB image-processing pipelines. Linear mixed effects
models were used to estimate components of variance and intra-class correlation coefficients as
measures of between-site reliability for each metric and IDP. We focus specifically on two
questions of interest: (i) How does between-site and between-manufacturer reliability of
multi-modal IDPs estimated from these data compare to the benchmark of test-retest reliability of
IDPs estimated from repeated scans of UKB participants using a Siemens SKYRA system? (ii)
Which are the most (and least) reliable of the thousands of IDPs that can be measured in these
data?
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Methods

Study design and sample

The “travelling heads” design followed previous studies for evaluation of multi-site MRI protocols
(3). Each of N=8 healthy participants (7F, age range 21-37 y) was scanned 4 times, once at each
of the 4 pilot sites: the Wolfson Brain Imaging Centre at the University of Cambridge; the
Wellcome Trust-National Institute of Health Research Clinical Research Facility at King’s College
Hospital, King’s College London (KCL); the Liverpool Magnetic Resonance Imaging Centre
(LIMRIC) at the University of Liverpool; and the Wellcome Centre for Integrative Neuroimaging at
the University of Oxford.

Due to lockdown restrictions prevailing in the UK at the time of scanning (Dec 2020 — Feb 2021),
all participants were recruited at one site (KCL) and the ordering and timing of safe travel to other
sites was decided pragmatically. Participants were paid an honorarium to compensate for the time
taken to complete the protocol. All participants gave informed consent in writing and the study
was approved by the Human Biology Research Ethics Committee, University of Cambridge
(HBREC.2020.44).

Scanners and scanning sequences

The Cambridge, Liverpool and Oxford sites all used 3T MAGNETOM PRISMA MRI systems
(Siemens Healthineers, Erlangen, Germany) fitted with a 32 channel, receive-only head coil. KCL
used a 3T General Electric MR 750 Discovery MRI scanner (GE Healthcare, Waukesha,
Wisconsin, USA) and a 32-channel, receive-only head coil (Nova Medical, Wilmington,
Massachusetts, USA).

The 3 Siemens scanners implemented the set of 8 sequences summarised in Table 1. The
sequence for T1-weighting was implemented identically across UKB, C-MORE and COVID-CNS
protocols. dMRI and fMRI were implemented in COVID-CNS exactly as in the UKB protocol (the
C-MORE protocol included a shorter dMRI sequence and did not include fMRI). T2 FLAIR and
swMRI sequences were slightly modified from UKB standards in order to more closely match
corresponding sequences in the C-MORE protocol. A multi-post label delay (PLD) 3D-GRASE
ASL sequence(Gunther et al., 2005) was used identically to that planned to be adopted by UKB
COVID study (Douaud et al., 2021) (different to the 2D multi-slice sequence used in C-MORE); a
single delay ASL sequence was additionally used to match the ASL imaging pulse sequence of
the GE scanner.

The GE scanner implemented an analogous set of 8 sequences (Table 1). In most cases it was
possible to approximate the parameters of the Siemens sequences by bespoke programming of
the default GE sequences for T1-weighted, T2-FLAIR, dMRI, swMRI and fMRI. The GE scanner
could not implement the Siemens multi-post label delay ASL sequence with sufficient similarity to
the Siemens implementation; so a single post label delay sequence was used for ASL on the GE
platform.
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Image processing pipelines and IDPs

Each MRI modality was analysed using custom pipelines for image pre-processing and estimation
of multiple MRI contrast metrics and imaging-derived phenotypes (IDPs) derived from the UKB
analysis pipelines (www.fmrib.ox.ac.uk/ukbiobank/) (Alfaro-Almagro et al., 2018) and software
tools from the FMRIB Software Library (Jenkinson et al., 2012). Pipeline changes were
implemented to accommodate minor differences in imaging parameters between UKB and
COVID-CNS protocols, to analyse MRI modalities not included in the UKB MRI protocol, e.g.,
ASL, and to analyse MRI data acquired using the GE scanner at KCL. Where protocols matched
exactly, analysis pipelines were identical to those used in the C-MORE COVID study (Griffanti et
al., 2021; Raman et al., 2021). Summaries of pre-processing and IDP estimation are provided
below for individual modalities, with further details available in (Douaud et al., 2021; Griffanti et al.,
2021). For presentation, IDPs reflecting the same phenotypic properties were grouped together
into IDP classes(Douaud et al., 2021; Elliott et al., 2018).

T1-weighted and T2-FLAIR: Processing of T1-weighted and T2-FLAIR data included removal of
the face, brain extraction, and registration to the MNI152 brain template (Jenkinson 2002,
Andersson 2008). We measured spatial signal-to-noise ratio (SNR) and grey/white
contrast-to-noise ratio (CNR) as quality control (QC) metrics. As the T1-weighted image was the
primary modality for inter-subject registrations, we also measured QC metrics of registration
quality. For Siemens scanners we used an in-house 3d gradient distortion correction developed
for the UK Biobank and Human Connectome Project (Alfaro-Almagro et al., 2018), while for the
GE site, standard GE gradient distortion correction was implemented. FAST was used to
segment images into grey matter, white matter, and cerebro-spinal fluid (Zhang 2001). SIENAX
(Smith, 2002) was used to estimate volume measures from these segmentations. Grey matter
volumes were estimated for each of 139 regions of interest (ROIs) defined by the Harvard-Oxford
cortical and subcortical atlases and the Diedrichsen cerebellar atlas. Sub-cortical volumes were
estimated utilizing population priors on shape and intensity variation across subjects (Patenaude
et al., 2011). Using an additional non-linear registration procedure, regional volumes of the
olfactory bulbs were estimated using T1-weighted, T2-FLAIR and dMRI data, and a template
derived from over 700 UKB individuals (Arthofer et al., 2021; Griffanti et al., 2021; Lange et al.,
2020).

T2-FLAIR pre-processing was very similar to the T1w pipeline (with the T1-weighted image used
for registration to the MNI standard template). Images were segmented using BIANCA to identify
white matter (WM) hyperintensities (WMH) (Griffanti et al., 2016), using the UKB BIANCA training
file. Periventricular WMH (pWMH) and deep WMH (dWMH) volumes were defined for
complementary subsets of total WM hyperintensities that were, respectively, less than (or more
than) 10 mm distant from the lateral ventricles (Griffanti et al., 2021).

T1-weighted and T2-FLAIR images were combined in FreeSurfer to model the cortical surface
(Desikan et al., 2006; Fischl et al., 2004). This analysis produced IDPs encompassing metrics of
subcortical segmentation, regional surface area, volume and mean cortical thickness from a
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number of different parcellations, and grey-white intensity contrasts (expressed as the fractional
contrast between white and grey matter intensities as sampled either side of the grey-white
cortical boundary)(Smith et al., 2020). In total 1073 IDPs were measured from T1w and T2_FLAIR

scans.

swMRI: For the Siemens sequence, the magnitude images from the two echoes of the swMRI
data were combined to provide a mapping of T,* signal decay. Median T2* was calculated for 14
subcortical structures defined by registration with the parcellated T1 data. To enable qualitative
neurological assessment of individual patients the median phase and magnitude data were
processed to provide maps highlighting features indicative of abnormal iron deposition, e.g., due
to microbleeds. Quantitative susceptibility mapping (QSM) was also performed, using the phase
data and a recently developed UKB pipeline (Wang et al., 2021). Susceptibility maps were
generated using the iLSQR algorithm (Li et al., 2015), with susceptibility values reported relative
to the susceptibility measured in CSF. For the GE sequence, swMRI data had a different number
of echoes and required adjusted procedures. In total 28 IDPs were measured from swMRI scans.

ASL: For the Siemens sequence, we used the BASIL tools in FSL to estimate maps of cerebral
blood flow (CBF) from single-PLD data and CBF and arterial transit time (ATT) from multi-PLD
data. BASIL analysis included motion correction and distortion correction using the blip up/down
dMRI data. Label and control images were subtracted and a kinetic model was fitted with
modelling of the macrovascular component. The MO calibration image acquired without ASL
preparation was used to quantify CBF. Tissue-specific CBF was achieved by projecting grey and
white partial volume maps from the T1w image segmented by FAST into the ASL native space.
Grey and white matter masks were defined using partial volume thresholds of 50% and 80%
respectively. To avoid dependence on site-specific T1w data, we used T1w data from all sites to
define generic masks for estimation of mean grey matter CBF and ATT. In total 4 IDPs were
measured from both the multi- and single-PLD ASL data.

fMRI: For the Siemens sequence, the multiband-8 fMRI data were corrected for gradient and EPI
distortions, motion-corrected using linear alignment using the UKB Resting fMRI pipeline
(Alfaro-Almagro et al., 2018), and aligned to the T1w image via a single-band reference image.
For the GE sequence the first high-contrast fMRI image prior to magnetisation stabilisation was
used for T1w registration. FIX ICA-based denoising was applied using the UKB training dataset
(Salimi-Khorshidi et al., 2014). Two sets of resting-state networks derived from group ICA
decompositions of UKB reference data (25 and 100 component decompositions) were projected
onto the pre-processed resting state fMRI data in a dual-regression analysis (Nickerson et al.,
2017). Two whole brain functional connectivity matrices were compiled from all possible partial
correlations, and the amplitudes (standard deviations) of spontaneous activity at each regional
node were estimated (Alfaro-Almagro et al., 2018). As individual connections showed low
test-retest reliability in the UKB dataset, we used a dimension-reduction approach which applied
ICA to all functional connectivity IDPs to produce 6 primary modes of variation (Elliott et al., 2018).
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These six modes were projected onto the individual’s functional connectivity matrix and used as

additional IDPs. In total 3464 IDPs were measured from the fMRI data.

dMRI: For the Siemens and GE sequences, dMRI data were closely matched to the UKB
sequence and processed using UKB pipelines with minimal alterations (Alfaro-Almagro et al.,
2018). The AP-encoding data were pre-processed to remove effects of eddy currents, head
motion, and slice dropouts, followed by gradient distortion correction. DTIFIT used the b=1000
shell for diffusion tensor image fitting (Basser et al., 1994) to estimate parameters including
fractional anisotropy (FA), tensor mode (MO) and mean diffusivity (MD). The multi-shell data
were processed with NODDI (Neurite Orientation Dispersion and Density Imaging) (Zhang et al.,
2012), to produce microstructural parameters including ICVF (intra-cellular volume fraction - an
index of white matter neurite density), ISOVF (isotropic or free water volume fraction), and ODI
(orientation dispersion index, a measure of within-voxel tract disorganisation). These parameters
were summarised using two approaches: first using a white-matter tract skeleton analysis
producing average values for 48 standard-space tract masks (Smith et al., 2006); and second
using probabilistic tractography to provide weighted-mean summaries of the parameters for 27
major tracts. In total 675 IDPs were measured from the dMRI data.

Statistical analysis and UK Biobank benchmarking

Site and scanner manufacturer can affect the distribution of phenotypes derived from brain
images, adding variability and reducing experimental power in multi-site studies. Site effects
limited to location shifts and scale changes are easily modeled if they can be estimated, and will
result in subject ranking being preserved across sites. Here we characterise the effects of site on
the location and scale of IDPs, and compare intra-class correlations (ICCs) of IDPs measured 4
times for each subject scanned at 4 different sites in the travelling heads study, against ICCs of
the same IDPs measured twice for each subject (with a 2y interval) at the same site as part of the
longitudinal data previously acquired as part of of the UKB imaging enhancement programme
(Littlejohns et al., 2020).

Location effects were assessed using repeated-measures ANOVAs, with sphericity assessed
using Mauchly’s test. Site-specific means and sphericity tests were computed for all IDPs. We
tested the set of null hypotheses that there is zero between-site difference in mean, and the null
hypothesis of sphericity for each of 2258 (total) IDPs (excluding IDPs representing individual
functional network connections), setting the threshold for refutation of the null by the false
discovery rate (FDR=5%, within each type of test), to control type 1 errors in the context of
multiple testing entailed by regional resolution of multi-modal MRI. Site-specific effects on each
IDP were estimated twice: once using all the analysable data (from 4 sites, including 1 GE site),
and once using only Siemens data (from 3 sites). This allowed us to investigate site-differences in
IDP location or sphericity that were likely related to between-manufacturer differences in MRI
scanners.

Intra-class correlation coefficients (ICCs) were estimated for pairs of IDP vectors (N=8), each
vector comprising measurements of the same IDP in the same subjects at one of 4 possible
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scanning sites (Chen et al., 2018; Liljequist et al., 2019). The ICC provides a measure of reliability
by quantifying the within-subject similarity of each outcome metric or IDP across different sites.
ICCs were estimated by linear mixed effects modeling of variance components, accounting for
between-subject and between-site variance, using the Ime4 package in R (Bates et al., 2015).
We primarily considered ICCs estimated by modelling site as a fixed effect (“consistent ICC”,
ICC(3,1) ), but also assessed ICCs estimated by modelling site as a random effect (“absolute
agreement” ICC or ICC (2,1)). Similar estimates of ICC by both fixed and random effects models
will indicate the absence of a systematic bias due to site effects. We estimated ICCs twice: once
using all analysable data from 4 sites, including 1 GE site; and once using only Siemens data
from 3 sites. ICC values between 0.5 and 0.8 are generally considered to indicate fair to good
reliability, and ICCs greater than 0.8 or 0.9 are indicative of good or very good reliability (Koo and
Li, 2016).

To benchmark the between-subject and between-site reliability of each IDP measured using the
COVID-CNS protocol, we compared these ICCs from the travelling heads study to comparable
ICCs estimated in the UKB enhanced cohort. In this design, healthy middle-aged participants
were each scanned twice (with mean between-scan interval = 2.25 y; SD = 0.12) at the same one
of 4 possible sites, all using the same manufacturer’s system for multi-modal MRI (Siemens
SKYRA 3T). We estimated ICCs between the test and retest IDP measurement vectors for N=8
participants, repeatedly, randomly sampled from the total UKB dataset (N = 2,817; 1000 random
samples). This allowed us to define a confidence interval for test-retest reliability of each IDP,
estimated with N=8, under designed conditions of minimal site and scanner contributions to
variance. As noted, the MRI sequences for COVID-CNS were based on similar or identical
sequences for T1, T2 FLAIR, dMRI, swMRI and fMRI as previously used in the UKB
Enhancement cohort (Table 1). Hence, we could directly compare test-retest and between-site
consistency of IDPs measured in the UKB and COVID-CNS cohorts.
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Results

Sample

Eight participants (7 F; mean age = 23.5 y; SD = 5.8) were successfully scanned at all four sites,
with between-site intervals ranging from 1-14 days.

T1w and T2-FLAIR images

Quality control of T1w and T2 FLAIR images disclosed no deviations in quality of registration (Fig
1a, S1) across sites or with UK Biobank. T1w SNR and CNR measures from Siemens sites were
consistent with the UKB population distributions. However, the GE scanner produced images with
higher measures of inverse SNR and CNR (equivalent to lower SNR/CNR) than other sites for all
subjects (P<0.05) (Figure 1b). For Siemens sites, across structural IDPs, there was negligible
evidence for site-dependent variation in IDP mean values or scaling, and ICC distributions
matched those observed in the UK Biobank.

Morphometric IDPs, measuring regional volumes and surface areas, showed limited evidence for
site-dependent variations in their mean values for Siemens scanners (repeated measures
ANOVA; FDR = 5%, Figure 2a), and no evidence of significant between-site differences in scaling
(Mauchy’s test for sphericity, P > 0.05). The GE scanner site had an impact on IDP mean value
for a subset of these IDPs. However, consistency across all sites, measured by ICCs, was
generally very good for these IDPs (mean ICC >0.9) and did not differ from ICC measures of
test-retest consistency in the UKB dataset (Figure 2b). Similar results were observed for regional
cortical thickness IDPs derived from T1w and T2-FLAIR data. There was some regional variability
in between-site (and test-retest) reliability of cortical thickness, but ICCs were typically indicative
of good to very good reliability (mean ICC ~ 0.8), matching those observed in UK Biobank.

Tissue intensity and grey-white contrast IDPs were again consistent across Siemens sites, but
often showed significant differences at the GE site. There were significant differences in mean
tissue intensity and grey-white contrast for 79% and 97%, respectively, of regional IDPs (RM
ANOVA, FDR=5%). Grey-white contrast measured on the GE data was generally lower than in the
Siemens data, reflecting the effects observed in the global SNR and CNR measures (Figure 1b).
Between-site reliability for these IDPs across the 3 sites using Siemens scanners was slightly
higher (mean ICC = 0.69, SD = 0.24) than between-site reliability across all 4 sites (mean ICC =
0.61 SD = 0.23), compared to a UK Biobank mean ICC of 0.66 (SD = 0.17).

White matter hyper-intensity volumes (WMHSs) derived from T2-FLAIR images of the healthy
young adults scanned in the travelling heads study were typically low, as expected in this age
range (21-37 y). However, there were significant mean differences between sites in both deep
and periventricular WMH volumes (RM ANOVA; FDR = 5%), due to greater WMH volumes in the
GE data, with correspondingly lower levels of between-site reliability (Figure 3). There were no
significant mean differences between Siemens sites in deep or periventricular WMH volumes and
between-site reliability for the 3 Siemens sites was very good (ICC = 0.95, sd=0.01), comparable
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to test-rest reliability in the UKB data (ICC = 0.90, sd=0.06), and greater than between-site
reliability over all 4 sites in the travelling heads data (ICC = 0.51, sd=0.12). These findings are
somewhat unsurprising given that the software tool for WMH measurement (BIANCA) was trained
on data collected from the Siemens MRI protocol. When adequate training data are available
from the GE protocol, and in older subjects where higher WMH volumes are expected, it will be
important to retrain the BIANCA algorithm on both Siemens and GE data and this may improve
consistency of WMH IDPs across scanners from the different manufacturers (Bordin et al., 2020).

Susceptibility Weighted Imaging

We assessed regional estimates of T2* signal decay and quantitative estimates of susceptibility
(QSM) derived from the swMRI images. There was limited evidence of site-specific variation in
IDP means or scaling (Fig 4a). Estimates of regional T2*- had poor between-site reliability across
all 4 sites in the travelling heads data (mean ICC = 0.34, sd=0.24) (Figure 4b). QSM-derived
IDPs had generally better between-site reliability (All sites: ICC = 0.67, sd=0.13; Siemens only:
ICC =0.76, sd=0.14 ), comparable to good-very good test-retest reliability in the UKB data
(ICC=0.66). Lower reliability was observed for QSM IDPs measured in smaller subcortical
structures (amygdala, nucleus accumbens) in both travelling heads and UKB datasets.

dMRI

Diffusion weighted images were successfully acquired and analysed at all sites. Visualisation and
basic QC metrics showed consistent image quality across sites. IDPs corresponding to multiple
diffusion parameters (FA, MO, MD, ICVF, ISOVF and OD), were estimated regionally for each of
multiple white matter tracts. As for other modalities some IDPs showed evidence for site-specific
differences in means, driven by the GE site (Fig 5a). Overall, there was good to very good
between-site reliability (mean ICCs > 0.7), matching those observed in the UKB (Fig 5b). The GE
site showed limited consistency with other sites for WM tract FA, diffusivity and ISOVF, reducing
ICCs for these categories of IDPs.

MRI

Resting fMRI was successfully acquired at all sites . There were no significant between-site
differences in mean tSNR (before or after ICA-based processing with FIX), indicating similar
levels of signal quality across all sites, with QC metrics commensurate with those observed in the
UKB data (Figure 6). As individual functional connectivity (FC) IDPs reflecting pairwise
connectivity did not show a high level of reliability across sites, we assess 6 modes of variation of
FC network connectivity shown to be reliable in UKB (Elliott et al., 2018). We also assess
individual node amplitudes. These IDPs in general did not show site-specific variations in mean
or scaling (Fig 6A). Between-site reliability was low for node amplitudes (All sites: mean=0.36
sd=0.17; Siemens mean=0.55 sd=0.19), but comparable to the UKB (mean=0.48 sd=0.27). The 6
RSN connectivity modes showed very good reliability, with mean ICC = 0.67 (sd=0.18) for all sites
and ICC=0.75 (sd=0.25) for Siemens sites, compared to the excellent reliability seen in the UBK
(mean ICC=0.89, sd=0.11).

1


https://www.zotero.org/google-docs/?3ft6Se
https://www.zotero.org/google-docs/?4kBecB
https://doi.org/10.1101/2021.10.13.21264967
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.10.13.21264967; this version posted October 14, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Reliability of imaging derived phenotypes for post-COVID MRI
Duff et al medRxiv October 2021

Arterial spin labelling

For both the single PLD sequence (acquired on all sites) and the multi-PLD sequence (acquired
on the three Siemens sites only), we assessed estimates of grey and white matter mean
perfusion. Due to acquisition challenges, ASL was not successfully acquired at all sites. There
was no evidence of between-site mean differences in estimated perfusion. Between-site reliability
for the single PLD sequence was poor (ICC = 0.35; Siemens sites only ICC=0.22). The
Siemens-only multi PLD sequence had fair reliability (ICC = 0.53) (Figure 7).
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Discussion

This study provides a detailed investigation of the reliability of multi-modal IDPs for the multi-site
COVID-CNS project. This work provides one of the broadest surveys of the reliability of
multi-modal neuroimaging measures to date. For the COVID-CNS project, it provides insights
that can guide the design of harmonisation strategies for the project. More broadly, the study is of
relevance to the expanding number of studies utilising multi-modal imaging protocols derived from
the UK Biobank, including a number of additional studies focused on the neurological impact of
COVID-19 (Douaud et al., 2021; Raman et al., 2021). Overall, our results demonstrate generally
good to excellent levels of between-site reliability of imaging derived phenotypes estimated across
a wide range of brain MRI modalities in data collected from 4 UK sites participating in a national
COVID research consortium. In particular, the 3 sites using Siemens PRISMA platforms reliably
estimated from repeated measures on participants sampled from the UKB database. When the
site from a different scanner manufacturer (GE) was included, certain IDP classes were less
reliable. These results give confidence that large, multi-site COVID imaging studies can be used
to expand the cohort sizes of COVID neuroimaging studies.

Variability in IDPs across sites may be induced by variation in the contrast obtained by specific
sequences and scanner setups or technical variation in signal levels, scaling, or SNR. Travelling
heads studies provide a powerful means by which to detect site-specific variations in these
features in advance of multi-site population studies. In a healthy-participant travelling heads
study, ICC depends on intrinsic inter-subject variation in the travelling heads cohort to drive
measures of reliability. As such, ICC may be an imperfect measure to compare IDPs, as
between-subject variability may not reflect the observed effect size in the condition of interest for
individual IDPs (e.g. neurological effects of COVID). Nevertheless, ICCs are valuable when it is
expected that clinical effect sizes will be on the approximate scale of individual variation, and for
comparison to other datasets (e.g. UKB). While N=8 provides limited statistical power for the
identification of subtle differences across sites in individual IDPs, here it was able to provide an
overall pattern of results indicating that there will not be substantial loss of statistical power when
introducing new sites.

Reliability of multi-modal, multi-site MRl measurements

The between-site reliability for the 3 sites using Siemens PRISMA platforms allow us to evaluate
which MRI sequences and IDPs were most (and least) operationally and statistically reliable
under the best-case scenario of nearly identical scanners at multiple sites. The most reliably
collected MRI sequences were T1w, T2-FLAIR and dMRI; the least reliably collected MRI
sequence was ASL (N=6). This is perhaps unsurprising given the relative novelty of these ASL
sequences, which are well-established for research at specialised centres but had not previously
been used for large-scale clinical studies at all sites participating in the travelling heads study.
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The most reliably estimated IDPs were geometric grey matter phenotypes (cortical volume,
surface area, thickness), and white matter microstructural phenotypes (FA, ODI etc). Between-site
reliability for these two classes of IDPs was excellent in the travelling heads data and comparable
to the ceiling level of test-retest reliability of the same classes of IDP in the UKB dataset. Less
reliably estimated IDPs were typically derived from the less reliably collected ASL data; but all
other classes of IDP had good-to-excellent levels of both between-site and test-rest reliability. It
was notable that the ICCs for between-site and test-retest reliability were positively correlated
across all IDPs derived from Siemens data in the travelling heads and UKB studies, indicating that
some IDPs are inherently more robust to both between-site and within-subject sources of
variation. This may have implications for the power to detect case-control differences in clinical
studies using this set of multi-modal MRI sequences. For example, if there were comparable
effect sizes and sample sizes, T1w, T2-FLAIR and dMRI-derived IDPs will clearly have greater
power to detect case-control differences by virtue of their lower (between-site) variability.

Between-manufacturer reliability of multi-modal MRI measurements

The GE platform increased between-site variability for many classes of IDP, showing significant
differences in mean and reductions in ICC. Clearly, this increased between-site variability was
driven by differences in MRI sequences and data between Siemens and GE scanner platforms.
Despite careful preparatory alignment of the GE sequences to approximate as closely as possible
the parameters of the Siemens sequences, there were some irreducible differences between
Siemens and GE protocols due to the hardware constraints of differently manufactured scanners.
Tissue contrast metrics, like grey/white matter contrast, were particularly sensitive to the
difference between Siemens and GE sites, whereas geometric grey matter IDPs were generally
more robust. The reliability of white matter hyperintensity volume estimation was notably poor
when GE data were included in the analysis, but this may be at least partly attributable to the fact
that WMH volumes were estimated in healthy young adults (not usually expected to have any
WMHs) using a software tool that had been trained on Siemens-only data. Further training of
WMH segmentation tools on data acquired from GE as well as Siemens platforms in older
subjects would likely improve the reliability of this key marker of inflammation-related changes in
white matter.

For a nationally-scaled study of post-COVID patients, these data clearly point to a trade-off
between increasing recruitment rates (and ultimately sample size) by including sites using
scanners supplied by different manufacturers versus maximising between-site reliability (and thus
reducing spurious sources of variability) by restricting sites to those that are using scanners
supplied by the same manufacturer. Geographical differences in the incidence of COVID, and in
operational capacity for research studies under pandemic conditions, motivated formation of a
large and nationally representative network of scanning sites. We considered that the generally
good-to-very good levels of reliability for most IDPs across all sites in this pilot study were
sufficient to support this more inclusive strategy of using sites with either Siemens or GE
scanners, with the caveat that this will entail loss of power to detect case-control differences in
terms of IDPs derived from ASL and other modalities which were most difficult to harmonize
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between manufacturers. Between-site offsets in the mean and scaling of IDP values could be
corrected statistically post hoc by standard harmonisation or modelling methods such as
COMBAT(Da-ano et al., 2020) or Generalised Additive Modelling (Dinga et al., 2021), so long as

certain sampling requirements for patients and controls can be achieved at individual sites.
Methodological issues

It is a strength of this study that we have assessed reliability across a wide range of MRI
modalities and imaging-derived phenotypes, using data collected from different MRI systems and
at different sites. It is also a strength that we have been able to benchmark between-site reliability
for the majority of IDPs against comparable estimates of test-retest reliability in the UKB data.
However, sample size for the travelling heads study was small, meaning that results were
potentially vulnerable to the effects of 1 or 2 outlying observations and confidence intervals were
generally wide. We made best efforts, under the pragmatic constraints of urgently responding to a
public health crisis, to align GE and Siemens sequences prior to data acquisition. However, we
cannot claim that the between-manufacturer reliability results are optimised or would be
unimprovable by future, more intensive work on Siemens-like sequences for sites using scanners
supplied by GE or other manufacturers to align with UKB and C-MORE standards for COVID
neuroimaging. The results also indicate strong prospects for the wider integration of
COVID-related clinical neuroimaging data, particularly when sequences are reasonably aligned
across studies.

Conclusion

These results represent a realistic guide to the generally acceptable to excellent levels of
between-site reliability that are immediately attainable for multi-modal MRI across a national
network of collaborating sites using different scanner platforms. The UK Biobank multimodal
imaging protocols, which we have translated here to other sites and scanner models, presents an
attractive suite of protocols for new studies to consider using to ensure strong reusability of data.
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Figure 1: T1 images, inverse SNR and inverse CNR metrics across four sites. A)
Representative T1 images of the same subject scanned at each of 4 sites in the travelling heads
study. B) left panel, plots of inverse signal-to-noise ratio (iISNR) for 8 subjects (coloured lines)
scanned at each of 4 sites (x-axis labels); right panel, plots of inverse contrast-to-noise ratio
(iCNR) for the same subjects and sites. The grey violin plots in both panels indicate the expected
distributions of T1 iSNR and iCNR, respectively, in the UK Biobank reference dataset. The iSNR
and iCNR metrics are comparable across Siemens sites (Cambridge, Oxford, Liverpool) and
aligned with the UKB benchmark distribution. Both iSNR and iCNR are higher for the GE site
(KCL) (P < 0.05), indicating relatively lower SNR and CNR.
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Figure 2: Statistical results for five classes of structural MRI-derived phenotypes.
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top two panels, each column represents results for a different class of IDP, from left to right:
regional and tissue volumes, cortical area, cortical thickness, regional and tissue intensity, and

cortical grey-white contrast. A) Distribution of log-transformed P-values from repeated measures

ANOVA testing for a site effect on the mean value of individual IDPs in each class; the solid

horizontal line represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted
to the ANOVA model including data from all four sites; orange dots represent P-values for each
IDP fitted to the ANOVA including only data from the three Siemens sites (Cambridge, Oxford,
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Liverpool). There are more significant between-site differences in mean IDPs, across all 5
classes, when the GE data from KCL are included in the analysis B) Swarm plots showing
distribution of intra-class correlation coefficients (ICCs) for the same IDPs, estimated for each pair
of all 4 sites (green points), for each pair of the three Siemens sites (orange points) and for
comparable test-retest data drawn from the UKB cohort (blue points). Between-site reliability was
generally high for all IDP classes compared to the UKB benchmark, whether or not GE data was
included in the analysis. C) Each column represents finer-grained results for representative IDPs
from each class of IDP: from left to right, left thalamus volume, left precuneus area, left inferior
temporal cortical thickness, left caudate intensity and left fusiform CNR. Top row, plots of each
IDP for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); the grey violin plots
indicate the distributions of the corresponding IDP in the UK Biobank reference dataset. Botfom
row, correlations between each pair of sites for each IDP: upper triangle, Pearson’s correlations;
lower triangle, Spearman’s correlations.
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Figure 3: T2 FLAIR images and statistical results for T2-derived IDPs. A)
Representative T2 FLAIR images of the same subject scanned at each of 4 sites in the
travelling heads study. B) left panel, peri-ventricular white matter hyperintensity volume
for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); right panel,
correlations between each pair of sites. C) left panel, deep white matter hyperintensity
volume for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); right
panel, correlations between each pair of sites. In both B) and C), the upper triangle of
the matrix shows Pearson’s correlations and the lower triangle shows Spearman’s
correlations; and both IDPs were estimated using BIANCA.
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Figure 4: Statistical results for SWI-derived IDPs. In the top two panels, the left column shows
data for 14 IDPs derived from T2* data and the right column shows data for 14 IDPs derived from
QSM data. A) Distribution of log-transformed P-values from repeated measures ANOVA testing
for a site effect on the mean value of individual IDPs in each class; the solid horizontal line
represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted to the ANOVA
model including data from all four sites; orange dots represent P-values for each IDP fitted to the
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ANOVA including only data from the three Siemens sites (Cambridge, Oxford, Liverpool). There
are more significant between-site differences in mean IDPs when the GE data from KCL are
included in the analysis B) Swarm plots showing distribution of intra-class correlation coefficients
(ICCs) for the same IDPs, estimated for each pair of all 4 sites (green points), and for each pair of
the three Siemens sites (orange points). C) Each column represents finer-grained results for
representative IDPs from each class of IDP: from left to right, T2* right pallidum, QSM right
pallidum. Top row, plots of each IDP for 8 subjects (coloured lines) scanned at each of 4 sites
(x-axis labels). Bottom row, correlations between each pair of sites for each IDP: upper triangle,
Pearson’s correlations; lower triangle, Spearman’s correlations.
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Figure 5: Statistical results for five classes of dMRI-derived phenotypes. In the top two
panels, each column represents results for a different class of IDP, from left to right: Fractional
white matter (WM) tract FA, WM tract MO, WM tract diffusivity, WM tract ICVF, WM tract OD and
WM tract ISOVF. A) Distribution of log-transformed P-values from repeated measures ANOVA
testing for a site effect on the mean value of individual IDPs in each class; the solid horizontal line
represents the P-value equivalent to FDR = 5%. Green dots represent IDPs fitted to the ANOVA
model including data from all four sites; orange dots represent P-values for each IDP fitted to the
ANOVA including only data from the three Siemens sites (Cambridge, Oxford, Liverpool). There
are more significant between-site differences in mean IDPs, across all 5 classes, when the GE
data from KCL are included in the analysis B) Swarm plots showing distribution of intra-class
correlation coefficients (ICCs) for the same IDPs, estimated for each pair of all 4 sites (green
points), for each pair of the three Siemens sites (orange points) and for comparable test-retest
data drawn from the UKB cohort (blue points). Between-site reliability was generally high for all
IDP classes compared to the UKB benchmark when only Siemens sites were included in the
analysis. C) Each column represents finer-grained results for representative IDPs from each class
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of IDP: from left to right, FA right anterior thalamic radiation. MO left corona radiata, L3 left
cingulate gyrus, ICVF left cingulate gyrus, OD superior cerebellar peduncle, and ISOVF superior
longitudinal fasciculus. Top row, plots of each IDP for 8 subjects (coloured lines) scanned at each
of 4 sites (x-axis labels); the grey violin plots indicate the distributions of the corresponding IDP in
the UK Biobank reference dataset. Bottom row, correlations between each pair of sites for each
IDP: upper triangle, Pearson’s correlations; lower triangle, Spearman’s correlations.
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Figure 6. fMRI data quality and IDP summaries. The two columns show data on fMRI node
amplitude and fMRI connectivity IDPs. Both represent IDPs derived from 25- and 100-node
ICA-based parcellations. The fMRI connectivity IDPs represent 6 modes of variation across the
functional connectivity network matrices derived from both parcellations. A) Distribution of
log-transformed P-values from repeated measures ANOVA testing for a site effect on the mean
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value of individual IDPs in each class; the solid horizontal line represents the P-value equivalent
to FDR = 5%. Green dots represent IDPs fitted to the ANOVA model including data from all four
sites; orange dots represent P-values for each IDP fitted to the ANOVA including only data from
the three Siemens sites (Cambridge, Oxford, Liverpool). B) Swarm plots showing distribution of
intra-class correlation coefficients (ICCs) for the same IDPs, estimated for each pair of all 4 sites
(green points), for each pair of the three Siemens sites (orange points) and for comparable
test-retest data drawn from the UKB cohort (blue points). Between-site reliability was generally
high for all IDP classes compared to the UKB benchmark, whether or not GE data was included in
the analysis. C) Each column represents finer-grained results for representative IDPs from each
class of IDP: from left to right, fMRI node 4/25 and connectivity mode #3. Top row, plots of each
IDP for 8 subjects (coloured lines) scanned at each of 4 sites (x-axis labels); the grey violin plot
indicates the distribution of the corresponding IDP in the UK Biobank reference dataset. Bottom
row, correlations between each pair of sites for each IDP: upper triangle, Pearson’s correlations;
lower triangle, Spearman’s correlations.
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Figure 7. ASL data IDP summaries A) Grey matter mean perfusion data for the single
post-label delay (PLD) sequence used across all sites. B) Grey matter mean perfusion data for
the multi-PLD sequence available only on the Siemens sites. Raw data is plotted to the left; the
cross-site correlation matrices to the left (upper triangle, Pearson’s correlation; lower triangle,
Spearman’s correlation).
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Data sharing statement

Individual de-identified participant data will be shared through a secure online platform in support
of peer-reviewed publication of this report. The main UK Biobank brain MRI analysis pipeline is
available at https.//www.fmrib.ox.ac.uk/ukbiobank/. Modified or additional scripts and support data
for the analyses performed in this study will be made available from covidcns.org .
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Table 1: Multimodal MRI protocols for COVID-related neuroimaging with Siemens and GE 3T

scanners
Modality Manufacturer Acquisition Resolution Matrix Key Parameters UKB C-MORE
X Protocol
Time (mm) Protocol Match
(min:sec) Match ate
T4 (MPRAGE) ~ Siemens 4:54 1.0x1.0x1.0  256x256x208  TI/TR=800/2000 ms, R=2  Exact Exact
GE
4:42 1.0x1.0x1.0  256x256x208  TI/TR=800/2000 ms, R=2
T2 FLAIR Siemens 4:32 1.0x1.0x1.05  256x256x192  TI/TR=1800/5000 ms, R=3  Similar Exact
(SPACE)
GE
5:58 1.0x1.0x1.0  256x256x196  TITR=1472/5000 ms, R=2
diffusion MRI Siemens 7:08 20x2.0x2.0  104x104x72  TR=3600 ms, 50 dirs/shell, Exact Superset
b=0, 1000 2000 s/mm2,
MB 3 blip-reversed b=0
GE .
6:29 2.0x2.0x2.0  104x104x72  TR=3600 ms, 50 dirs/shell,
b=0, 1000 2000 s/mm2,
MB 3 blip-reversed b=0
susceptibility-wei >N 2:08 0.9x0.9x3.0  256x232x48  TE1/TE2/TR=9.4/20/27 Lower resolution =2
ghted ms, R=2
GE
2:04 0.9x0.9x3.0  256x256x48  TE1/TE2/TE3//TR=4.9/14.
1/23.3/29.5 ms, R=2
ASL segmented  SeMens 3:06 3.4x3.4x45  64x64x32 TR=variable with PLD, Exact. ASL Similar
3D-GRASE tag=1400ms, protocol has
multi-inversion-ti PLDs=400:400:2000ms, 2 been added to
me PCASL reps, 1 MO calibration UKB for
(Siemens only) image post-COVID-19
scanning
ASL (single Siemens 5:52 1.88*1.88*4.  128x128x36  TR=4330ms, tag=1400ms, Not included Not incluc
inversion-time 0 interp. from interpolated PLD=2025ms, 4 reps, 1
segmented 3.75*3.75%4. from 64x64x36 MO calibration image
3D-GRASE 0
PCASL)
GE -
5:52 1.88*1.88*4. 128x128x36 TR=4840ms, tag=1400ms,
0 PLD=2025ms, 4 reps, 1
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Resting fMRI Siemens 7:00
GE 7:21
. Siemens
Total scanning 32:33
time
GE 33:38

2.4x2.4x2.4

2.4x2.4x2.4

88x88x64

88x88x64

TE/TR=39/735 ms, 0=52°,
MB=8

TE/TR=39/735 ms, a=52°,
MB=8

Exact

Not Incluc

MPRAGE = Magnetization Prepared RApid Gradient Echo; FLAIR = Fluid-attenuated inversion recovery; SPACE =
Sampling Perfection with Application optimized Contrasts using different flip angle Evolution; ASL = Arterial Spin

Labeling; PCASL = pseudo-continuous ASL; TR = repetition time; TE = echo time; Tl = inversion time; R = in-plane
acceleration factor; MB= multi-band acceleration factor; a = flip angle.
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