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Abstract

Deep brain stimulation (DBS) is an established therapy for patients with Parkinson’s
disease. In silico computer models for DBS allow to pre-select a set of potentially
optimal stimulation parameters. If efficacious, they could further carry insight into the
mechanism of action of DBS and foster the development of more efficient stimulation
approaches. In recent years, the focus has shifted towards DBS-induced firing in
myelinated axons, deemed particularly relevant for the external modulation of neural
activity. We use the concept of pathway activation modeling, which incorporates
advanced volume conductor models and anatomically authentic fiber trajectories to
estimate DBS-induced action potential initiation in anatomically plausible pathways
that traverse in close proximity to targeted nuclei. We apply the method on a
retrospective dataset with the aim of providing a model-based prediction of clinical
improvement following DBS (as measured by the motor part of the Unified Parkinson’s
Disease Rating Scale). Based on differences in outcome and activation rates for two
DBS protocols in a training cohort, we compute a theoretical 100% improvement profile
and enhance it by analyzing the importance of profile matching for individual pathways.
Finally, we validate the performance of our profile-based predictive model in a test
cohort. As a result, we demonstrate the clinical utility of pathway activation modeling
in the context of motor symptom alleviation in Parkinson’s patients treated with DBS.

Introduction 1

Deep brain stimulation (DBS) is an effective treatment for various neurological and 2

mental disorders, and it has become an established therapy for patients suffering from 3

therapy-refractory Parkinson’s disease (PD). During DBS, short high-frequency pulses 4

are delivered to subcortical brain structures via implanted electrodes. These electrodes 5

usually have 4 or 8 contacts, each of which can be used as a current source. Modern 6

DBS systems allow great flexibility in pulse modulation, including adjustment of width, 7

amplitude, and frequency. Determining an optimal stimulation protocol in such a large 8
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parameter space is challenging, and to assist medical professionals in this procedure, in 9

silico computational models for DBS could be of use. Besides, such models could 10

provide insights into the action mechanism of the treatment, which in turn could drive 11

the development of more efficient and effective stimulation paradigms. 12

In the basal ganglia, DBS has been hypothesized to create an ”informational lesion” 13

partly facilitated by electrical stimulation of highly excitable myelinated axons [21] that 14

form projections across DBS targets, such as the subthalamic nucleus (STN) and the 15

globus pallidus internus (GPi). To quantify the effect, different concepts have been 16

proposed, among which the volume of tissue activated [8] or its approximations [13] are 17

most commonly employed. Multiple studies have investigated correlations of symptom 18

alleviation with voxel metrics defined based on the volume of tissue activated and its 19

interaction with structural and functional connectivity [28, 29, 38, 43]. More recently, the 20

concept of pathway activation modeling was proposed [23] that comprises advanced 21

volume conductor models and anatomically authentic fiber trajectories to estimate a 22

DBS-induced action potential initiation along pathways residing in the vicinity of the 23

stimulation targets. To date, studies on Tourette syndrome, obsessive-compulsive 24

disorder, treatment-resistant depression, and PD have successfully employed pathway 25

activation modeling to predict symptom alleviation in patients [20, 24,30, 34]. However, 26

to our best knowledge, the method has not been applied on a cohort level to investigate 27

correlations between DBS-induced axonal activation and alleviation of aggregated motor 28

symptoms in PD. 29

In this retrospective computational study, we apply pathway activation modeling to 30

identify the network correlates underlying the improvement of the Unified Parkinson’s 31

Disease Rating Scale III score (motor examination, further referred to as UPRDS-III) 32

and the Movement Disorder Society (MDS) sponsored revision of UPRDS-III in patients 33

suffering from therapy-refractory PD. We base this prediction on pathway activation 34

profiles defined by multiple pathways recruited by Subthalamic Nucleus Deep Brain 35

Stimulation (STN-DBS). Correlating symptom alleviation with profiles instead of 36

activation in individual pathways can be a more robust metric considering 37

compensatory and adverse effects of fiber recruitment in the vicinity of the STN. Based 38

on interprotocol scores, defined as the difference of two DBS-on UPDRS-III scores 39

assessed in the training cohort for each patient, we construct a theoretical 100% 40

UPDRS-III improvement profile and enhance it by analyzing the significance of 41

activation levels in individual pathways. The performance of the resulting profile-based 42

predictive model is then successfully tested in an independent cohort. 43

Materials and Methods 44

Patient Cohorts and Imaging 45

Two cohorts from independent DBS centers, namely Charité – Universitätsmedizin 46

Berlin and Würzburg University Hospital, were retrospectively analyzed for derivation 47

and validation of a pathway activation-based predictive model. The cohorts were 48

formed based on the following criteria: 49

• availability of medical imaging data, such as preoperative T1-weighted magnetic 50

resonance imaging (MRI) and postoperative computed tomography (CT), 51

necessary for electrode localization and patient-specific modeling; 52

• current-controlled stimulation mode, which allows to compensate for a voltage 53

drop on the electrode-tissue interface, reducing the computational model 54

complexity; 55
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Table 1. Cohort Demographics and Clinical Outcomes.

Cohort No. (female) Age,
years

Disease
duration,

years

MDS-UPDRS-
III

Pre-op baseline

UPDRS-III
Post-op baseline

(MDS-)UPDRS-
III

DBS-on Med-off

Training 15 (2) 62.4± 6.2 12.8± 4.8 — 40.6± 8.8 23.3± 8.7
P1 —//— —//— —//— — —//— 21.5± 8.8
P2 —//— —//— —//— — —//— 25.1± 8.3

Test 19 (7) 55.5± 5.7 9.8± 3.4 43.3± 9.4 — 22.3± 9.6

Mean values ± standard deviation are reported. In the test cohort, baseline (off medication, DBS-off) was assessed preoperatively

and in the training cohort at least 6 months after surgery. The training cohort contains information on two stimulation protocols

(P1 and P2) for each patient; their score difference over the cohort is 3.6 ± 7.3. (MDS-)UPRDS-III – (Movement Disorder Society

sponsored revision of) Unified Parkinson Disease Rating Scale, motor examination.

• placement of the electrode inside the STN with a minimal penetration of the 56

pallidus. The former restriction is imposed since only activation in pathways in 57

the vicinity of the STN was investigated, and the latter criterion was applied to 58

reduce effects of the pallidal lesioning. 59

As a result, 15 patients for the training (Berlin) and 19 for the test (Würzburg) 60

cohort were admitted. Although the first cohort contained fewer patients, it provided a 61

total of 30 datapoints: two stimulation protocols were documented for each patient as a 62

part of another study on an algorithm-guided DBS-programming [53]. Later, this aspect 63

was used to derive the predictive model. In both cohorts, the patients constituted a 64

representative sampling of a clinical PD-DBS cohort (see Table 1). All received 65

octopolar DBS electrodes bilaterally to STN (Fig. 1), either using omnidirectional or 66

directional DBS electrodes (Boston Scientific VerciseTM, Marlborough, MA, USA). 67

Stimulation was performed using a conventional current-controlled DBS signal: a 68

rectangular pulse of 20–60 µs length, 79–185 Hz repetition rate, each followed by an 69

extended charge balancing period at low amplitude. Motor performance in the training 70

and the test cohorts was evaluated with either UPDRS-III or MDS-UPDRS-III, 71

respectively. These scores are strongly (r > 0.95) correlated [42], and, for brevity, both 72

will be referred to as UPRDS-III. They were taken at baseline (off medication, DBS-off) 73

preoperatively in the test cohort, and at least 6 months after surgery (same day as 74

DBS-on scores) in the training cohort. UPDRS-III scores under active DBS (off 75

medication) were acquired at least after 6 months in both cohorts. 76

Figure 1. Reconstruction of DBS electrodes in the training (Berlin, A) and the test (Würzburg,
B) cohorts. Electrodes are visualized in standard stereotactic Montreal Neurological Institute
(MNI) space using Lead-DBS. Displayed brain structures are defined by the DISTAL atlas [15]
and include subthalamic nucleus (orange), globus pallidus externus (blue) and globus pallidus
internus (green).

Imaging data was processed using Lead-DBS software [26,27] (lead-dbs.org). 77
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Postoperative volumes and preoperative weighted multimodal MRI scans were linearly 78

co-registered using SPM12 [16] (fil.ion.ucl.ac.uk/spm). This was followed by a 79

non-linear normalization step of co-registered patient scans to stereotactic Montreal 80

Neurological Institute (MNI) space using Advanced Normalization Tools (ANTs, 81

stnava.github.io/ANTs/) ’SyS’ algorithm [5]. We also accounted for potential 82

non-linear displacements introduced by brain shift using an additional refinement of the 83

co-registration step that focused on the subcortex. Electrodes were localized based on 84

CT scans using PaCER [32], and results were visually evaluated and refined, if necessary. 85

Bioelectrical effects of DBS were modeled in patient-specific (native) space. For that, 86

patient-specific brain tissue segmentations (grey matter, white matter and cerebrospinal 87

fluid) were obtained based on tissue probabilistic mapping [16] derived from the 88

multispectral MNI template and T1-weighted MRI images. To account for tissue 89

anisotropy, the mean diffusion tensor data of the human brain [56] were transformed 90

into patient-specific space using the inverse deformation field derived from the 91

diffeomorphic normalization procedure. The same procedure was applied to a basal 92

ganglia pathway atlas [47] that describes fiber distribution and classification necessary 93

for pathway activation modeling. Created under the guidance of expert neuroanatomists, 94

it provides an accurate description of axonal trajectories affected by STN stimulation. 95

Field and Pathway Activation Modeling 96

Isotropic conductivity values for grey and white matter were evaluated in the frequency 97

domain based on [17], but omitting α-dispersion as proposed in [57] and additionally 98

upscaled. The conductivity σ of non-dispersive cerebrospinal fluid was fixed to 2.0 S/m. 99

In the power spectrum of a conventional DBS signal (up to 1 MHz), the conductivities 100

were monotonically increasing (σgrey: 0.168–0.235 S/m and σwhite: 0.120–0.153 S/m). 101

To account for this dispersion, the Fourier Finite Element Method [8] was applied to 102

solve the quasistatic formulation of Maxwell’s equations that describes the spatial 103

distribution of the electric potential φ(r): 104

∇·
(
σ(r, ω)∇φ(r)

)
= 0, (1)

where ω = 2πf is the angular frequency of one of the harmonics that compose the DBS 105

signal. Capacitive properties of brain tissue can be neglected in Eq. 1 due to its 106

relatively low contribution after omitting α-dispersion. An octave band approximation 107

method [6] was used to reduce the number of computations in the frequency domain. 108

The solution in the time domain is then retrieved using an Inverse Fourier Transform. 109

Anisotropy, especially prominent in white matter tracts [18], was modeled by expressing 110

conductivity in terms of tensors defined according to the mean diffusion tensor data 111

that were normalized voxel-wise following the volume conservation approach [22] and 112

scaled by the isotropic conductivity of brain tissue. The electrode-tissue interface was 113

neglected assuming its minor effect on current-controlled stimulation [8] with a charge 114

density per phase below 0.03 mC/cm2. Nevertheless, the electrode’s encapsulation layer 115

was accounted for by removing axons within a 0.1 mm vicinity, where neuron 116

degeneration and glial scarring occur. The accuracy of the Finite Element Method 117

computations was controlled based on the convergence of the electric field and the 118

current, and elements with large deviations were refined. 119

The obtained distribution the of extracellular potential in space and time was used 120

to solve a double cable equation of a myelinated axon model described in [41]. The 121

models were allocated on the trajectories delineated in [47] (for passing fibers, the 122

closest point on the trajectory to active contacts was treated as the midpoint seed), and 123

the pathway activation rate was computed as a fraction of axons in the pathway that 124

elicited an action potential in response to the DBS pulse. In the present study, we 125
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modeled activation in the corticofugal and the hyperdirect pathways (HDP) originating 126

in the primary and premotor cortex, as well as the supplementary motor area. To 127

reduce the computational costs, the corticofugal pathway was uniformly downsampled 128

from 5000 to 1250 streamlines. In addition, activation in the pallidosubthalamic 129

pathways (sensorimotor portion) and the pallidothalamic pathways (ansa lenticularis 130

and lenticular fasciculus) was investigated. Besides, we computed the extent of direct 131

DBS recruitment of the passing cerebellothalamic tract associated with tremor 132

suppression [10]. In total, 4000 axon models of 16 pathways per hemisphere were 133

deployed for pathway activation modeling, with some axons being later removed due to 134

their intersection with the electrode, the encapsulation layer or cerebrospinal fluid. 135

In the present study, the fiber diameters and the number of nodes of Ranvier, which 136

together defined the axonal length, were fixed for axons within one pathway. A fiber 137

diameter of 3.0 µm was chosen for axons of the local STN-GPe and STN-GPi pathways 138

with a length of 10 mm and 6 mm, respectively (35 nodes and 21 nodes of Ranvier). 139

For other pathways, the fiber diameter was set to 5.7 µm, which is on a larger side for 140

data reported in [40]. The same axon model was employed in [31], where it was noted 141

that larger fiber diameters improve predictability of evoked potentials. In a preliminary 142

analysis, we also tested a 12.0 µm fiber diameter as suggested by the authors, but this 143

setup predicted a high activation in the corticofugal pathway, which is unlikely for 144

clinically accepted protocols due to evoked motor contractions. For computational 145

reasons, the length of the axons of passage and the HDP was limited to 20 mm (40 146

nodes of Ranvier), thus not covering the whole length of the corresponding projections. 147

Nevertheless, this truncation is acceptable due to a minor effect of DBS on distant 148

axonal compartments, and a preliminary analysis with longer axons yielded the same 149

activation rates. 150

All steps described in this subsection were carried out using the open-source 151

simulation software OSS-DBS [7] that was developed for highly automated DBS 152

modeling in heterogeneous anisotropic and dispersive volume conductor models. For the 153

present study, the software was implemented as a computational backend, freely 154

distributed along with Lead-DBS. The coupling allowed a seamless transition between 155

state-of-the-art processing of medical imaging and accurate modeling of DBS-induced 156

electric field with subsequent quantification of its effect on neural tissue using cable 157

models. The OSS-DBS computations were encapsulated in Docker containers 158

(docker.com/) deployed on Intel Xeon(R) Gold 6136 CPU @ 3.00 GHz x 48 cores with 159

376.6 GB of memory. 160

Analysis of Pathway Activation Profiles 161

As a first exploratory step, we calculated correlations between activation rates of 162

individual pathways and the UPDRS-III improvement from baseline in the training 163

cohort. We employed the Pearson correlation coefficient, assuming a linear interaction 164

between the quantities. The Spearman rank correlation was comparable for all tests 165

presented in this study. 166

Secondly, we analyzed activation rate profiles AR (vector quantities composed of
activation rates over all 16 pathways) and their correlation with alleviation of motor
symptoms. Since the training cohort contained two DBS-on datapoints per patient, we
decided to use these measurements to derive a vector of the interprotocol UPDRS-III
improvement in the pathway activation space. The difference in UPDRS-III scores
between two protocols allowed us to compute a distance to a theoretical pathway
activation profile of 100% improvement, i.e., an optimal activation rate profile:

ARoptimal = AR+ +
(AR+ −AR−)UPDRS+

UPDRS− − UPDRS+
, (2)
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Figure 2. Dataflow for computing pathway activation. Based on patient imaging and brain
atlases, Lead-DBS (orange box) reconstructs the electrode and provides a description of tissue
and water diffusion distributions in the brain. These data are used by OSS-DBS (green box)
to create an accurate patient-specific volume conductor model. The model is then employed
to compute electric potential distribution in space and time along axon models allocated on
trajectories described by a pathway atlas. Finally, for the given distribution, the cable equation
is solved to probe axonal activation, i.e., occurrence of an action potential in response to DBS.

where subscripts ”+” and ”−” refer to the better and the worse performing stimulation 167

protocols, respectively. Such a definition of the optimal pathway activation profile is 168

preferable over derivations using baseline, where only endogenous activity is present 169

that is not quantified in the model and assumed to be overwritten by the DBS-induced 170

activation of fiber tracts. 171

The difference between two profiles was quantified with the Canberra distance [36] 172

d(ARoptimal,ARa) =

16∑
i=1

wi
|ARoptimal,i −ARa,i|
|ARoptimal,i|+ |ARa,i|

, (3)

where wi is the weighting factor for the i−th pathway, whose default value is 1.0. The 173

Canberra distance was chosen based on a preliminary analysis within the training 174

cohort where it showed the highest predictive ability in comparison with other metrics, 175

such as Bray-Curtis dissimilarity and Euclidean distance. It is noteworthy that this 176

normalized metric demonstrated the best performance, thus sparing us the argument of 177

whether activation rates (percent of fibers present in the tract) or absolute activation 178

(amount of fibers activated in each tract) should be employed when analyzing pathway 179

activation results. 180

The next problem was to determine which patients, i.e., pairs of datapoints, to use 181

to derive ARoptimal. At first glance, the patient with the best improvement between 182

two DBS-on protocols would be a good candidate. However, the best improvement does 183

not guarantee the shortest path to the optimal activation rate profile. Instead, we 184

considered patients who had the highest interprotocol UPDRS-III improvement 185

normalized by the mean of the difference vector (AR+ −AR−). To increase the 186

robustness of the predictive model, ARoptimal can be averaged among several patients. 187

In the present study, we picked three patients with a prominently higher normalized 188

UPDRS-III improvement. Additionally, we tested the predictive ability of ARoptimal 189

derived from all datapoints in the training cohort using a ”leave-one-out” approach. 190

Previous experimental and clinical studies showed that stimulation of specific 191

pathways in the vicinity of the STN associated with symptom alleviation and occurrence 192

of side-effects [9, 10, 48, 51]. Therefore, we presume that the importance of matching the 193

optimal profile is not uniform among pathways. To test this hypothesis, we optimized 194

the weighting factor wi for each pathway using the training cohort, but excluding those 195
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recruited for ARoptimal. The optimization was conducted according to the following 196

procedure. First, a patient was excluded, and the rest were randomly shuffled and split. 197

Next, for one set, the weighting factors were optimized to maximize the inverse 198

correlation of the Canberra distance and the UPDRS-III improvement, both from 199

baseline and between protocols. The second set was then used to test the predictive 200

ability of the weighted metric. The procedure was repeated for all patients. Removal of 201

a patient and random shuffling was employed to estimate convergence of the optimal 202

weighting factors across the cohort, and multiple trials yielded no significant disparities 203

introduced by the shuffling. Note that the limited number of datapoints overall 204

necessitated use of the same patients (but in different combinations) in both sets. 205

Results 206

Pathway Activation and UPDRS-III Improvement 207

Pathway activation rates computed for both cohorts are presented in Fig. 3. Analysis of 208

activation in individual pathways and UPDRS-III improvement from baseline revealed 209

only one pathway with a statistically significant positive correlation, namely, the HDP 210

branch to the face-neck region of the primary motor cortex. However, it was not 211

predictive when later applied to the test cohort. Additionally, we observed that increase 212

in activation in the cerebellothalamic pathway correlated with interprotocol UPDRS 213

improvement of tremor (see Suppl. 1). Interestingly, there was no correlation with the 214

UPDRS-III improvement from baseline, possibly due to irrelevance of the metric 215

activation for akinetic-rigid patients and contribution of the subthalamic projections to 216

the tremor alleviation. The weak correlations for individual pathways might indicate an 217

interplay of activation in different pathways. 218

Fig. 4, A shows activation profiles of the best responders, i.e., patients with the 219

highest UPRDS improvement from baseline, in both cohorts and the theoretical 100% 220

improvement profile, derived from datapoints of three patients (from the training 221

cohort) with the highest normalized UPDRS-III improvement. The Canberra distance 222

of the datapoints from the rest of the training cohort to the optimal profile showed a 223

significant inverse correlation with the correponding UPDRS-III improvements from 224

baseline (see Fig. 5, A). In contrast, the optimal profile derived from all datapoints of 225

the training cohort was not predictive (see Suppl. 2). 226

Key Pathways of the Activation Profile 227

Optimization results for the weighting factors wi in the Canberra distance (see Eq. 3), 228

conducted on datapoints of the training cohort, indicated that DBS-induced activation 229

in specific pathways might play a prominent role in motor symptom alleviation (see 230

Fig. 4, B). 231

In particular, the optimization emphasized a moderate activation in both 232

pallidothalamic pathways as well as two branches of the HDP to the primary motor 233

cortex, while avoiding stimulation of the corticofugal pathway descending from the 234

supplementary motor area. The weighted Canberra distances from activation profiles to 235

ARoptimal for patients who were successively left out showed a statistically significant 236

correlation with UPDRS-III improvement from baseline. Notably, the optimized weights 237

were comparable among patients and were averaged to draw a general conclusion on the 238

importance of particular pathways, where deviations in activation rates from the 239

optimal profile led to worse performance. 240

The averagely weighted Canberra distance to ARoptimal demonstrated a higher 241

correlation with UPDRS-III improvement from baseline than the unweighted metric 242
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Figure 3. Violin plots of pathway activation rates across both cohorts (two stimulation protocols
for each patient in the training cohort) visualized with the correspnding pathways in Lead-
DBS in MNI space. MC and PMC refer to the primary and premotor cortical regions, SMA
– supplementary motor area; cf and hdp are the corticofugal and the hyperdirect pathways,
respectively; Ansa – ansa lenticularis, Lent – lenticular fasciculus, CbTh – cerebellothalamic
pathway; l, f, up - lower extremity, face-neck region, and upper extremity in the primary
motor cortex. For clarity, only one direction of the reciprocal sensorimotor pallidosubthalamic
projection is shown. Note that the cohorts’ datapoints provide comprehensive coverage of the
pathway activation space.

(Fig. 5, B), which is not, however, surprising, since the optimization was conducted on 243

these datapoints. Therefore, the profile-based predictive model had to be validated on 244

unseen patients from the hold-out test cohort. Critically, patients from the test cohort 245

did not play a role in the model selection process and were entirely naive to the final 246

metric derived from the training cohort. This metric, the weighted Canberra distance to 247

ARoptimal, defined using the training cohort, was predictive of UPDRS-III improvement 248

from baseline in patients of the test cohort, while the unweighted distance was not (see 249

Fig. 6.) Distribution of activation in the highly weighted pathways computed for the 250

best responders is shown in Fig. 7. 251

Discussion 252

In this study, we conducted pathway activation modeling for two cohorts of Parkinson’s 253

patients that underwent DBS surgery at two independent centers. Based on modeling 254

results for a training cohort, we proposed a method to derive an optimal activation 255

profile using differences in activation rates and UPDRS-III scores assessed for two 256

protocols evaluated in each patient. Furthermore, we evaluated the importance of 257

activation in particular pathways for the obtained profile. At last, we demonstrated that 258

proximity to the optimal activation profile in the multidimensional pathway activation 259

space has a statistically significant correlation with UPDRS-III improvement in a test 260

cohort from an independent center. 261
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Figure 4. Theoretical 100% UPDRS-III improvement optimal profile. A: activation rates for
the optimal profile and the best responders from each cohort. Note that the match between these
datapoints and the optimal profile occurs for different pathways, suggesting that two distinct DBS
mechanisms might be present. The mean values of optimized weighting factors below the bars
can be interpreted as the importance of matching the optimal profile for a particular pathway.
Red boxes highlight pathways with the highest effect on predictive ability. B: box plots of the
optimized weighting factors computed with the ’leave-one-out’ approach. Note the low number of
outliers.

Figure 5. Correlation of UPDRS-III improvement in the training cohort with the distance to
the optimal profile defined in the pathway activation space and based on three patients with the
highest normalized interprotocol UPDRS-III improvement. Colored lines between datapoints
depict interprotocol binary correlation (green – valid prediction, black – false.)

Effect of Activation in Individual Pathways 262

Contrary to our prior expectations, the computed activation rates of individual axonal 263

pathways demonstrated no clear correlation with clinical improvements. This result is 264

especially remarkable for the hyperdirect pathway (HDP), associated with motor 265

symptom alleviation in Parkinson’s disease (PD) [9, 39,48]. Furthermore, even though 266

activation in one branch of the HDP correlated with UPDRS-III improvement from 267

baseline, the result was not reproducible in the test cohort. One possible explanation is 268

that the correlation of improvement with HDP activation might be hindered by the 269

nearby corticofugal pathway, whose stimulaton has been associated with tetanic motor 270

contractions [51]. In addition, subthreshold stimulation of these tracts has been 271
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Figure 6. Cross-predicting UPDRS-III improvement in the test cohort using the optimal
activation rate profile derived from datapoints of the three patients in the training cohort. Note
that only the weighted Canberra distance has a statistically significant correlation with the
improvement.

Figure 7. Pathway activation visualized in Lead-DBS. A: pathways which activation rates
determine the UPDRS-III improvement (shown in MNI space.) Blue and cyan – the hyperdirect
pathway, descending from face-neck and upper extremity of the primary motor cortex, red –
the corticofugal pathway, descending from the supplementary motor area, green – lenticular
fasciculus, orange – ansa lenticularis. B and C: pathway activation (shown on computational
axon models in patient-specific space) for the best responders in the training and the test cohorts,
respectively. Axons closer than 0.1 mm from the electrode (purple) are excluded due to glial
scaring and neurodegeneration. Note the high recruitment of the HDP and the corticofugal
pathway for the best responder in the test cohort.

reported to exacerbate akinesia and bradykinesia [55], so patients may not necessarily 272

show significant relief of motor symptoms despite high activation rates in the HDP. 273

Admittedly, this was not the case for the best responder in the test cohort (see Fig. 3.), 274

possibly due to its individual lower responsiveness to the stimulation. We also analyzed 275

correlations of UPDRS-III improvement with activation in the HDP, the corticofugal, 276

and the pallidothalamic pathways without differentiating between branches. However, 277

this did not yield conclusive results. Although high activation in the corticofugal 278

pathway induces motor contractions, such stimulation protocols are avoided in chronic 279

DBS, so this side effect could not be quantified in the correlation tests. 280

For the cerebellothalamic pathway, we did observe a correlation between activation 281

rates and tremor suppression, which is in agreement with other studies [2, 4, 10]. 282

However, the correlation was present only when comparing two DBS protocols, but not 283

DBS against baseline (see Suppl. 1). This suggests involvement of other pathways in the 284
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suppression of tremors [52]. Furthermore, our model did not assign a high weighting of 285

the cerebellothalamic pathway for predicting optimal outcomes. Nevertheless, the 286

correlation of interprotocol differences implies that more effective alleviation of tremor 287

could be achieved by steering current to the cerebellothalamic pathway. 288

Effect of Balanced Pathway Activation 289

More conclusive results were obtained when considering motor improvement as a 290

function of the whole activation profile. Defined by the weighted Canberra distance, 291

discrepancy of test cohort profiles with the optimal activation rate profile demonstrated 292

a statistically significant inverse correlation with UPRDS-III improvement from baseline. 293

Importantly, the optimal profile was derived from datapoints of the training cohort, in 294

particular, from differences of DBS-on intrapatient UPDRS-III scores and corresponding 295

activation rates. 296

When analyzing the optimal profile, it is notable that two branches of the HDP to 297

the primary motor cortex and of the corticofugal pathway to the supplementary motor 298

area were assigned high weighting factors (see Fig. 4, B). For the latter, the activation 299

rate in the optimal profile was minimal, suggesting its detrimental effect. On the other 300

hand, the moderate activation rates in the presumably beneficial HDP branches can be 301

explained by the proximity to the corticofugal pathway (note the high activation rates 302

of the HDP and the corticofugal pathway for the best responder in the test cohort.) 303

The activation rates and the weighting factors for the optimal profile could be used 304

to draw conclusions regarding possible mechanisms of action of STN-DBS. The most 305

noteworthy is the presumed importance of the pallidothalamic projections: the ansa 306

lenticularis and lenticular fasciculus, which have been considered a functional 307

continuum [45,46]. By comparing the weighted optimal profile to the best responders, 308

we can hypothesize that these pathways as well as the HDP are beneficial for alleviation 309

of motor symptoms in PD. The ansa lenticularis and lenticular fasciculus are the 310

primary inhibitory outputs of the basal ganglia to the ventral anterior thalamic 311

nucleus [37], which itself is projecting to motor-relevant cortical regions. In a PD 312

affected network, the GPi exhibits bursting activity [50], which has been associated with 313

generation of motor symptoms [35]. Alleviation could arise from a direct modulation of 314

this pathological activity, e.g. via an ”informational lesion” induced by the 315

non-physiological pattern of DBS [21]. Furthermore, therapeutic effects of stimulation of 316

the pallidothalamic pathways would also explain the comparable efficiency of GPi-DBS 317

in treating motor symptoms of PD. In historical context of ablative surgery, lesioning of 318

ansa lenticularis was shown to be beneficial for tremor alleviation [54]. 319

Considering these pathways as potential targets has important clinical implications. 320

For DBS patients who respond poorly to the treatment, such as those in whom the 321

active electrode contacts are outside the dorsolateral ”sweet spot” of the STN [11], 322

clinicians could attempt to alleviate symptoms by thoroughly investigating stimulation 323

responses for electrode contacts near the ansa lenticularis and lenticular fasciculus. 324

Prospective studies could consider new implantation trajectories that allow both 325

mechanisms with precise targeting of the hyperdirect and pallidothalamic pathways, 326

preferably stimulated via different electrode contacts. This strategy would offer the 327

possibility of inducing desynchronised DBS patterns. 328

At the same time, one should be aware that the STN is a site of convergence of 329

different functional circuits [1], which is the most probable reason for its efficiency as a 330

DBS target. Apart from the obvious cases, such as the near-zero activation of the 331

corticofugal branch to the supplementary motor area (Fig. 4), the weighted profile of 332

optimal activation rates does not suggest which pathways are beneficial or detrimental, 333

but rather indicates a theoretically optimal balance of DBS-induced activation. Such a 334

11/18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 11, 2021. ; https://doi.org/10.1101/2021.10.08.21264743doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.08.21264743


metric is more feasible than separately defined optimal activation rates, especially since 335

pathway-specific DBS is not yet possible with clinically approved electrodes. 336

Limitations 337

The most disputable result presented in this study is the high activation in the 338

corticofugal pathway computed for the best responder in the test cohort. For clinical 339

application, this activation profile would be undesirable due to possible side effects. At 340

the same time, the activation of the corticofugal branch to the lower extremity of the 341

primary motor cortex was nearly zero for this patient, as well as for others in both 342

cohorts (see Fig. 3). Further studies are warranted to investigate pathway activation 343

profiles associated with DBS-induced side-effects. 344

Nevertheless, one should consider that the arguable results of correlation tests for 345

individual pathways might originate from uncertainties introduced by the computational 346

model. We suspect that the lack of data on pathway-specific axonal morphology is the 347

primary source of the error in pathway activation modeling. Furthermore, additional 348

inaccuracies arise from volume conductor modeling, processing of medical images and 349

clinical evaluation. Investigating present results by means of uncertainty quantification, 350

as was shown in [6, 49] in the context of DBS, could enhance our understanding of how 351

results should be interpreted. 352

In the optimal profile, noteworthy is the small weighting factor of the sensorimotor 353

pallidosubthalamic and reverse projections. That might be attributed to the limitations 354

of the pathway activation modeling when investigating this local circuit, which 355

excitatory-inhibitory reciprocity is a probable source of synchronization in the basal 356

ganglia [44]. These short projections follow nearly the same trajectory, hence nearly the 357

same DBS-induced activation rates, and a neural activity of one pathway is directly 358

modulated not only by the DBS-induced membrane polarization, but simultaneously via 359

the activity of the reciprocal pathway, which is also recruited by DBS. Therefore, a 360

simulation model that could more accurately represent the circuit would need to 361

account for temporal dynamics and consider effects of extracellular stimulation on 362

synaptic inputs [12]. Besides, due to the electrode implantation, these short pathways 363

are relatively more exposed to glial scaring that potentially affects neurotransmission 364

and extracellular ionic concentrations [33]. 365

Apart from the limitations of the computational model mentioned above, the 366

following study limitations deserve mentioning. First, not all pathways affected by 367

STN-DBS were modeled. To decrease the computational effort, we deliberately excluded 368

the anterior cingulate and the prefrontal cortex assuming that they play a minor role in 369

the motor symptoms of Parkinson’s disease, although connectivity with the latter was 370

associated with rigidity improvement [3]. Among the local projections not examined, 371

pathways of the substantia nigra pars reticulata are of particular interest, as it plays a 372

similar role in the basal ganglia as the GPi. Unfortunately, these projections were not 373

included in the basal ganglia pathway atlas [47], employed here as an exclusive source of 374

the structural connectivity. 375

Developed by experienced neuroanatomists using advanced visualization techniques, 376

this atlas is less prone to contain false-positive trajectories occurring due to a poor 377

signal-to-noise ratio of diffusion imaging, commonly employed for individualized fiber 378

tractography. However, the atlas is neither patient-specific nor able to account for 379

disease-related changes. In the present study, individual anatomical variability was 380

partially accounted for by translation of pathways to the patient-specific space using a 381

subcortical normalization strategy [14]. 382

It should be noted that the optimal profile was derived based on UPDRS-III 383

improvement in the training cohort, while validated on the test cohort assessed with 384
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MDS-UPDRS-III score. However, the scores are strongly correlated (r > 0.95) [42] and 385

were shown to be linearly dependent [19, 25], hence invariant in the Pearson correlation 386

test. Furthermore, to generalize UPDRS-III improvement, we avoided differentiating 387

between lateral and axial symptoms when analyzing activation rates, which were 388

calculated separately for each hemisphere and then averaged. Differences in the 389

pathway activation rates across both hemispheres are presented in Suppl. 3. 390

Finally, the optimization procedure of the weighting factors, conducted in the 391

training cohort, was developed rather intuitively, and future studies should consider 392

more robust methods. It also remains unclear whether optimization should emphasize 393

the interprotocol correlation of the improvement with the distance to the optimal profile 394

or a general increase of correlation for all datapoints. For the given datapoints, we did 395

not observe significantly higher predictability in the test cohort for either case. 396
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R. Nickl, A. Kupsch, J. Volkmann, A. A. Kühn, and M. D. Fox. Connectivity
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