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ABSTRACT 

Diet is a modifiable, non-invasive, inexpensive behavior that is crucial in shaping the intestinal 

microbiome. A microbiome “imbalance” or dysbiosis in inflammatory bowel disease (IBD) is linked 

to inflammation. Here, we aim to define the impact of specific foods on bacterial species 

commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-

arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-

Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed 

dietary intake throughout the study. We applied advanced computational approaches to define 

and model complex interactions between the foods reported and the microbiome. A dense dataset 

comprising 553 dietary records and 340 stool samples was obtained from 22 participants. 

Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance 

of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that the IBD-

AID intervention affects the immune tone by lowering IL-8 and increasing GM-CSF with certain 

foods correlating with levels of those cytokines. By using robust predictive analytics, this study 

represents the first steps to detangle diet-microbiome interactions to inform personalized nutrition 

for patients suffering from dysbiosis-related IBD. 
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INTRODUCTION 

The etiology of Inflammatory bowel disease (IBD) is thought to be linked to an inappropriate 

immune response to an altered, dysbiotic gut microbiome. Dysbiosis in IBD patients is 

characterized by depletion of Clostridia and Bacteroides (1-6). These bacterial species are known 

to maintain gut homeostasis via the production of short-chain fatty acids (SCFAs) (7-11). Dietary 

interventions represent an ideal strategy to revert gut dysbiosis in IBD patients as diet change is 

often more embraced by individuals than medication (12). Also, diet is safe, does not require FDA 

approval (12), and has been proven to rapidly change the microbiome (13).  

 

Recent trials have demonstrated that dietary therapy is effective for pediatric patients with Crohn’s 

disease. The diets tested as a therapy for pediatric patients included the Specific Carbohydrate 

Diet (SCD), the modified SCD (mSCD, which includes oats), the Crohn’s disease exclusion diet 

with partial enteral nutrition, and the exclusive enteral nutrition diet (14-16). In those studies, more 

than 80% of patients achieved clinical remission between 4- and 6-weeks post-intervention. Diet 

favored increased abundance of Clostridia species, including Faecalibacterium prausnitzii, 

Roseburia hominis, and Eubacterium eligens (14-16).  

 

In adults with Crohn’s disease, a recent randomized trial that included interventions with either 

the SCD or the Mediterranean diet has also demonstrated a remarkable effect of diet in inducing 

remission (17).  Specifically, after only 6 weeks on either diet half of the patients in the trial 

achieved symptomatic remission with >30% showing reduction of fecal calprotectin levels (17). 

For ulcerative colitis, a catered nutritious low-fat/high-fiber diet has been shown to improve the 

overall quality of life, lower inflammatory markers, decreased dysbiosis, and specifically favor 

Faecalibacterium prausnitzi (18). We also designed the IBD-Anti-Inflammatory Diet or IBD-AID 

(19, 20). In a retrospective study, we reported that adult patients, both Crohn’s disease or 

ulcerative colitis patients, adopting the IBD-AID experienced reduction of disease activity and 
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lowered their medication intake only after 4 weeks on the diet (20). The IBD-AID has been 

designed to revert dysbiosis in patients with IBD.  

 

In this current work, we sought to rigorously establish whether adherence to the IBD-AID can 

revert dysbiosis by favoring SCFA-producing bacteria that are depleted in patients with IBD. We 

leveraged our robust and validated predictive analytic and mathematical modeling (21-23) to 

perform fine-scale analysis of bacterial species favored by specific foods during an 8-week dietary 

intervention with the IBD-AID. 

 

RESULTS 

Demographics of the participants of the study 

We enrolled 25 subjects with CD or UC to complete an 8-week IBD-AID dietary intervention 

(Figure 1A). A total of 22 participants completed the baseline period (age average = 40.5 ± 12.8. 

Table 1). Nineteen subjects continued to complete the intervention period (12 CD and 7 UC). The 

average body mass index (BMI) for participants in the study was 27.9 ± 5.8 (overweight and 

obese), which is comparable to the average BMI among Americans (24). Only 1 UC participant 

was underweight (BMI = 17.9). Except for 2 CD participants reporting no IBD-related medications, 

participants were using biologics (31.8%), aminoacylates (27.2%), steroids (22.7%), and 

immunomodulators (13.60%).  

 

Subjects profoundly changed their diet during the intervention 

At baseline, we obtained 134 and 89 unique 24-hour IBD-AID Food Querys from 14 CD and 7 UC 

participants, respectively. We observed that all the participants reported similar diets at baseline 

(Mann-Whitney test, p-value > 0.5. Supplementary Table 2), except for intakes of lean animal 

protein (included in beneficial foods), which was higher in UC patients. As expected, participants 

reported a low intake of fruits and vegetables comparable to an average American (25). 
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At the intervention, we obtained 218 and 112 unique 24-hour IBD-AID Food Querys from 11 CD 

and 7 UC participants, respectively. We observed that overall, participants profoundly changed 

their diet reporting an average of 1.8-fold increase in prebiotics consumption, a 1.5-fold increase 

in probiotics consumption, a 1.6-fold increase in beneficial foods consumption, and a 3.7-fold 

reduction in adverse foods consumption (Figure 2A. Table 2). More detailed analyses showed 

that participants significantly increased their intake of all foods contained in the prebiotic category, 

fermented dairy products within probiotic foods, and omega 3 fatty acids from the beneficial foods 

category. In contrast, participants significantly reduced consumption of most of the foods included 

in the adverse food category with exception of artificial sweeteners (Figure 2B). We also 

observed that changes in food intake occurred within the first weeks of the intervention (Figure 

2C), suggesting rapid adaptation to the diet.  

 

Separating by disease phenotype, we observed that CD and UC participants reported a similar 

increase in intake of foods encouraged during the intervention, except for oats and vegetable 

protein, which were only significantly increased in UC or CD participants, respectively.  Intakes of 

processed fried animal protein, corn, and starchy vegetables were only significantly decreased 

on CD participants; and selected avoided condiments (i.e., wheat-based soy sauce, Sriracha, 

ketchup, relish, BBQ sauce) only decreased in UC participants (Supplementary Tables 3 and 

4). CD participants reported no consumption of artificial sweeteners while UC participants did 

consume this food item. This might explain the lack of differences described above.  

 

Lastly, during the intervention alcohol consumption was reported higher for CD participants 

(Mann-Whitney test, p-value < 0.01. Supplementary Table 3). However, there were no 

differences in alcohol consumption between study periods. In UC participants, there was a trend 
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of decreasing alcohol consumption during the intervention (Mann-Whitney test, p-value = 0.1), 

which might explain the differences in alcohol intakes between the CD and UC participants.  

 

In sum, we observed that overall participants can rapidly adopt the IBD-AID. 

 

The IBD-AID favors SCFA-producing bacterial species 

We collected a total of 340 stool samples: 143 at baseline and 197 during the intervention. The 

average number of stool samples per participant was 6.5 ± 2.1 at baseline (n=22) and 10.3 ± 5.1 

at intervention (n=19). We observe high microbiome inter-personal variability among participants 

with no differences by disease phenotype (CD vs UC) in alpha and beta diversity (Supplementary 

Figure 1) nor in microbiota representation at baseline (BH p-value > 0.05, data not shown).  

 

We then investigated the impact of the intervention on the gut microbiome. First, we did not find 

differences in alpha and beta diversity between samples collected at baseline vs. intervention 

(Supplementary Figure 2). However, compared to baseline, we found specific bacterial species 

have a reduced or increased abundance during the intervention window (BH-adjusted p-value < 

0.05). The top 10 bacteria with increased abundance in both CD and UC participants during 

intervention are SCFA-producing bacteria mostly belonging to the Clostridia class (Figure 3A). 

Overall, the increased abundance of Roseburia hominis distinguished the highest likelihood 

samples collected during the intervention. Conversely, reduced abundance of members of the 

Bacteroidia, Coriobacteriia, Clostridia, and Negativicutes classes predicted the highest likelihood 

samples collected during the intervention (Figure 3B).  

 

We then investigated whether different species could be enriched by disease phenotype 

(Supplementary Table 5). In patients with CD, the top bacteria with significantly increased 

abundance during the intervention were mostly species members of the Clostridia, Bacteroidia, 
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and Coriobacteriia classes, and 2 Firmicutes species (Figure 3C). Bacterial species significantly 

reduced during the intervention belonged not only to Gammaproteobacteria and Negativicutes 

classes, but also to Clostridia, Bacteroidia, and Coriobacteriia classes (Figure 3D). Despite the 

overlap of bacterial classes as being positively or negatively affected by the IBD-AID, there were 

specific species within those classes that seemed to be directionally altered by the intervention. 

These results suggest that specific foods affect the abundance of bacteria at the species level 

and are consistent with previous studies (26-28).  

 

In subjects with UC, similar results were observed. The abundance of specific Clostridia and 

Bacteroides species known to be depleted in UC patients (i.e., Eubacterium eligens, 

Faecalibacterium prausnitzii, Fusicatenibacter saccharivorans, Bacteroides dorei, Bacteroides 

ovatus, and Bacteroides vulgatus) was significantly increased during the intervention. Conversely, 

other Clostridia and Bacteroides were significantly decreased at intervention (Figure 3E and 3F).  

 

Taken together, these findings show an overall shift of the microbiome after the intervention that 

differs by disease phenotype and is specie specific. The top bacteria favored by the intervention 

were Roseburia hominis and Faecalibacterium prautnizii in CD and UC subjects, respectively. 

Only 2 species, Eubacterium eligens, and Bacteroides dorei were enriched in both CD and UC, 

while Parabacteroides distasonis was consistently decreased in all participants regardless of 

disease phenotype during the intervention. 

 

The IBD-AID favors a microbiome with anti-inflammatory capacity  

We next evaluated the functional capacity of the microbiome after the intervention. At baseline, 

we found that the metagenomic capacity varied greatly by participant, with most of the clustering 

of the samples by participant (data not shown). However, we observe that during the intervention 

the microbiome exhibited an increased genetic capacity for 1) biosynthesis of several key amino 
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acids (i.e., histidine, lysine, threonine, methionine, serine, glycine, isoleucine, and arginine); 2) 

degradation of mannan (a dietary fiber); and 3) β-oxidation for fatty acid degradation (Figure 4A). 

Roseburia sp. and Faecalibacterium sp. – both favored during the IBD-AID intervention are main 

degraders of dietary mannan ultimately producing SCFA (29, 30). Mannans are found in the 

endospermic tissue of nuts (homopolymeric mannan), barley, oats (β-glucans or mannoproteins), 

coffee beans, coconut palm, tomato, and legume seeds (galactomannan) (31). Similarly, 

increased microbiome gene capacity for oxidation of fatty acids also suggests increased 

availability of SCFAs. Thus, we further investigated the impact of IBD-AID on the pool of microbial 

genes involved in SCFA production.  

 

As previously done by us (32), we created specific databases that included all the bacteria genes 

involved in the production of the main 3 SCFAs in the gut: butyrate, acetate, and propionate. We 

found that subjects completing the intervention displayed an increased abundance of specific 

genes involved in the production of butyrate, mostly from members of the Clostridia class (Figure 

4B); and acetate, specifically from Roseburia hominis and Eubacterium eligens species (Figure 

4C). Lastly, genes linked to propionate production were not enriched during the intervention. 

Contrary, genes involved in propionate metabolism were augmented in baseline along with 

Ruminococcus torques, Flavonifractor plautii, and Parabacteroides distasonis (data not shown). 

 

In sum, the diet-dependent changes of the microbiome were accompanied by increased microbial 

genomic capacity for butyrate and acetate metabolism. 

 

Foods responsible for the microbiome changes 

To do this we first apply mixed effect random forest modeling to predict the abundance of each 

microbiome species as a function of the number of servings for each food category. To control for 

the effect of non-diet and other clinical covariates (i.e., age, gender, and BMI) we included them 
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in the model as additional fixed effects. Similarly, to account for possible diagnosis-specific 

effects, we included in the model as additional fixed effects the interaction between every food 

category and the diagnosis. To determine the significance of the determined associations we run 

Permutated Importance (PIMP) analysis (see Methods). To determine the strength and direction 

of the association we then run Repeated Measure Correlations on the associations with a PIMP-

associated p-value less than 0.05. We investigated the bacteria: food correlation of the top 

bacterial species enriched at either baseline or intervention in CD and UC participants, plus B. 

dorei and P. distasonis both enriched respectively at intervention or baseline regardless of 

disease phenotype (Figure 5). As expected, consumption of prebiotics, probiotics, and beneficial 

foods positively correlated with Clostridia and Bacteroides species enriched at intervention but 

negatively correlated with species enriched at baseline. Opposite correlations were observed with 

the consumption of adverse foods. A list with all the significant bacteria: food correlations are 

shown in Supplementary Table 6. Of interest, increased consumption of lean animal proteins 

(included in beneficial foods) has a negative correlation with Roseburia hominis in UC but not in 

CD participants. 

 

Overall, our results show that increased consumption of prebiotics, probiotics, and beneficial 

foods do favor Clostridia and Bacteroides species depleted in IBD patients. We observed that the 

effect of some foods on bacteria abundance is dependent on disease phenotype. 

 

Immune modulation after the IBD-AID 

We obtained blood samples from 9 patients before and after the intervention to measure 

circulating cytokines relevant to inflammation (Supplementary Figure 3). Out of 14 cytokines 

assessed, we found that the levels of the pro-inflammatory interleukin 8 (IL-8), tended to decrease 

following intervention (Figure 6A). Conversely, granulocyte macrophage-colony-stimulating 
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factor (GM-CSF), also tended to increase after intervention (Figure 6B). Low levels of GM-CSF 

have been associated with IBD pathogenesis (33-39). 

 

We then determine the correlation of the average of food intakes with the levels of IL-8 or GM-

CSF at the baseline and intervention (Figure 6C-F). We observed that levels of GM-CSF at 

baseline positively correlated with increased consumption of prebiotics (Simple linear regression: 

slope= 0.09; 95% confidence intervals 0.01 to 0.17; p value: 0.03). Also at baseline, levels of IL-

8 negatively correlated with consumption of fatty acids (Simple linear regression: slope= -0.35; 

95% confidence intervals -0.64 to -0.06; p value: 0.02). After the intervention, consumption of 

fruits (Simple linear regression: slope= -0.29; 95% confidence intervals -0.51 to -0.09; p value: 

0.01) and adverse foods (Simple linear regression: slope= 0.57; 95% confidence intervals 0.13 to 

1.01; p value: 0.01) negatively and positively correlated with IL-8 levels, respectively. 

 

In sum, participants on the IBD-AID exhibited a trend to lower levels of pro-inflammatory IL-8, 

which was correlated with decreased intake of adverse foods and increase consumption of fatty 

acids and fruits. Levels of colitis protective GM-CSF are increased after IBD-AID and it’s 

correlated with high consumption of prebiotics. 

 

DISCUSSION 

Here we demonstrate that IBD patients can rapidly and dramatically change their diet and in doing 

so revert dysbiosis and modulate important cytokines driving IBD pathogenesis. Specifically, our 

results demonstrate that increased consumption of prebiotics (fiber-rich foods such as fruits, 

vegetables, oats, and honey), probiotics (fermented dairy products), and beneficial foods (lean 

animal protein and omega 3 fatty acids) can favor potent SCFA-producing Clostridia and 

Bacteroides species with known anti-inflammatory activity (9, 11, 21, 40-49) and which are known 

to be reduced in numerous cohorts of IBD patients across the world (5, 6, 10, 50-58).  
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High-fiber diets are related to healthy-like microbiomes (59-61) and have received increasing 

attention to reducing IBD risk and symptoms (18, 62-65). Here, increased consumption of fruits, 

vegetables, honey, and oats favored bacteria commonly depleted in IBD, namely: Roseburia 

hominis, F. praustnizii, E. eligens, F. saccharivorans, B. dorei, B. vulgatus. As with increased 

intakes of prebiotics vegetables and fruits, vegan and vegetarian diets have been also associated 

with increased microbiome capacity for biosynthesis of essential amino acids (66) that leads to 

the production of butyrate and acetate (67-72). Similarly, we observed that microbial gene 

pathways for biosynthesis of amino acids along with pathways involved in butyrate and acetate 

production were enriched along with participants' increase in fruits and vegetable consumption. 

 

Fermented foods have been shown to play an important role in microbiome diversity and 

concomitant immune tone on the host (73). In our cohort, there was a modest increase in the 

intake of fermented foods (average 0.5 servings per week), especially dairy products (i.e., yogurt, 

kefir). Despite the modest change in consumption, fermented dairy products in UC patients 

correlated with increased abundance of Fusicatenibacter saccharivorans, a bacteria known to be 

depleted on active UC patients (74). 

 

Within the beneficial foods, we found that increased intakes of MUFAs and omega-3 fatty acids 

also support potent SCFA-producing Clostridia and Bacteroides species. Omega-3 fatty acids 

have previously been found to reduce dysbiosis (75-80). Of interest, we observed that lean animal 

proteins, included in the beneficial foods for the IBD-AID, are negatively associated with 

Roseburia hominis in UC patients. In line with this observation the International Organization for 

the Study of Inflammatory Bowel Diseases, recommends limiting animal protein intake for UC 

patients but not CD (81). Together, this highlights the importance of personalization of diet therapy 

based on the patient’s disease manifestation. Moreover, our results also emphasize the 
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importance of a dietary approach for treating IBD that includes adding needed food components 

such as prebiotics, probiotics, and beneficial foods. 

 

As expected, avoidance of foods also played an important role in shifting the microbiome during 

the intervention. We found that bacteria enriched at intervention (i.e., Faecalibacterium prausnitzii, 

Firmicutes CAG 65) negatively correlated with consumption of adverse foods. Conversely, 

bacteria species enriched at baseline (i.e, Collinsela stercoris, Parabacteroides distonis) were 

positively correlated with increased intakes of adverse foods. The abundance of Collinsella 

species has previously been associated with low-fiber diets (59, 82) and processed foods (83). 

Moreover, Collinsella sp. isolated from IBD patients conferred significant susceptibility to colitis in 

germ-free mice (84). Thus, we speculate that the increase of prebiotics rich in fiber and reduction 

of adverse processed foods at intervention reduces Collinsella fitness (83); leading to an 

outgrowth of SCFA-producing bacteria as a result of “new” nutrient availability (85-87). 

Parabacteroides distonis, enriched at baseline in both CD and UC participants in this cohort, have 

been also found abundant in IBD patients (88)  and it has been implicated in worsening DSS-

induced colitis in mice (89).  

 

Along with changes in the microbiome, we also provide evidence of reduction of IL-8, a marker of 

inflammation, after intervention with IBD-AID. IL-8 is a potent neutrophil chemoattractant that is 

elevated in patients with either CD or UC and is correlated with mucosal inflammation (90-93). 

Reduction of IL-8 levels positively correlated with reduced consumption of adverse foods and 

increase intakes of fruits and healthy fatty acids (MUFAs and omega-3). On the other hand, 

subjects demonstrated increased levels of GM-CSF following the intervention. GM-CSF is a 

cytokine involved in myeloid cell development and maturation and dendritic cell differentiation. 

There is growing evidence that lower levels of GM-CSF are associated with the pathogenesis of 
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CD (33-39). Here, we found that increased consumption of prebiotics was positively associated 

with levels of GM-CSF. 

 

In conclusion, we demonstrate that the IBD-AID can favor bacteria commonly depleted in IBD 

patients and are key for maintaining immune tolerance and homeostasis in the gut via SCFA 

production. This short-term manipulation of the microbiome through diet resulted in modulation of 

the immune tone. Moreover, the results provide evidence for further adjustments of the foods 

allowed on the IBD-AID according to the disease phenotype. 

 

METHODS 

Power Calculation 

The primary outcome is to evaluate the effect of the IBD-AID in the increased abundance of 

SCFA-producing bacteria. Using Monte-Carlo simulations of empirical power and type-I-error for 

a Wilcoxon-signed rank test (paired; R package MKpower (94)) we determined that 10 

independent subjects (pre-post) will detect 0.005 +/- 0.005 changes in the relative abundance of 

bacteria, with a power of 0.80. Our secondary outcome was associations between IBD-AID food 

categories and the microbiome. An unweighted Spearman correlation power analysis (R package 

genefu (95)) determined that 14 independent samples will be sufficient to achieve a significance 

of 0.05 and a correlation coefficient of 0.1.  

 

Participants 

We recruited 25 subjects with an IBD diagnosis of either Crohn’s disease (CD) or ulcerative colitis 

(UC, Figure 1A). Of the 19 subjects who completed the study, 7 CD and 2 UC subjects were in 

remission at enrollment. The remaining 10 subjects exhibited either mild, moderate, or active 

disease. Exclusion criteria included: use the antibiotic within 3 months at the time of recruitment, 

presence of infection precipitating colitis (i.e., C. difficile), and pregnancy. For more inclusion and 
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exclusion criteria see Supplementary Table 1. None of the participants reported antibiotic 

treatment during the study. The study was approved by the IRB at UMASS (Docket Number 

H00008033). ClinicalTrial.gov registry website: https://clinicaltrials.gov/ct2/show/NCT04757181 

Trial number: NCT04757181. 

 

The IBD-AID 

As published elsewhere (19), the IBD-AID supports the avoidance of certain carbohydrates 

(sucrose and starches) from the original SCD (96) .  Before the mSCD, the IBD-AID was the first 

IBD diet to include oats as a source of fiber. The IBD-AID encourage the increased intakes of 

monounsaturated and polyunsaturated omega-3 and fatty acids while decreasing other saturated 

fats and eliminating trans-fatty acids (62, 75, 97-103). Moreover, the IBD-AID eliminates the 

consumption of processed and ultra-processed foods which have been associated with IBD risk 

(104). The IBD-AID includes prebiotics: foods rich in non-digestible fiber that serve as food for 

beneficial bacteria colonizing the colon (105, 106). Epidemiological evidence (107-110) and 

results from a recent clinical trial study (73) support the role of fermented foods containing live 

active bacteria (probiotics) in health, microbiome diversity, and an anti-inflammatory immune 

status (73).  Thus, the IBD-AID also encourages the consumption of probiotics. Finally, to avoid 

nutrient deficiencies that could be caused by restrictive, the IBD-AID also encourages the intake 

of nutritious foods recommended by the Dietary Guidelines for Americans (111); which includes 

a variety of foods rich in essential vitamins and minerals. The diet can be prepared at home and 

is designed to be healthful long-term for the entire family. 

 

Intervention 

We conducted a prospective, single-arm, pre-post intervention trial. After a baseline period of 6 

weeks, the dietary intervention was initiated and continued for 8 weeks (Figure 1B). To receive 

dietary instructions, subjects met in person with trained nutritionists at the beginning of the 
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intervention and completed at least one counseling session per week throughout the 8-weeks 

intervention period.  

 

Dietary Assessment 

To measure food intake we developed: ‘24-hour IBD-AID Food Query’, which was programmed 

in REDCap and consists of 240 food items grouped in four main food categories: prebiotic foods 

(fruits, vegetables, legumes, oats, and honey); probiotic foods (fermented dairy products, and 

fermented non-dairy foods); beneficial foods (fatty acids rich in monounsaturated and omega-3 

polyunsaturated fatty acids, vegetable and lean animal proteins); and adverse foods (wheat, corn, 

lactose, high fat animal and vegetable proteins, processed fried foods,  artificial sweeteners, 

foods, and beverages high in sugar, high-fat processed foods, selected starchy vegetables, 

selected gluten free grains, and certain condiments). Alcohol consumption was accounted for in 

a separate category. A link to the electronic 24-hour IBD-AID Food Query was sent to the 

participants to be filled out 3 times per week. The serving sizes recorded on each 24-hour IBD-

AID Food Query were assigned to the individual food categories mentioned above and the serving 

sizes reported were averaged per week for analysis.  

 

Sample collection 

Subjects were provided materials and instructions for at-home self-collection using 

OMNIgene•GUT collection kits (#OM-200, DNA Genotek Inc., Ottawa, Canada). We also 

obtained blood samples at baseline and the end of the intervention. Once in the laboratory, 

samples were aliquoted and then stored at -80˚C until processed. 

 

DNA isolation and sequencing 

DNA isolation was performed using the MagAttract PowerSoil DNA Kit (#27100-4-EP, Qiagen, 

Germantown, MD, USA) on Eppendorf epMotion 5075 liquid handlers following the 
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manufacturer’s instructions. Libraries for DNA sequencing were prepared using the Nextera XT 

DNA Library Preparation Kit (#FC-131-1096, Illumina, San Diego, CA, USA) and were sequenced 

on the Illumina NextSeq 500 platform using 150-nt paired-end reads. We obtained an average of 

4,926,661 reads per sample. Read data were quality trimmed and filtered of host DNA using 

KneadData (version 0.7.2; https://bitbucket.org/biobakery/kneaddata/wiki/Home) against a 

prebuilt bowtie2 index for the human genome, hg19. All the filtered sequences generated were 

deposited in NCBI, BioProject: PRJNA642308. 

 

Metagenomic profiling 

We performed shotgun metagenomic sequencing of stool samples as previously described by us 

and others (32, 112-114). Community composition was profiled using MetaPhlan2 (version 2.9.14; 

database mpa_v292_CHOCOPhlAn_201901) (115).  To assess the abundance of microbiota-

encoded metabolic pathways we used HUMAnN2 (version 2.8) (116). We used ShortBRED (117) 

to profile metagenomics reads for the abundance of proteins involved in the production of SCFAs 

(e.g., butyrate, acetate, propionate) as we have previously described (32, 118). 

 

Inflammatory markers 

We used the Discovery Assay® Human High Sensitivity T-Cell Discovery Array 14-Plex 

(#HDHSTC14, Eve Technologies Corp, Calgary, Canada) to simultaneously quantified 14 

cytokine/chemokine/growth involved in inflammation.  

 

Mathematical modeling: 

Microbiome associations with study periods: To determine the bacterial species impacted by the 

IBD-AID we applied mixed-effect random forest classification by adapting the MERF R engine 

(119). This framework enables to account for the repeated sampling nature of the dataset and is 

appropriately suited for this type of “large p, small n” multi-omics dataset common in clinical 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2021. ; https://doi.org/10.1101/2021.10.07.21250296doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.07.21250296
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

research (120).  We classify a sample i from patient s as Intervention vs. Baseline (Yis = 1,0) as 

a function of microbiome abundance in that sample as a fixed effect (Xis) and controlling for the 

individual patient as a random effect (Z): 𝑌!" = 𝑓(𝑋!) + 𝑏"𝑍 + 𝜖.  Compared to traditional linear 

mixed-effect modeling regression here 𝑓 is a general function that is learned using a random 

forest model. The expectation-maximization algorithm runs via alternative optimization, in which, 

at the turn, one parameter is fitted while the other ones are fixed with the process running until 

convergence (119). This analysis was repeated using as predictors species abundances, 

metabolic pathways abundances, and SCFAs pathways, independently. Permutated importance 

(PIMP) analysis was used to estimate the significance of each microbiome feature in the 

classification analyses (112, 121). 

 

Microbiome associations with food categories: We determined the effect of food categories on 

the microbiome by first applying mixed-effect random forest regression modeling while also 

controlling for other clinical and not-diet related covariates (i.e., age, gender, and BMI) (119). To 

account for diagnosis (UC, CD) -dependent effects of food categories on the microbiome, we also 

consider the interactions between food-category (as number of servings, numerical) and the 

diagnosis (categorical) in the modeling. As above, PIMP analysis was used to estimate the 

significance of each model covariate in predicting the abundance of every modeled microbial 

feature (121),(112). For the food covariates displaying a PIMP-associated p-value < 0.05, we run 

repeated measure correlation for UC and CD individuals independently to determine the direction 

and significance of the identified association. 

 

Statistical analysis: 

We used Prism 9 to perform the statistical analyses. We used the Mann-Whitney test with 

individual ranks computed per comparison of food intakes by study phase using the two-stage 

linear step-up procedure of Benjamini, Krieger, and Yekutieli correction. Wilcoxon matched-pairs 
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signed-rank was used to evaluate differences in cytokine concentration in serum before and after 

the diet intervention; due to the low sample size (n=9), p values of 0.1 are reported as trends. 

Simple linear regressions were calculated between the average of intakes of each food category 

and the levels of cytokines at each study period. We used the R package Phyloseq v1.19.1 (122) 

to calculate the Shannon diversity index (123, 124) and Bray-Curtis dissimilarity. Statistical 

significance of Bray-Curtis distances was assessed using PERMANOVA in R (125).  
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TABLES 

Table 1. Demographic description of all the participants recruited for the study between February 

2017 and January 2019. 

 

 

Table 2. Mean servings reported on the 24-hour IBD-AID Food Query at baseline and 

intervention. 

Food categories Mean servings/d 
reported at BSL 

Mean servings/d 
reported at INT 

Difference 
between means 
(BSL - INT) ± SEM 

Prebiotics 4.08 7.51 3.44 ± 0.58 
Probiotics 1.09 1.59 0.50 ± 0.17 
Beneficial foods 3.88 6.13 2.26 ± 0.37 
Adverse foods 12.64 3.42 -9.23 ± 0.86 

 

 

 

 

 

 

Crohn's disease 
(n=15)

Ulcerative colitis                
(n=7)

Crohn's disease 
(n=16)

Ulcerative colitis                
(n=9)

Average age (years) 41.7 + 13.4 37.8 + 11.5 41.4 + 12.9 39.6 + 11.5

Average weight (lbs) 173.6 + 31.4 190.1 + 57.0 171.5 + 31.3 190.1 + 57.0

Average BMI 29.3 + 5.4 25.4 + 6.7 29.5 + 5.2 25.4 + 6.7

Female sex (%) 11 (73.3%) 2 (28.5%) 12 (75%) 3 (33%)
White race (%) 14 (93.3%) 6 (85.7%) 14 (87.5%) 8 (88.8%)

Current use of Amisosalicylates 3 (20%) 3 (42.8%) 3 (18.7%) 4 (44.4%)
Current use of Biologics 6 (40%) 1 (14.2%) 6 (37.5%) 1 (11.1%)
Current use of Immnomodulators 1 (6.6%) 2 (28.5%) 1 (6.2%) 2 (22.2%)
Current use of Steroids 3 (20%) 2 (28.5%) 4 (25%) 3 (33%)

Current use of Antihistamine 4 (26.6%) 0 5 (31.2%) 0
Current use of SSRI 4 (26.6%) 2 (28.5%) 4 (25%) 3 (33%)
Current use of Diuretic 4 (26.6%) 0 5 (31.2%) 0
Current use of Vitamin D supplement 4 (26.6%) 2 (28.5%) 4 (25%) 4 (44.4%)

IBD Medications

Demographics

Other Medications

Patient information

Participants included in analyses (n=22) Enrolled participants (n=25)
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FIGURE LEGENDS 

 

Figure 1. A) Participant inclusion and exclusion during the study duration. B) A schematic 

representation of the study design which involved bi-weekly stool samples collection and 

completion of 24-hour IBD-AID Food Querys up to three times a week throughout the study. At 

the beginning of the baseline and the end of the intervention, blood samples were collected. 

 

Figure 2. Participants adhere to the IBD-AID. A) Average serving size of foods categories 

consumed at baseline (BSL) and intervention (INT). B) Food categories with increased 

consumption during the intervention (Multiple T-test, p-value < 0.05). The mean intakes per study 

period: BSL or INT, was calculated on the average intake per food category per week. C) 

Reported servings of prebiotics, probiotics, beneficial foods, and adverse foods per week at BSL 

(in red) and INT (in blue) period. Each circle represents the mean intake per food category 

grouped in 2 weeks intervals.  

 

Figure 3. Mixed effect random forest classification analysis identified microbes affected by the 

intervention. Bar plots show the variance of the importance of bacterial species found to be 

enriched (in green) or depleted (in gray) during the intervention in all (A and B), CD (C and D), 

and UC (E and F) subjects completing the intervention (BH p-value > 0.05). 

 

Figure 4. The IBD-AID increases the microbiome capacity for SCFA production. Bar plots 

represent the variance importance of the: A) gene pathways, B) genes involved in butyrate 

production, or C) genes involved in acetate production; that were enriched during the intervention 

(BH p-value > 0.05).  
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Figure 5. Significant correlations of foods with bacterial species enriched at baseline (red) or 

intervention (blue) in A) CD participants and B) UC participants. 

 

Figure 6. Levels of A) IL-8 significantly decrease from baseline (n = 9, red circles) to intervention 

(n = 9, blue circles) while B) GM-CSF significantly increases after intervention (Wilcoxon-matched 

pairs-signed rank test, p-value = 0.1). At baseline, increased consumption of C) prebiotics 

correlated with high levels of GM-CSF, and D) healthy fatty correlated with lower levels IL-8. At 

the intervention, increased consumption of E) fruits correlated with lower levels of IL-8, while F) 

adverse foods correlated with higher levels of IL-8 (Simple linear regression, p-values <0.05. 

Dotted lines represent 95% confidence intervals). 
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