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Abstract

Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative

disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic

aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as

FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete

understanding of the molecular mechanisms underlying disease development. Here we compared

post-mortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex and

cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type

composition, gene expression and transcript usage. We observed downregulation of neuronal

markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and

oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune

activation and within the vasculature. We validate our estimates of neuronal loss using

neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly

attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are

highly correlated with neuronal loss. All our analyses identified a strong involvement of the

cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a

detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in

FTLD.
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Introduction

Frontotemporal dementia (FTD) is a spectrum of neurodegenerative disorders affecting the frontal

and anterior temporal lobes of the brain, manifesting clinically as disturbances in behaviour or

language. The neuropathological correlate of FTD, Frontotemporal Lobar Degeneration (FTLD),

can be subclassified into three distinct subgroups based on specific protein inclusions. Around

50% of patients present with cytoplasmic inclusions of transactive response DNA-binding protein

43 kDa (TDP-43), leading to a histopathological diagnosis of FTLD-TDP (Neumann et al. 2006).

TDP-43 pathology is present in a range of other neurodegenerative diseases, most notably

amyotrophic lateral sclerosis (ALS) (Neumann et al. 2006). ​​Approximately 40% of FTD patients

have a positive family history of disease (Goldman et al. 2005). Mutations in two genes, C9orf72

and GRN, explain the majority of familial FTLD-TDP (Renton et al. 2011; Baker et al. 2006;

DeJesus-Hernandez et al. 2011; Cruts et al. 2006), but several other causal genes have been

identified that explain a smaller fraction of cases. These genes include TARDBP, the gene

encoding TDP-43, as well as VCP, SQSTM1, and TBK1 (Borroni et al. 2009; Bersano et al. 2009;

Le Ber et al. 2013; Gijselinck et al. 2015).

Much research has focused on understanding the formation and consequences of TDP-43

aggregation in FTLD. TDP-43 is an RNA binding protein that regulates many aspects of mRNA

processing, including alternative splicing and polyadenylation (Polymenidou et al. 2011; Tollervey

et al. 2011; Rot et al. 2017). Under conditions not currently understood, TDP-43 is mislocalized

from the nucleus to the cytoplasm, where it undergoes post-translational modifications such as

hyperphosphorylation, ubiquitination, and N-terminal truncation (Neumann et al. 2006). Both

nuclear loss of function (LOF) and cytoplasmic gain of function (GOF) mechanisms have been

proposed for the consequences of TDP-43 mislocalization (Ling, Polymenidou, and Cleveland

2013). Supporting a potential role for LOF in FTLD, recent studies have demonstrated that loss of

nuclear TDP-43 alters the expression and splicing of its target mRNAs, many of which are involved

in synapse organization and plasticity (Polymenidou et al. 2011; Honda et al. 2013). Nuclear loss of

TDP-43 leads to aberrant cryptic splicing of these targets, including key neuronal genes STMN2

and UNC13A (Klim et al. 2019; Melamed et al. 2019; Brown et al. 2021; Ma et al. 2021). Thus,

TDP-43 nuclear loss may play a role in the neurodegenerative process of FTLD.

FTLD is characterised by neuronal loss and an inflammatory response driven by glial cells. Both

excitatory glutamatergic pyramidal cells and inhibitory GABAergic neurons are lost or dysregulated

in post-mortem FTLD-TDP brains (Hughes et al. 2018; Šarac et al. 2008; Murley et al. 2020; Ferrer

1999). A unique subgroup of excitatory projection neurons known as von Economo neurons

(VENs) has been shown to be selectively vulnerable to TDP-43 pathology, dying particularly early

in disease progression (Santillo, Nilsson, and Englund 2013; Nana et al. 2019; Gami-Patel et al.
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2019). Although the cerebellum is spared from TDP-43 pathology, it is an open question whether

neurodegeneration also occurs there in FTLD. In cases caused by C9orf72 mutations,

repeat-associated non-ATG (RAN) translation leads to the accumulation of C9orf72 dipeptide

repeat protein, which may have neurotoxic effects on the cerebellum (Yousef et al. 2017; Gendron

et al. 2015). Microglia and astrocytes are essential for clearing of debris and maintaining brain

homeostasis (Jung and Chung 2018). However, in response to neurodegeneration, these cells are

believed to switch to an activated state, producing pro-inflammatory cytokines, chemokines, and

reactive oxygen species that contribute to a state of neuroinflammation (Glass et al. 2010;

Ramesh, MacLean, and Philipp 2013; Liddelow et al. 2017). Although this may initially be

beneficial for removing surrounding protein aggregates and dying neurons, sustained inflammatory

responses can damage neurons and synapses, ultimately exacerbating neurodegeneration.

Although recent advancements have improved our understanding of the molecular basis of

FTLD-TDP, it is still unclear how mutations in the different causal genes lead to disease, and what

the underlying pathways are. Transcriptome profiling of human post-mortem brain tissue is

necessary to gain a deeper insight into the functional pathological changes in all FTLD-TDP

subtypes. To address this need, we have assembled a cohort of RNA-seq generated from

post-mortem brain samples from FTLD-TDP and non-neurological disease control patients. We

assessed the shared and distinct transcriptomic changes associated with FTLD-TDP across the

frontal cortex, temporal cortex, and cerebellum. We performed differential gene expression,

differential transcript usage, and cell-type deconvolution analysis, identifying changes in cellular

composition and cellular pathways across all three brain regions.

Methods

NYGC ALS Consortium – FTD cohort

RNA-seq samples were obtained from the January 2020 data freeze of the New York Genome

Center (NYGC) ALS Consortium. The FTD cohort is a collection of postmortem brain tissue from

41 non-neurological controls and 49 FTD donors, as provided by the UCL Queen Square Brain

Bank. Among the FTD donors, 37 have TDP-43 pathology (FTLD-TDP), of which 9 have mutations

in C9orf72, 7 in GRN, 2 in TBK1, and 19 are sporadic cases. Together, the 37 FTLD-TDP donors

and 41 controls provide a total of 169 RNA-seq samples and represent the FTLD-TDP subcohort.

De-identified clinical information for the cohort is presented in Supplementary Table 1. The NYGC

ALS Consortium samples presented in this work were acquired through various institutional review

board (IRB) protocols from member sites and the Target ALS postmortem tissue core and

transferred to the NYGC in accordance with all applicable foreign, domestic, federal, state, and

local laws and regulations for processing, sequencing, and analysis. ​​The Biomedical Research
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Alliance of New York (BRANY) IRB serves as the central ethics oversight body for NYGC ALS

Consortium. Ethical approval was given and is effective through 08/22/2022. Brain tissue

dissection was performed by pathologists at the UCL Queen Square Brain Bank. Cortical and

cerebellar regions were removed from each subject and divided into left and right hemispheres.

One hemisphere was flash-frozen for transcriptome sequencing while the other was sectioned for

histopathological evaluation.

The RNA sequencing procedures of the NYGC have been previously described (Tam et al. 2019).

RNA was isolated from the frozen brain tissue with TRIzol reagent and purified using RNeasy mini

columns (Qiagen). RNA integrity numbers (RIN) for the brain samples were estimated on a

Bioanalyzer (Agilent Technologies). RNA-Seq libraries were generated starting from 500 ng of total

RNA using the KAPA Stranded RNA-Seq Kit with RiboErase (KAPA Biosystems) to remove rRNA

and Illumina-compatible indexes (NEXTflex RNA-Seq Barcodes, NOVA-512915, PerkinElmer, and

IDT for Illumina TruSeq UD Indexes, 20022370). Pooled libraries (average insert size: 375 bp)

were then sequenced on either an Illumina HiSeq 2500 (125 bp paired end) or Illumina Novaseq

(100 bp paired end). The sequenced samples were then subjected to extensive quality control

protocols to confirm variables such as sex, tissue, and C9orf72 repeat expansion status. C9orf72

repeat expansions were identified on genotyped samples using the Asuragen AmplideX PCR/CE

C9orf72 Kit and ExpansionHunter. Only samples with RNA integrity number (RIN) greater than 5

were chosen for study, due to the impact of low RIN on gene expression (Schroeder et al. 2006).

Of the 169 samples from the FTLD-TDP subcohort, 23 FTLD-TDP and 12 control samples did not

meet the RIN cutoff.

RNA-seq data processing and sample selection

RNA-seq samples were uniformly processed using RAPiD-nf, a processing pipeline implemented

in the NextFlow framework. After trimming adapter sequences with Trimmomatic (version 0.36), the

samples were aligned to the hg38 build of the human reference genome

(GRCh38.primary_assembly) using STAR (2.7.a). Gene counts were generated using RSEM

(1.3.1). Quality control was performed using SAMtools and Picard, modeling the criteria of the

Genotype Tissue Expression Consortium (GTEx Consortium 2020). To identify outliers, we

performed principal component analysis (PCA) on the voom-normalised RNA-seq expression

matrix, checking for points that did not cluster with their tissue type. One outlying sample was

identified and removed from the study. Repeating PCA with this sample removed did not show any

additional outliers or changes in clustering. For the present study, we employed samples from the

frontal cortex, temporal cortex and cerebellum, spanning 74 samples from 30 FTLD-TDP donors

and 55 samples from 28 non-neurological controls. The 74 FTLD-TDP samples come from 16
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sporadic cases, and 14 genetic cases of which 9 have mutations in C9orf72, 4 in GRN, and 1 in

TBK1.

Covariate adjustment

Before performing DGE analysis, the RNA-seq expression matrix was normalised and adjusted for

covariates. Normalisation was performed using trimmed mean of M values and transformed with

the limma::voom() function (Law et al. 2014). Lowly expressed genes were removed using a

threshold of >1 counts per million in at least 90% of the samples. Covariate adjustment was

performed separately for each brain region, and the steps described here were modeled from a

large differential expression study (Fromer et al. 2016). First, clinical variables were combined with

sequencing variables and technical metrics from Picard. Then, potential confounders were

determined by ranking the variables based on their contributions to gene expression variance. The

variance contributions of the covariates to each gene were scored using the limma::selectModel()

function, which returned the number of genes with a lower Bayesian Information Criterion (BIC) as

a result of adding the covariate to a base model containing only disease as the predictor

(Supplementary Fig. 1). For a given gene, a lower BIC indicated an improvement over the base

model, or a larger portion of the variance explained by the covariate. The top ten covariates that

improved the BIC for the largest number of genes were considered potential confounders.
Correlating technical factors with each other allowed us to select a set of distinct factors for

modelling (Supplementary Fig. 2).

To find the subset of covariates resulting in the best fitting linear regression model for DGE

analysis, stepwise regression was performed by successively adding each variable to the base

model. After evaluating each successive model with the limma::selectModel() function

(Supplementary Fig. 3a), we chose the model that improved the BIC for the largest number of

genes. Using an orthogonal approach, variancePartition (Hoffman and Schadt 2016) was run on

the covariates to quantify their contributions to gene expression variance (Supplementary Fig.
3b). The following models were fitted for each brain region:

Selected models for FTLD-TDP vs control differentiation expression

Region Model

Frontal Cortex expression ~ disease + sex + age + median 3’ bias

Temporal Cortex expression ~ disease + sex + age + median 3’ bias + % intronic
bases + % ribosomal bases

Cerebellum expression ~ disease + sex + age + % R2 transcript strand reads
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Differential gene expression analyses

Adjusting for the covariates described above, we performed differential gene expression (DGE)

analysis to compare the FTLD-TDP cases with controls. The limma package was used to compute

the log2-fold changes, t-statistics, and P-values for all genes tested in each brain region

(Supplementary Table 2). Genes having an adjusted P < 0.05 were considered differentially

expressed. We then correlated the log2-fold change effect sizes of each gene tested between each

pair of brain regions. Next, we repeated DGE analysis, but split the FTLD-TDP cases by C9orf72

repeat expansion status. After comparing the C9orf72 and non-C9orf72 cases with controls, we

correlated the log2-fold changes of all genes tested between each disease group in each region.

DEGs (adjusted P < 0.05) were overlapped between the two groups. To check for confounding

effects of post-mortem interval (PMI) on gene expression, we performed DGE analysis on the

cases and controls respectively by using PMI as a continuous variable. We then associated the

log2-fold changes of the PMI-related genes and the FTD genes in each brain region and calculated

Pearson correlation coefficients to quantify the effect of PMI.

Gene set enrichment analyses

Gene set enrichment analyses (GSEA) were conducted using the clusterProfiler package (Yu et al.

2012). The inputs included the differentially expressed genes (DEGs), ranked by t-statistic, and

pre-annotated sets of marker genes from multiple sources. Mouse marker genes for the five brain

cell-types, microglia, astrocytes, oligodendrocytes, neurons, and endothelial cells were obtained

from Neuroexpresso (Mancarci et al. 2017) and converted to their human homologues using

homologene (Mancarci, 2019). Marker genes for cellular pathways included the hallmark gene sets

from the molecular signatures database (MSigDB) (Liberzon et al. 2015). The six sets of glial

activation genes, microglial activation, disease-associated microglia (DAM), disease-associated

astrocytes (DAA), astrocyte reactivity (MCAO and LPS), and plaque-induced genes were obtained

from their respective websites and supplementary materials (Keren-Shaul et al. 2017; Habib et al.

2020; B. O. Mancarci et al. 2017; Chen et al. 2020; Zamanian et al. 2012). For each combination of

brain region DEGs and marker genes, GSEA ranks the DEGs by t-statistic, which has the sign of

the direction of differential expression, and takes a running cumulative tally of the overlap with the

genes in the set. The maximal score is the enrichment score (ES), which is a measure of how

enriched a gene set is at the top or bottom of the ranked DEG list. The DEG list is randomly

shuffled and the process repeated to generate an empirical null ES distribution to calculate a

P-value. To compare between each gene set tested, each ES is divided by the mean null ES to

create a normalised enrichment score (NES). A positive NES means a gene set is enriched at the

top of the ranked list. All results from GSEA are provided in Supplementary Table 4.
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Expression-weighted cell-type enrichment analysis

Expression-weighted cell-type enrichment analysis was performed using the EWCE package

(Skene and Grant 2016). We performed two separate analyses using the reference single-cell

RNA-seq datasets by Mathys et al (Mathys et al. 2019) and Darmanis et al (Darmanis et al. 2015).

Using the reference single-cell data, cell-type specificity scores were calculated for the top 250

upregulated and downregulated genes for each brain region, ordered by t-statistic. The specificity

scores of each set were then compared to the mean of the empirical null distribution from 10,000

randomly sampled gene lists. For each comparison, enrichment was expressed as the number of

standard deviations from the mean. P-values were Bonferroni-corrected before applying a

significance threshold of adjusted P < 0.05.

Cell-type deconvolution

Cell-type deconvolution was performed on the voom-normalised RNA-seq data using the reference

datasets by Mathys et al and Darmanis et al (Darmanis et al. 2015; Mathys et al. 2019). We first

ran the dtangle package (Hunt et al. 2019) to estimate cell-type proportions in the FTLD patients

and controls. After regressing out the same clinical and technical variables as in the differential

expression modelling, we applied the Wilcoxon rank sum test to compare the estimated

proportions of each cell-type between the patients and controls. For all comparisons, P-values

were Bonferroni-corrected for multiple-testing, and significance was set at adjusted P < 0.05.

Correlating the dtangle estimates from the two reference datasets, we identified strong

associations across the four overlapping cell-types (Supplementary Fig. 13). Using the Darmanis

reference, we also ran the MuSiC algorithm, a state-of-the-art deconvolution method that accounts

for cross-subject variance in gene expression (Wang et al. 2019). The estimated proportions from

MuSiC and dtangle were highly correlated, although the magnitude of the estimates differed

considerably (Supplementary Fig. 12). Deconvolution results from dtangle and Mathys et al are

presented in Supplementary Table 7.

Correlations with neuropathological atrophy scores

Atrophy scores for the frontal and temporal regions were manually determined by pathologists at

the UCL Queen Square Brain Bank. The cortical samples were graded for both macroscopic and

microscopic atrophy using the following ordinal scale: (0) absent, (1) mild, (2) moderate, and (3)

severe atrophy. Macroscopic atrophy was determined from observations of gyri and sulci from the

coronal slices observed during brain cutting procedures. Microscopic atrophy was determined by

assessing the amount of neuronal loss on hematoxylin and eosin stained sections of the cortical

brain regions. Supplementary Table 8 lists the atrophy scores for the subset of 45 FTLD-TDP
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samples with RNA-seq data, and includes whether atrophy is symmetrical between both

hemispheres or is less or more severe on the hemisphere used for sequencing.

We then correlated the neuropathological scores of the frontal and temporal regions with the

estimated proportions of each cell-type (excitatory neurons, inhibitory neurons, endothelial cells,

pericytes, astrocytes, oligodendrocytes, and microglia). For both microscopic (Supplementary Fig.
14) and macroscopic atrophy (Supplementary Fig. 15), we used Wilcoxon rank sum tests to

compare the proportions between each successive atrophy stage.

Correlations with microglial burden scores

Microglia burden scores for a subset of the FTLD-TDP samples (Supplementary Table 10) were

extracted from the supplementary data provided by Woollacott et al (Woollacott et al. 2020). Briefly,

frontal and temporal tissue was fixed and immunohistochemically stained with antibodies against

IBA1, CD68 and CR3/43 and 3,3′-Di-aminobenzidine (DAB) was used as the chromogen. Slides

were scanned and digitised for analysis with ImageJ. For each of the three microglial markers, the

number of positive cells were divided by the total number of DAB-positive cells in each section to

construct burden scores. These scores were then correlated with the estimated microglial

proportions (Supplementary Fig. 16).

Correlations with DNA methylation estimates of neuronal proportion

Genomic DNA was extracted from flash-frozen frontal cortex grey matter tissue using standard

protocols. A bisulfite conversion was performed with 500 ng of genomic DNA using the EZ DNA

Methylation Kit (Zymo Research). Genome-wide methylation profiling was performed using the

Infinium HumanMethylationEPIC BeadChip (Illumina), as per the manufacturer’s instructions. Beta

values were used to estimate the methylation levels of each CpG site using the ratio of intensities

between methylated and unmethylated alleles. Beta values range from 0 to 1, representing

approximately 0% to 100% methylation, respectively. Data analysis was performed using several R

Bioconductor packages. Briefly, raw data (idat files) were imported into R for pre-processing and

quality control using minfi (Aryee et al. 2014), ChAMP (Tian et al. 2017), and watermelon (Pidsley

et al. 2013). Probes that met one or more of the following criteria were excluded from further

analysis: 1) poor quality, 2) cross-reactive, 3) overlapped common genetic variants, and 4) mapped

to X or Y chromosome. Samples were dropped during quality control if: 1) presenting with high

failure rate, 2) the predicted sex was not matching the phenotypic sex, and 3) inappropriately

clustering on multidimensional scaling analysis. Beta values were normalised with ChAMP using

the Beta-Mixture Quantile (BMIQ) Normalisation method, and neuronal proportions were then

estimated using the CETS package (Guintivano, Aryee, and Kaminsky 2013). For the subset of 17

FTLD-TDP samples with DNA methylation and RNA-seq data, the neuronal proportion estimates
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from DNA methylation (Supplementary Table 9) were correlated with excitatory and inhibitory

neuron estimates from gene expression (Supplementary Fig. 17).

Differential Transcript Usage Analysis

Transcript expression was estimated in each sample using RSEM with the GENCODE v30

transcript reference. Lowly expressed transcripts were removed with the threshold transcript

counts per million > 1 in at least 30% of all samples. Differential transcript usage (DTU) was

compared between FTLD-TDP cases and controls in each brain region using satuRn (Gilis et al.

2021), a fast method for computing differential transcript usage. The same clinical and technical

covariates were used as in the differential expression modelling. Pairwise comparisons between

cases and controls were extracted using the limma::makeContrasts() function. We then filtered the

data using a FDR threshold of 0.05, which yielded totals of 4637, 5098, and 8249 transcripts from

the frontal cortex, temporal cortex, and cerebellum respectively. DTU results are presented in

Supplementary Table 3, which includes effect sizes, P-values, and adjusted P-values for all

transcripts tested.

To understand the functional profiles of the DTU genes (gDTUs), we performed a series of

hypergeometric enrichment tests. We split the genes into two sets: gDTUs only, and gDTUs shared

with DEGs. Using the clusterProfiler::enricher() function, we compared each set against a panel of

marker genes representing the same cell-types, glial activation states, and cellular pathways as in

the gene-set enrichment analyses. P-values from these enrichment tests are presented in

Supplementary Tables 5 & 6.

Comparisons with TDP-43 knockdown genes

Differential expression results were obtained from a TDP-43 knockdown study in IPS-derived

cortical neurons (Brown et al. 2021). The results included P-values and expression log2

fold-changes of all genes tested, as well as Boolean values (TRUE/FALSE) indicating whether or

not a gene is predicted to contain a cryptic exon. DEGs (adjusted P < 0.05) from TDP-43

knockdown were compared with DEGs from the FTLD-TDP vs Control comparison in each brain

region (Supplementary Fig. 18a). In addition, genes flagged as having cryptic exons were

compared with DTU genes (Supplementary Fig. 18b). P-values and odds ratios of all overlaps

were computed using a one-sided Fisher’s exact test. Log2-fold changes between the FTLD-TDP

and TDP-43 knockdown genes were compared using Spearman correlations (Supplementary Fig.
18c).
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Data availability

All raw RNA-seq data can be accessed via the NCBI GEO database (GEO GSE137810,

GSE124439, GSE116622, and GSE153960). All RNA-seq data generated by the NYGC ALS

Consortium are made immediately available to all members of the Consortium and with other

consortia with whom we have a reciprocal sharing arrangement. To request immediate access to

new and ongoing data generated by the NYGC ALS Consortium and for samples provided through

the Target ALS Postmortem Core, complete a genetic data request form at

ALSData@nygenome.org.

Code availability

All code written for this project is hosted as Rmarkdown files on Github:

https://github.com/jackhump/FTLD-TDP_analysis
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Results

Differential gene expression analyses reveal changes across multiple brain regions

We first identified general gene expression patterns in the FTLD-TDP patients by performing

principal component analysis (PCA) (Fig. 1a). The cerebellar samples formed a distinct cluster

from the cortical samples, as expected due to cell-type differences between the cortex and

cerebellum. The 2nd principal component (16.4% variance explained) indicated a clear separation

between the FTD cases and controls in all three brain regions. Differentially expressed genes

(DEGs) were then computed (adjusted P < 0.05) for each brain region by comparing the

FTLD-TDP patients with controls, while adjusting for clinical and technical variation (see Methods).
We observed widespread changes in gene expression across the brain, with the largest number of

unique genes observed in the frontal cortex (1711 DEGs), followed by temporal cortex (709 DEGs)

and cerebellum (438 DEGs). For all the brain regions, we overlapped the FTLD-TDP DEGs (Fig.
1b), and found that the frontal and temporal cortex shared the largest number of genes (FDR <

0.05 in both regions), while overlaps between cortical tissues and the cerebellum were lower. We

correlated the log2-fold change effect sizes of each gene tested between each pair of brain regions

(Fig. 1d). The frontal and temporal cortex showed a strong positive correlation (R = 0.840),

suggesting that these two areas have similar gene expression profiles in FTLD-TDP. In the

correlations involving the cerebellum, the directionality of the expression changes were

concordant, but the effect sizes were weaker (R = 0.476 with frontal cortex; R = 0.468 with

temporal cortex), implicating both shared and distinct gene expression changes in the cerebellum.

We identified genes that were previously implicated with FTD and/or ALS (Fig. 1c) including

CHCHD10, DCTN1, GFAP and ADAMTS2. CHCHD10 encodes a mitochondrial protein, and

missense mutations in this gene have been observed in familial FTD cases and associated with

impaired oxidative phosphorylation (Bannwarth et al. 2014). DCTN1, which encodes a motor

protein involved in vesicular transport, has been shown to be downregulated in FTD and ALS

(Menden et al. 2021; Kuźma-Kozakiewicz et al. 2013). GFAP is a marker of astrocytes previously

reported to be upregulated in FTD (Hallmann et al. 2017), and the ADAMTS2 gene encodes an

enzyme responsible for collagen production (Hurskainen et al. 1999). A recent study has identified

ADAMTS2 as a marker of Von-economo neurons, a neuronal subclass vulnerable to TDP-43

pathology (Hodge et al. 2020). In the cerebellum, we highlight two downregulated genes linked to

cerebellar Purkinje neurons, CALB1 and HOMER3, which have been implicated in motor disorders

such as Spinocerebellar ataxia and Huntington’s disease (Barski et al. 2003; Mizutani et al. 2008;

Ruegsegger et al. 2016; Afshar et al. 2017).
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To check for confounding effects due to post-mortem interval (PMI), we performed DGE analysis

using PMI as a continuous variable. In neither control nor FTLD samples could we find any

significant PMI-related genes (FDR < 0.05) in any brain region. In addition, we correlated the

log2-fold changes between all FTLD-related and PMI-related genes (Supplementary Fig. 4).
Although we found positive correlations in each region, the effect sizes associated with PMI were

negligible.

Fig. 1 | Overview of differential expression analyses. a. Principal component analysis of the RNA-seq
expression matrix, following TMM-normalisation and covariate adjustment. Colour corresponds to disease
status and shape corresponds to brain region. Distinct clusters can be seen between the cortical and
cerebellar samples. b. Upset plot showing the number of distinct and overlapping differentially expressed
genes in each brain region. c. Volcano plots comparing FTLD-TDP samples with controls. Red and blue dots
represent genes that are upregulated and downregulated respectively (FDR adjusted P < 0.05), while gray
dots are genes that are not differentially expressed. Key genes related to FTD or ALS are labelled. d. Scatter
plots comparing log2-fold changes of all genes tested between each pair of brain regions. Each point is a
gene, coloured by the density of overlapping points. Log2-fold changes are highly concordant between the
frontal and temporal cortex, but less so between the cerebellum.
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C9orf72 and non-C9orf72 cases have similar gene expression profiles

We repeated DGE analysis but split the FTLD-TDP cases by C9orf72 repeat expansion status.

This allowed us to compute the gene expression changes, with respect to controls, in the 9

C9orf72 and 21 non-C9orf72 FTLD-TDP donors, the latter mostly consisting of sporadic disease. In

the frontal cortex, most DEGs were shared between the two disease groups (Supplementary Fig.
5a). Gene expression changes between the two groups were strongly concordant across the

regions (frontal cortex: R = 0.89; P < 2.2e-16 ; temporal cortex: R = 0.90; P < 2.2e-16 ; cerebellum:

R = 0.76; P < 2.2e-16) (Supplementary Fig. 5b). Taken together, these findings are contrary to

studies that have reported distinct sets of differentially expressed genes in C9orf72 repeat

expansion carriers and sporadic FTD or ALS patients (Prudencio et al. 2015; Dickson et al. 2019).

Furthermore, we observed that the C9orf72 gene itself was significantly downregulated in the

C9orf72 cases, which could be explained by hypermethylation of the C9orf72 promoter locus

(Jackson et al. 2020).

Pathway analysis finds upregulated inflammatory response and circulatory system

Next, we performed gene set enrichment analysis (GSEA) (Subramanian et al. 2005) to examine

affected cellular pathways in the FTLD-TDP patients (Fig. 2a; Supplementary Fig. 6). In all three

brain regions, the upregulated genes were strongly enriched for epithelial mesenchymal transition,

an extracellular matrix (ECM) remodelling process, and circulatory system pathways such as

angiogenesis, heme metabolism and coagulation. We also examined the expression-fold changes

of matrix metalloproteinases (MMPs), which have emerged as important regulators of the ECM and

circulatory system (Rempe, Hartz, and Bauer 2016). Increased expression levels of MMPs have

been previously reported in various neurodegenerative diseases (Duits et al. 2015; Lu et al. 2011).

Supporting a strong involvement in FTLD, we have found that most MMP genes were differentially

upregulated in the cortex but not the cerebellum, and that two genes, MMP2 and MMP14, were

among the DEGs with the largest log2-fold changes (Supplementary Fig. 7).

Furthermore, we observed that pathways related to immune signaling and inflammatory response

were positively enriched in the cortex, but not in the cerebellum. TNF-alpha signaling via NFkB,

which is believed to trigger microglia-induced neurodegeneration (Mattson and Meffert 2006),

displayed the strongest enrichment among the immune signaling pathways. Accordingly, we found

strong involvement of p53 pathways and apoptosis, which may act together with TDP-43 to

mediate neuronal cell death (Vogt et al. 2018). Cell-proliferation pathways such as MTORC1 and

PI3K/AKT/MTOR signaling were upregulated in the frontal cortex, while mitotic spindle and

cholesterol homeostasis were upregulated in the cerebellum.
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Fig. 2 | Cellular and pathway-level enrichment analyses. a-c. Heatmaps showing the GSEA results for
cellular pathways, cell-types, and glial activation states. Coloured tiles represent the normalised-enrichment
score (NES) for each term. Grey tiles were not tested. d. Boxplots comparing the log2-fold changes between
the activation genes in c and standard marker genes in b for astrocytes and microglia. Comparisons were
made using the Wilcoxon rank sum test. All P-values from a-d are Bonferroni-corrected. *** p < 1e-4; ** p <
1e-3; * p < 0.05; ns p > 0.05.

Significant alterations in endothelial, glial, and neuronal gene expression

To understand how gene expression in individual brain cell-types is altered in patients with

FTLD-TDP compared to controls, we performed GSEA using marker genes (Mancarci et al. 2017)
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for five cell types (microglia, astrocytes, oligodendrocytes, neurons, and endothelial cells) (Fig.
2b). Endothelial genes were upregulated in all three brain regions and showed the strongest

enrichment of the five cell-types. Enrichment for glial-cell types varied across the brain, with

microglial genes upregulated in all three regions, astrocyte genes upregulated in only the frontal

cortex, and oligodendrocyte genes showing increases in both the frontal and temporal cortex.

We also observed an overall reduction in neuronal gene expression. Examining the individual

neuronal subtypes, Purkinje neuron expression decreased in the cerebellum, and pyramidal

neuron expression decreased in the cortex. Our expression-weighted cell-type enrichment (EWCE)

(Skene and Grant 2016) analysis yielded similar results (Supplementary Fig. 8), showing strong

loss of excitatory neuronal markers in the cortices and loss of inhibitory neuronal markers in the

cortices and cerebellum. These changes could be explained by general nervous system defects

caused by the disease and/or loss of neurons in the FTLD samples. A recent single-cell RNA-seq

study has defined a set of marker genes for Von-economo neurons (VENs), a population of

excitatory cortical neurons that are selectively reduced in TDP-43 pathology (Hodge et al. 2020).

Contrary to the known vulnerability of VENs, we discovered that most of the marker genes were

differentially upregulated, with the upregulated genes exhibiting larger expression fold changes

than downregulated genes (Supplementary Fig. 9).

To further characterise glial cell-type expression, we calculated enrichment for activated glia using

a panel of immune marker genes from past transcriptomic studies (Fig. 2c). The gene sets, which

include activated microglia, disease-associated microglia (DAM) and astrocytes (DAA), middle

cerebral artery occlusion (MCAO) and lipopolysaccharide (LPS)-reactive astrocytes, and

plaque-induced genes (Keren-Shaul et al. 2017; Habib et al. 2020; B. O. Mancarci et al. 2017;

W.-T. Chen et al. 2020; Zamanian et al. 2012), represent signatures of microglia and astrocyte

responses to a range of inflammatory stimuli. We found that the six gene sets only partially

overlapped (Supplementary Fig. 10) and all were upregulated in the three brain regions. To

understand which activation signatures disrupt glial homeostasis and are likely to play a role in

inflammation, we compared the log2-fold changes of the activation genes with those of the

standard marker genes (Fig. 2d). Comparing the microglial activation sets with the microglia

markers in each region, we observed higher log2-fold changes for plaque-induced genes and

activated microglia, but lower log2-fold changes for DAM genes. In the comparisons involving

astrocytes, plaque-induced genes, and the two astrocyte reactivity sets (MCAO and LPS) exhibited

higher fold changes, but DAA genes did not show any significant differences. These results point to

the involvement of distinct microglia and astrocyte signatures which may play roles in the

inflammatory response seen in FTLD-TDP.
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Altered compositions of endothelial cells, microglia, and neurons

Next, to estimate changes in cellular composition, we performed deconvolution analysis using a

human cortical snRNA-seq dataset (Mathys et al. 2019). After adjusting for clinical and technical

variation (see Methods), we compared the cellular proportion estimates between the control and

FTLD-TDP samples using the Wilcoxon rank sum test (Fig. 3a). Endothelial cells and pericyte

proportions increased in all three regions, while excitatory and inhibitory neurons were decreased

in the cortex. Inhibitory neurons were also reduced in the cerebellum, consistent with the marker

gene expression changes for inhibitory Purkinje neurons. Notably, proportions of microglia,

astrocytes, and oligodendrocytes were increased in the cortices, but not in the cerebellum, contrary

to our GSEA results with marker genes. This could be due to the fact we used cellular markers

from the human cortex, which may not be fully representative of the cerebellum, or due to the use

of covariate adjustment for the GSEA but not the deconvolution. Overall, the composition changes

were broadly consistent with the GSEA (Fig. 2C) and EWCE (Supplementary Fig. 8) results.

Using a different deconvolution tool and another reference dataset (Darmanis et al. 2015), we

obtained similar results for the overlapping cell-types (Supplementary Fig. 11-13).

To validate our deconvolution results, we correlated the estimated neuronal proportions for each

sample with manually determined atrophy scores from a neuropathologist, determined by

assessing the amount of neuronal loss in microscopic (Fig. 3b; Supplementary Fig. 14) or

macroscopic observations of the cortical samples (Supplementary Fig. 15) and grouping samples

into stages. In the correlations involving macroscopic atrophy, we failed to identify associations in

either the frontal or temporal cortex. However, we observed significant correlations with the

microscopic atrophy scores of the frontal cortex samples (Fig. 3c). Both excitatory and inhibitory

neuronal proportions displayed strong negative associations (Fig. 3c) with microscopic atrophy,

thereby providing experimental confirmation of our computational predictions. Excitatory neurons

were more strongly associated with the scores than inhibitory neurons, suggesting that in the

frontal cortex, neuronal loss can be mainly attributed to a loss of excitatory neurons. Conversely,

endothelial and microglial cells showed strong positive associations with atrophy scores. These

findings may indicate a potential relationship between neuronal loss and microglial and endothelial

cell changes in the frontal cortex.
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Fig. 3 | Cellular proportion changes and atrophy correlations. a. Comparisons of the cellular proportion
estimates between control and FTLD-TDP samples. Estimates were generated with dtangle using single
nuclear RNA-seq data from Mathys et al. b. Hematoxylin and eosin stained sections of select frontal cortex
FTLD-TDP samples. From left to right, the slides depict cases with mild, moderate, and severe microscopic
atrophy. Neurons are indicated by black arrows. c. Comparisons of the cellular proportion estimates of the
frontal cortex FTLD-TDP samples between each microscopic atrophy stage. Excitatory neurons are
associated with neuronal loss as the estimates show significant decreases between all atrophy stages.
Inhibitory neurons show decreases between stages 2 and 3, but not 1 and 2, indicating a partial negative
association. Positive associations with neuronal loss are observed for endothelial cells and microglia.
Asterisks in a and c represent Bonferroni-adjusted P-values from Wilcoxon rank sum tests. *** p < 1e-4; ** p
< 1e-3; * p < 0.05; ns p > 0.05.

Similarly to using gene expression, DNA methylation of purified cell-types can be used to

deconvolve the cell-type composition of mixed samples. We used methylation calls for 17 of the

FTLD-TDP frontal cortex donors to estimate neuronal proportions in those samples. However,

these estimates showed no correlation with estimates derived from gene expression (R = 0.15; P =

0.56; (Supplementary Fig. 16)).
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Additionally, we compared the estimated microglial proportions with histologically determined

microglial proliferation scores on a subset of the same samples from a previous study (Woollacott

et al. 2020). 14 frontal cortex and 13 temporal cortex samples were shared between the two

studies. Each sample was stained for IBA1, a constitutive marker for microglia, CD68, a marker of

activated phagocytic microglia, and CR3/43, which detects major compatibility complex class II

molecules including HLA-DR, HLA-DP and HLA-DQ, present in activated antigen-presenting

microglia. When correlating counts and combined counts of cells positive for any of the three

stains, no measure significantly correlated with microglia proportion (Supplementary Fig. 17).

Differential transcript usage analysis highlights additional genes and pathways

To further characterise differences in gene expression between the FTLD-TDP patients and

controls, we applied differential transcript usage (DTU) analysis. This allowed us to identify

expression changes, at the level of transcripts, caused by alterations in polyadenylation, promoter

usage, and alternative splicing. Adjusting for clinical and technical variation (see Methods), the

analysis revealed 2630, 2891, and 4045 genes with differential transcript usage (gDTU) in the

frontal cortex, temporal cortex, and cerebellum respectively (Fig. 4a). In addition, most gDTUs did

not overlap with the DEGs in any brain region (Fig. 4a).

To understand the functional consequences of TDP-43 pathology, we performed a series of

enrichment tests on the gDTUs. We split the genes into two sets: gDTUs only, and gDTUs shared

with DEGs. We then compared each set against a panel of marker genes representing the same

cell-types, glial activation states, and cellular pathways as before (Fig. 4b-c). gDTUs, either alone

or in combination with DEGs, showed significant enrichment (adjusted P < 0.05) for inhibitory

neurons and oligodendrocyte progenitor cells in at least one brain region. Inputting only gDTUs, we

found a strong presence of DAM genes in the frontal cortex, and DAA genes in the temporal cortex

and cerebellum. We also identified several pathways in certain regions that were overlooked by our

previous enrichment analysis using DEGs, such as mitotic spindle and apical junction, two

pathways used by non-neuronal cell types. We show the transcript-level expression changes of

UNC13B, a synaptic gene which may have important functional relevance in FTLD-TDP (Fig. 4d).
Brown and colleagues have previously reported a loss of UNC13B expression due to splicing

changes caused by TDP-43 knockdown in neuronal cell lines (Brown et al. 2021). Elaborating on

this finding, we observed that UNC13B was downregulated in the cortices, and that four of the six

UNC13B transcripts were altered in at least one brain region. The four transcripts differ by cassette

exon inclusion, 3’UTR length and alternative promoter usage. Usage of ENST00000619578

decreased across all three brain regions, and the effect sizes associated with this isoform were

among the largest in the transcriptome. Usage for ENST00000378495 also decreased within the

temporal cortex and cerebellum, while that of ENST000061708 and ENST0000036694 increased.
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Fig. 4 | Differential transcript usage analysis. a. Upset plots showing overlaps between the gDTUs
(adjusted P < 0.05) and DEGs (adjusted P < 0.05) for each brain region. b-c. Cell-types, glial activation
states, and pathways enriched in gDTUs (b) and gDTUs + DEGs (c). Coloured tiles represent the negative
logarithm of the adjusted P-value for each term. Grey tiles were not tested. d. Transcript usage of the four
UNC13B isoforms with significant effect sizes in at least one brain region. e. Alignment chart of the UNC13B
isoforms in d, showing the region with greatest variation in transcript structure. Purple rectangles correspond
to protein-coding exons. Asterisks in b-d refer to P-values that meet the FDR threshold of 0.05. *** p < 1e-4;
** p < 1e-3; * p < 0.05; ns p > 0.05.

The finding of DTU of UNC13B led us to consider whether changes in gene expression and

splicing directly related to TDP-43 pathology might be observed in our bulk brain samples. TDP-43

nuclear loss pathology should be present in both frontal and temporal cortex but is not generally

observed in the cerebellum (Neumann et al. 2006). Recently, RNA-seq on human iPSC-derived

neurons identified differentially expressed genes resulting from TDP-43 knockdown, as well as

genes with possible cryptic exon (CE) inclusions (Brown et al. 2021). We compared the DEGs from
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our FTLD-TDP vs control comparison with those found in the study by Brown et al

(Supplementary Fig. 18a). These TDP-43 knockdown genes overlapped with at least 25% of the

FTLD-TDP DEGs found in each tissue (frontal cortex: OR = 1.23; P = 1.65e-5 ; temporal cortex:

OR = 1.42; P = 1.12e-9 ; cerebellum: OR = 1.64; P = 1.02e-8). Furthermore, we overlapped our

gDTUs with genes with possible CE inclusions and identified 52, 58, and 72 genes in the frontal

cortex, temporal cortex, and cerebellum respectively (Supplementary Fig. 18b). By correlating the

expression-fold changes between the two gene sets (Supplementary Fig. 18c), we also found

weak, but nonetheless significant associations (P < 0.05) in all three regions (frontal cortex: R =

0.14; P < 2.2e-16 ; temporal cortex: R = 0.13; P < 2.2e-16 ; cerebellum: R = 0.058, P = 3.2e-11).

Discussion

In this study, we assembled a large cohort of RNA-seq from post-mortem FTLD-TDP brains to

understand the cellular mechanisms underlying FTLD and TDP-43 pathology. We provide a

detailed landscape of gene expression alterations from multiple brain regions, highlighting the roles

of specific glial cell-types, the vulnerability of excitatory neurons, and a strong involvement of the

cerebellum in the neurodegenerative process of FTLD. Our data represents a transcriptomic

resource to help accelerate future research towards a better understanding of the pathogenic

mechanisms in FTD.

By profiling transcriptomic changes in FTLD brains using multiple techniques (GSEA, EWCE,

deconvolution), we identified robust shifts in cell-type abundance and expression across both the

cortex and cerebellum. Notably, we show that microglia, astrocytes, and oligodendrocytes,

cell-types believed to play key roles in the neurodegenerative process of FTLD, were prominently

upregulated in the frontal and temporal cortex. We found that genes associated with some but not

all glial activation sets exhibited stronger expression fold-changes than standard marker genes,

suggesting a possible shift towards activated glia in FTLD brains. Furthermore, in line with the

known consequences of glial activation (McCauley and Baloh 2019), we have identified enrichment

in neuroinflammation and apoptosis pathways in the cortical regions. However, we are aware that

these interpretations are limited by our use of bulk-tissue sections. A more thorough analysis of

glial cell-type changes would involve quantifying the relative cellular proportions between intrinsic

cell-states at the level of single cells. Moreover, we were unable to assess whether the observed

changes in microglia and astrocyte gene expression are at least partly driven by peripheral

monocytes, which are known to infiltrate through the blood brain barrier (da Fonseca et al. 2014).

Our enrichment analyses have detected widespread upregulation of endothelial cells and

angiogenesis pathways, suggesting increased blood vessel abundance and growth in FTLD brains.

It is generally not known how or if the circulatory system is involved in FTLD pathogenesis,
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although vascular abnormalities have been found in postmortem brains with TDP-43 pathology (Ek

Olofsson and Englund 2019). In all brain regions, we also detected strong enrichment for

extracellular matrix (ECM) remodelling, a cellular process that is poorly understood in FTLD. One

of the few lines of evidence supporting ECM dysregulation in FTLD comes from a transcriptomic

study done on individual genetic subgroups - C9orf72, GRN, and MAPT (Menden et al. 2021). In

all three groups, Menden et al detected increased expression of key ECM genes, including matrix

metalloproteinases (MMPs). In other neurodegenerative diseases, MMP pathways have been

shown to increase production of growth factors that promote blood vessel development, providing

a potential causal link between the observed enrichment of endothelial cells (Rempe, Hartz, and

Bauer 2016). Given this relationship, we think the ECM and circulatory system represent important

subjects to study for future FTD research.

From our deconvolution analysis, we have identified robust decreases in excitatory and inhibitory

neuron proportions in the cortical regions. These findings fall in line with initial studies on

postmortem FTLD brains that have found deficits to glutamatergic and GABAergic systems (Ferrer

1999). Recently, evidence from multiple studies has accumulated in support of the selective

vulnerability of excitatory neurons to TDP-43 pathology (Benussi et al. 2019; Zhang et al. 2020;

Santillo, Nilsson, and Englund 2013; Nana et al. 2019). This led us to examine the expression

changes linked to Von Economo neurons (VENs), a group of selectively targeted excitatory

neurons, using marker genes from the recent study by Hodge et. al (Hodge et al. 2020). However,

we found that the marker genes were mainly upregulated. Given that we used bulk-tissue sections,

our dataset is likely affected by the relatively low proportion of VEN neurons within each sample. In

support of the vulnerability of excitatory neurons in FTLD-TDP, our correlations with

neuropathological atrophy show stronger associations for excitatory neurons than inhibitory

neurons. However, we note that significant associations were only observed for the frontal cortex.

We identified a decrease in inhibitory neurons in the cerebellum that agrees with recent reports of

Purkinje neuron loss in FTD-ALS mouse models (Chew et al. 2015), despite lacking a

cerebellum-specific single cell RNA-seq panel. We also detected a reduction in expression of

known Purkinje neuron marker genes in our enrichment analyses. These findings add to the

growing body of evidence supporting the involvement of the cerebellum in FTLD. Imaging studies

have shown that the cerebellum may be selectively targeted in sporadic FTLD-TDP and in cases

caused by C9orf72 mutations (Tan et al. 2014; Chen et al. 2019). In C9orf72 cases, accumulation

of C9orf72 dipeptide repeat protein, rather than TDP-43, may be responsible for cerebellar

neuronal loss (Yousef et al. 2017; Gendron et al. 2015), although a direct causal link has not yet

been established. Interestingly, by comparing FTLD-TDP cases with and without C9orf72

mutations, we found concordant changes in gene expression in the cerebellum. Potentially, this

could suggest that mechanisms driving cerebellar neuronal loss are shared between C9orf72 and
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sporadic cases.

We did not observe significant correlations with atrophy scores from the temporal cortex. Nor did

we observe concordance between neuronal proportions estimated from DNA methylation, nor

between estimated microglia proportions and histological counts of microglia. These failed

associations are presumably partly due to sample size as well as the difficulties of accurate

deconvolution of brain samples (Patrick et al. 2020). For the histological metrics of microglia counts

and neuronal loss, there is the additional confounder of asymmetric changes between the

hemispheres, as the deconvolution estimates and neuropathological observations were determined

from opposite hemispheres of the same donor. To resolve this in future, it would be useful to fix and

freeze adjacent sections of the same hemisphere.

Applying DTU analysis has allowed us to detect changes in transcript usage in FTLD-TDP affecting

a largely distinct set of genes from the DGE analysis. These genes were less enriched in specific

cell-types, which suggests they may reflect cell-intrinsic changes, rather than simply cellular

composition changes exhibited by the DEGs. For example, the largest number of genes with DTU

was observed for the cerebellum, in which we previously found the lowest number of DEGs and

the weakest cell-type enrichments. Multiple studies have demonstrated that reductions in nuclear

TDP-43 alter the expression and splicing of its target mRNAs, many of which regulate neuronal

function (Polymenidou et al. 2011; Tollervey et al. 2011; Rot et al. 2017). In support of this, we

observed significant overlaps between DTU genes and genes known to be altered by TDP-43 loss.

However, as widespread DTU has been observed in multiple neurodegenerative diseases,

including Alzheimer’s (Marques-Coelho et al., 2020) and Parkinson’s (Dick et al. 2020), as well as

similar enrichment with DTU genes found in the cerebellum, we are wary of linking the majority of

transcript changes to TDP-43 pathology. For example, the DTU study of Alzheimer’s brains also

observed DTU in genes and pathways related to immune activation and synaptic transmission

(Marques-Coelho et al., 2020). The DTU genes may therefore reflect a general consequence of

neurodegenerative disease rather than TDP-43 pathology. Another example of this is the

observation of DTU in both UNC13A and UNC13B, two synaptic genes whose splicing is altered in

TDP-43 loss-of-function models (Ma et al. 2021; Brown et al. 2021). For UNC13B, the prominent

DTU signals observed in the frontal and temporal cortex would suggest that this gene is affected

by loss of TDP-43. However, given that DTU signals were also observed in the cerebellum, a

region that lacks TDP-43 pathology, we think some other factor, in addition to TDP-43 pathology,

may converge on these critical neuronal genes.

A major limitation of this study is the sample size of the FTLD-TDP group. We lacked a sufficient

number of donors to analyze differences between individual genetic or TDP-43 pathology

subtypes. A larger cohort would allow us to identify cell-types and pathways that are affected
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between subgroups of FTLD, and grant us statistical power to perform additional analyses such as

gene co-expression networks. Hopefully, in future studies we will be able to meta-analyse across

FTLD cohorts.

To conclude, we highlight potential consequences of FTLD-TDP, including vascular dysfunction,

RNA missplicing, and glial activation. We emphasize the vulnerability of excitatory neurons, and a

strong involvement of the cerebellum in the FTLD neurodegenerative process. We hope our data

stimulates further research that will lead toward a better understanding of the relevant disease

mechanisms in FTLD.
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