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Abstract

As educational institutions begin a school year following a year and a half of disruption

from the COVID-19 pandemic, risk analysis can help to support decision-making for

resuming in-person instructional operation by providing estiamtes of the relative risk

reduction due to different interventions. In particular, a simulation-based risk analysis

approach enables scenario evaluation and comparison to guide decision making and

action prioritization under uncertainty. We develop a simulation model to characterize

the risks and uncertainties associated with infections resulting from aerosol exposure in

in-person classes. We demonstrate this approach by applying it to model a semester of

courses in a real college with approximately 11,000 students embedded within a larger

university. To have practical impact, risk cannot focus on only infections as the end

point of interest, we estimate the risks of infection, hospitalizations, and deaths of

students and faculty in the college. We incorporate uncertainties in disease transmission,

the impact of policies such as masking and facility interventions, and variables outside
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of the college’s control such as population-level disease and immunity prevalence. We

show in our example application that universal use of masks that block 40% of aerosols

and the installation of near-ceiling, fan-mounted UVC systems both have the potential

to lead to substantial risk reductions and that these effects can be modeled at the

individual room level. These results exemplify how such simulation-based risk analysis

can inform decision making and prioritization under great uncertainty.

1 Introduction 1

Educational institutions such as universities and K-12 schools face ongoing challenges in 2

managing risks associated with the ongoing SARS-CoV-2 pandemic. As schools and 3

universities return to in-person classes they must decide what, if any, mitigation 4

measures to implement. Should they require masks? Reduce density in classes? Install 5

in-room active mitigation measures such as HEPA filtration or UVC virus inactivation? 6

What testing policy should they have? These types of decisions may have significant 7

impacts on virus spread, institutional operations, and cost, yet they must be made 8

under localized conditions of considerably uncertainty and temporal variability about 9

virus spread, prevalence of the virus in the surrounding community, and the health 10

impacts of infections. 11

Risk analysis can provide valuable support for decision-makers by providing both 12

quantitative and qualitative insights into the risks faced by decision makers and the 13

impacts of different mitigation measures. Here we use the term “risk” in line with the 14

accepted definitions from the Society for Risk Analysis [1]. Risk must consider both the 15

potential outcome space (what can happen), the uncertainty about the outcomes, and 16

the severity of the outcomes (how much do we care about them) in a given situation. A 17

key question then is what the end points of concern are. In this work we consider the 18

key outcomes to be health effects of infections with infections themselves being an 19

important intermediate measure. That is, we cannot use only infections as the end point 20

of the analysis; we must consider health outcomes such as hospitalization and death. At 21

the same time, we do not explicitly consider other critical outcomes such as student 22

learning and mental health outcomes and institutional financial and reputation 23

outcomes among many others. These are all critical components of the landscape of risk 24
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associated with in-person teaching during COVID-19 and must be considered in 25

addition to the output of quantitative risk models like the one presented here for the 26

ultimate decision and policy making. 27

One aspect of many risk analyses is a quantitative risk model. While a quantitative 28

risk model does not address all aspects of a given situation, it can help by providing 29

probabilistic estimates of outcomes such as, in the case of COVID, infections, 30

hospitalizations, and deaths due to virus aerosol transmission under different mitigation 31

strategies. Doing so requires that the risk analysis approach models transmission at the 32

level of individuals within classrooms to allow the room-level effects of interventions and 33

mixing of individuals across classes to be modeled. Also, influences such as the 34

prevalence of infection in the outside community must be accounted for. In addition, 35

the risk analysis approach must provide estimates of the uncertainty in the assessed 36

risks in a way that reflects the high degree of uncertainty in virus transmission. This 37

requires a fundamentally different approach than traditional compartmentalized, 38

population-averaged epidemiology-based models. 39

In this paper we develop a stochastic simulation framework to estimate the 40

probability of infection, hospitalization, and death at the individual level and collective 41

(campus) levels and to compare these risks with different potential mitigation measures. 42

This framework simulates transmission between individual students and faculty in each 43

meeting of each class throughout a semester, resulting in estimated probability 44

distributions of both individual likelihood of becoming infected, hospitalized, or dying 45

and estimated probability distributions for these three outcomes for the campus as a 46

whole. It must be emphasized that these estimated probabilities are highly dependent 47

on the input values for parameters such as community prevalence of disease, 48

transmissibibility of the disease vector, and testing policy, among others. This approach 49

provides support that informs both individuals as well as those responsible for higher 50

level policy decisions as they choose among possible individual-level and room-level and 51

organization-level mitigation options. 52

We demonstrate our approach by modeling COVID risk for one semester of 53

operation of classes in a real college with approximately 11,000 students set in the 54

context of a larger university. For privacy reasons we leave this college unnamed given 55

the sensitive nature of this work. While this model was initially designed to support 56
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mitigation decision making related to the SARS-Cov-2 virus in a college setting, it can 57

be used to model any other aerosol-transmitted virus as long as the needed parameter 58

values can be satisfactorily approximated. It can also be used in other settings such as 59

primary and secondary schools with appropriate adjustments in model logic and input 60

parameters. This model advances the ability to estimate risks associated with virus 61

transmission in a way that allows mitigation measures at the individual and room levels 62

to be evaluated and compared, providing stronger support for mitigation decision 63

making as well as communicating the underlying rationale to the myriad stakeholders to 64

facilitate ultimate organizational success. 65

An important caveat is needed up front. No model can fully represent reality. Or in 66

the words of a well-known quote often attributed to George Box ”All models are wrong, 67

but some are useful” [2]. The goal of a quantitative risk model such as the one 68

presented here is not to make precise predictions about future outcomes. Rather, the 69

purpose is to provide a probabilistic understanding of potential outcomes under 70

different interventions and, most critically, to provide a relative ranking of risk and 71

better understanding of the effects of different potential interventions thus aiding in the 72

selection of the most prudent decisions. 73

This paper is organized as follows. We first present background on COVID-19 74

aerosol transmission, dose response modeling, and simulating COVID-19 transmission 75

and response at universities. We next present the simulation model and the data used 76

to populate this model. We then demonstrate the model using the the course schedule 77

for an actual semester of classes in our example college. Following this, we discuss the 78

results and the limitations in the current version of the model. We conclude with 79

comments on the benefits of our model and simulation-based risk analysis in general 80

and identify opportunities for expanding this methodology to other settings. We provide 81

additional details about the model’s algorithmic structure, input parameters, and 82

detailed model results for the example college in the Appendices. 83

2 Background 84

Consensus has built around the dominance of SARS-CoV-2 transmission via 85

aerosols [3–5]. In addition, while symptoms such as coughing and sneezing lead to higher 86
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levels of virus being expelled by those who are infected, the high rate of asymptomatic 87

prevalence of SARS-CoV-2 requires consideration of spread beyond quarantining those 88

who express symptoms [6, 7]. Just one seemingly healthy but infected individual is 89

capable of transmitting SARS-CoV-2 through breathing and that risk increases with 90

higher respiratory activity from whispering, to lecturing, to singing [5, 8]. Thus, shared 91

spaces, particularly indoor spaces with higher respiratory activity including eating and 92

talking, pose increased risk for individuals to inhale SARS-CoV-2. 93

With this increased risk accompanying previously very typical activities have come 94

efforts to model aerosol and droplet concentrations in various settings including indoor 95

dining, hospitals, planes, and classrooms [9–12]. While particles come in a continuum of 96

sizes, there is a common, though at times problematic, attempt to classify them as 97

either droplets, the larger particles that settle out of air relatively quickly (e.g., typically 98

within 2m from being exhaled), or aerosols, the smaller particles that can stay airborne 99

for hours. There has been vigorous debate about how much of a role aerosols play in the 100

transmission of SARS-CoV-2, but the evidence has become clear that aerosols are the 101

dominant transmission mode in most indoor settings [4, 13–15]. We focus on only 102

aerosol-based transmission in this paper. 103

Dose response modeling is one method for translating aerosol virion concentration to 104

individual-level probability of infection [16,17]. Evans [3] presents a relatively simple 105

mathematical model for COVID-19 aerosol transmission assuming a well-mixed room. 106

Watanabe [17] provides an exponential dose response function formulated for SARS 107

Coronovirus. Dabisch et al. [18] recently estimated a dose-response function for 108

SARS-CoV-2 and found an exponential dose response function and parameters in rough 109

agreement with those from [17]. We build from this previous work, particularly that of 110

Evans [3] and Watanabe [17] to model how individuals interact with aerosols in an 111

enclosed space under various conditions and for various activities and the infections that 112

result. These efforts present opportunities to evaluate the effects of interventions such 113

as air purifiers (e.g., HEPA filtration and ultraviolet light), improved HVAC systems, 114

and masking on virion concentration and health outcomes in a spaces ranging from a 115

single room to a college [9, 10, 13,19] 116

As universities and communities grapple with the risks associated with both 117

in-person and virtual learning and working, simulation offers opportunities to elaborate 118
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on the dose-response model and other formulations of COVID-19 spread and health 119

outcomes among a population. A team at Cornell has taken advantage of such methods 120

and has developed a very effective testing protocol in response to their simulations that 121

have been adapted for different semester scenarios and as new data becomes 122

available [20]. Similarly, University of Illinois researchers presented methods to support 123

decision making for both closing and reopening the university [21]. Neither of these 124

models, though, take full advantage of a risk analysis framework for assessing the 125

uncertainty accompanying both COVID-19’s parameters and potential policy responses, 126

and, to our knowledge, neither models each meeting of each class through a semester in 127

detail. 128

3 Methods 129

3.1 General Approach 130

To understand the risks of COVID-19 in the context of in-person classes on a college 131

campus, we developed a simulation model to assess the probability of aerosol 132

transmission of COVID-19 and the associated adverse health outcomes for students and 133

faculty. We structured this simulation into three layers: class period, day, and semester. 134

After initializing infection status at the beginning of the semester, we assess students’ 135

daily exposure to SARS-CoV-2 aerosol particles in the classroom. Given a single day’s 136

cumulative viral exposure, we apply a dose-response function [17] to assess an 137

individual’s probability of developing COVID-19 each day. We inject additional 138

exogenous infections at the end of each day based on prevalence of COVID-19 in the 139

community. We simulate every class meeting on every day over a period of 13 weeks to 140

represent a semester to determine the total number of in-class infections for 141

non-immune students. We used actual student and faculty class schedules from our 142

example college as input to demonstrate the model. For each in-class infection during 143

the semester, we simulate the risk of adverse health outcomes (hospitalization, death) 144

based on age-specific rates from the health department of the county that is home to 145

our example college. 146

This simulation starts with an input schedule array with all students and faculty 147
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assigned to classes and all classes assigned to rooms based on Fall 2019 (the last 148

pre-pandemic fall semester) data provided by the college. Each individual is randomly 149

assigned immunity status (defined as prior infection or vaccination) based on user-set 150

immunity rate parameters for students and faculty. This reflects the combined influence 151

of prior infection and vaccination. Individuals are then randomly assigned a weekday 152

testing day to implement a weekly testing policy, reflecting the college’s testing policy 153

at the time this model was created. Initial infections at the beginning of the semester 154

are randomly assigned to non-immune individuals based on a user-set parameter. The 155

length of infectiousness of each infection is assigned based on a process described later 156

in this paper that includes lag time, testing policy, and asymptomatic rate. Finally, we 157

initialize arrays to track the days when individuals become infected and when they are 158

actively infectious. 159

For each day and for each class that meets that day, the number of infected persons 160

and the air changes per hour (ACH) of the classroom are used to simulate a 161

non-immune individual’s in-class exposure to SARS-CoV-2 assuming a well-mixed, 162

equilibrium concentration of SARS-CoV-2 containing aerosol particles in the room 163

using [3] as described in 6. At the end of each day, we sum each non-immune 164

individual’s total daily exposure. We apply an exponential dose-response function based 165

on [17] to determine their probability of developing COVID-19 on that day and 166

randomly assign infectiousness as a Bernoulli trial. We incorporate exogenous infections 167

by assigning infectiousness to the remaining non-immune and uninfected individuals 168

based on a user-defined external infections rate. This process is repeated for each day of 169

the semester. 170

At the end of the semester, we identify all students infected in class over the 171

semester (that is, removing initial exogenous infections from the total). For each in-class 172

infection, we simulate hospitalizations based on age-specific hospitalization rates from 173

the local county public health records. For each resulting hospitalization, we simulate 174

death again based on age-specific rates consistent with county data. We replicate each 175

semester 1000 times, beyond what we identified as necessary to achieve stochastic 176

convergence of the simulation model. 177
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3.2 Data 178

Schedule data was provided by the college based on the Fall 2019 student class schedule 179

and the Fall 2019 course schedule with room assignments. The Fall 2019 data initially 180

include 15,221 students and 989 instructors across 2,280 classes. The course schedule 181

contained 1,067 classes and their room and time assignments. Many of the classes 182

include independent study and virtual classes that are not assigned to physical spaces, 183

so we included only those courses with regular in-person meetings. Further, many of the 184

courses contain multiple instructors, as the data set includes teaching assistants and 185

faculty members as course instructors. The college also provided age ranges for faculty 186

members. We cross referenced these faculty ages with the class schedule to separate 187

faculty from student instructors. Ultimately, the schedule input for the demonstration 188

of the model included 11,968 students and 342 faculty in 1,025 courses. 189

The course schedule data also contains room specifications critical for exposure 190

calculations including the classroom volume and the length of class period. Some rooms 191

contained airflow parameters. However we noticed inconsistencies in stated versus 192

measured airflow for a sample of classrooms, and so assigned a reasonable estimate of 193

3.5 air changes per hour (ACH) in each room. We subsequently measured ACH values 194

in a subset of the rooms. While some were higher, others were lower. This parameter 195

could easily be updated if specific and accurate room ACH values are known. 196

As SARS-CoV-2 impacts vary by age, the health risks born by students versus 197

faculty also vary. These differences should be reflected in modeling outcomes. We 198

incorporate age-specific hospitalization and death rates from the county health 199

department COVID-19 data collection for the county the college is in. Table 1 below 200

shows values for rates of hospitalization given infection and of death given 201

hospitalization by age group as calculated from the county data. 202
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Table 1. COVID-19 hospitalization and death rates by age in the county in
which our example college is located. These are rates given infection. This
data is taken from a publicly available county web page.

Age Hospitalization Death

18-24 0.60% 0.00%
25-39 2.73% 1.90%
40-49 5.46% 1.90%
50-59 8.73% 7.11%
60-69 15.01% 13.27%
70+ 34.30% 36.97%

The data from the county for the 18-24 age group is, however, insufficient. There 203

were no deaths in this age group, yet we know the risk is not zero. At the same time, 204

there were substantially fewer college-age students in the county during much of the 205

period covered by this data because the college was largely virtual. This poses a 206

challenge. Rather than using the county data, we set the death rate for this age group 207

to 1.90% to match the death rate in the next highest category. This parameter could be 208

adjusted for future implementations of the model. 209

3.3 Parameters and Assumptions 210

The model makes some foundational assumptions about COVID-19 transmission. 211

Foremost, the model considers immunity from vaccination and prior natural infection to 212

provide perfect immunity for the duration of the semester. We know this is not true, 213

particularly given the recent surge in the Delta variant with associated break-through 214

infections. This likely underestimates the risk, particularly of infection. We are 215

extending this aspect of the model to account for imperfect vaccination in ongoing work. 216

While students can become infected (and thereby gain immunity) mid-semester, the 217

model assumes that no additional vaccinations occur in the student body after the start 218

of the semester. The model solely represents aerosol transmission and does not consider 219

transmission from fomites (inanimate objects such as surfaces or floors) or droplets. 220

Each room is assumed to be well-mixed, such that each occupant receives an equal dose 221

of viral particles. External infections can be configured to be constant over time 222

(implying consistent local area spread) or time-varying (implying spikes); our 223

demonstration runs assumed a constant external infection parameter. 224

To determine the length of an individual’s infectiousness, we assume a 225
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somewhat-simplified dynamic for infectivity in which individuals become infectious two 226

days after being infected with SARS-CoV-2. Non-immune students are tested for 227

COVID-19 weekly on a fixed day-of-week based on an assigned testing day at the 228

beginning of the simulation. Testing is assumed to be perfectly accurate and students 229

are assumed to comply with quarantine measures (i.e., not attend class) after testing 230

positive, though we include a one-day lag in receiving test results. We acknowledge that 231

neither of these simplifying assumptions are strictly true for all students; testing is not 232

perfect and experience has shown that students do not perfectly follow quarantine rules. 233

Infected students are classified as either symptomatic (who leave the classroom one day 234

after becoming infectious), or asymptomatic (who are removed one day after testing 235

positive, accounting for the testing lag). 236

Given the recency of the SARS-CoV-2 pandemic, there is still great uncertainty in 237

the nature of this virus and the details of its spread. In particular, while experts hold 238

some consensus in modeling dose response for COVID-19 as exponential, the parameter 239

value of this exponential function is still unknown. However, including and 240

communicating this uncertainty is critical to evaluating risk. To incorporate this 241

uncertainty, we bound the probability of infection based on an exponential dose 242

response function P (Infection) = 1� exp
(�dose/k) with k values selected to represent 243

the lowest and highest expected transmissibility (k = 500 and k = 75, respectively) 244

based on values from [17]. 245

3.4 Model Functions 246

The simulation model and the functions within it are described below in Fig 1. 247
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Fig 1. Overview of simulation model.

In a single class, we identify the number of infected individuals and the number of 248

infect-able individuals from the active infections tracking table. If these values are both 249

greater than zero, we use a well-mixed room function to determine class-goer’s aerosol 250

exposure. Classroom parameters include room area, height, airflow (ACH), and the 251

length of the class meeting period. We then calculate the in-class exposure NA based on 252

equation 8 from Evans [3] below where breathing at rate rb in a room with aerosol 253

virion concentration ⇢A cumulative exposure NA in a room is proportional to the time 254

spent in the room t: 255

NA = ⇢A rb t

The aerosol source rate is calculated as a function of the number of infected students 256

and faculty in the room, with different source rates representing the variability in aerosol 257

escape rate expected from an observing student versus a lecturing faculty member. This 258

algorithm is shown in detail in 6 Algorithm 1 with model formula details provided in 6. 259

At the end of each simulated day, we sum each non-immune individual’s aerosol 260

exposure over all of their class meetings in a day. We calculate a probability of infection 261

from that exposure based on an exponential dose response function parameterized with 262

low and high transmissibility values as described above. This function is detailed in 263
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Algorithm 2 of 6. Any changes in infection states are updated in the tracking infections 264

table. 265

For each infection, we further simulate the length of infectiousness. We assign 266

symptomaticity as a Bernoulli trial based on the user-input asymptomatic rate. For 267

symptomatic individuals, we assign infectiousness for a single day after the lag period 268

based on the assumption that students will stop going to class when they have 269

symptoms, as college policy and required daily symptom checking dictate. For 270

asymptomatic individuals, we assign infectiousness for all days between the lag period 271

and a day after the individual’s next test day, accounting for delay in receiving test 272

results. The results of this function update the active infections table. 273

At the end of the semester, we simulate two possible adverse health outcomes of 274

infection: hospitalization and death. For each individual infected in class during the 275

semester, we simulate 100 replications of hospitalization versus not hospitalized with a 276

probability of hospitalization given infection corresponding to the age of the infected 277

individual as shown in Table 1 above. For each simulated hospitalization, we simulate 278

death or not given hospitalization with probability based on age groups from Table 1. 279

As these probabilities are much smaller, we simulate 1000 iterations per hospitalization. 280

These simulations provide probability distributions for the cumulative number of 281

hospitalizations and deaths for a given scenario as well as the risk of hospitalization and 282

death for each individual. This algorithm is detailed in 6 Algorithm 3. 283

3.5 Scenario development 284

The model considers a set of parameters related to the spread dynamics of SARS-CoV-2. 285

The parameters we set but keep constant in our demonstration are described in Table 2. 286

These parameters are meant to correspond to the situation at our example college at 287

the time this model was created (April and May 2021). These input parameters are 288

designed to be easily changed to adapt to model users and their community conditions. 289
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Table 2. User-settable parameters for modeling transmission of and
outcomes from COVID-19 infection.

Parameter Value Source for parameter values

initial semester infection
prevalence among students
and faculty

1% Expert judgement

infections introduced from
outside the classroom daily
among students and fac-
ulty

0.2% weekly college test-
ing data

incubation period 2 days Expert judgement
asymptomatic rate 40% Expert judgement
viral particle settling time
(⌧settle)

20 min Evans [3]

viral deactivation time
(⌧deact)

90 min Evans [3]

viral load in saliva (⇢0) 1000 /nL Evans [3]
breathing rate (rb) 10 L/min Evans [3]
student aerosol source rate
(rstud)

1 nL/min Evans [3]

faculty aerosol source rate
(rfac)

5 nL/min Evans [3]

Evaluating the relative risks associated with in-class meetings for the semester 290

includes exogenous uncertainties around immunity as well as possible facility and policy 291

interventions. Immunity rates in the fall were still uncertain at the the time this model 292

was created. To separate the impacts of masking and UVC-fan interventions from the 293

range of possible immunity rates, we simulate over varying college immunity rates from 294

50% to 95%. 295

While we could include innumerable interventions, for the purposes of demonstration 296

in this paper we limit our consideration to masking mandates and the installation of 297

UVC ceiling fans that increase the rate of aerosol deactivation and increasing mixing in 298

the room to counter stagnant areas. To determine the effect of UVC fans, we calculate 299

an equivalent viral decay rate based on parameters provided by the UVC fan 300

manufacturers (6). This is not meant to be the definitive assessment of the decay 301

parameters for UVC. Rather, these parameters give us a reasonable starting point for 302

our demonstration and are based on experiments with live SARS-CoV-2 virus. This 303

decay rate is added to the other viral decay and settling rates that ultimately factor 304

into the aerosol concentration decay variable. We implement the effectiveness of 305

masking on aerosols by applying a masking coefficient to the aerosol source rates rstud 306
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and rfac. We also apply a masking coefficient to the inhalation rate (rb), the same for 307

students and faculty. These scenario combinations are summarized in Table 3. 308

Table 3. Immunity, masking policy, and UVC fan installation scenarios. All
scenarios include mandatory use of masks that remove 40% of aerosol
particles from both inhaled and exhaled breath.

Immunity rate Masking UVC Fans

60% No No
60% Yes No
60% No Yes
60% Yes Yes
70% No No
70% Yes No
70% No Yes
70% Yes Yes
80% No No
80% Yes No
80% No Yes
80% Yes Yes
90% No No
90% Yes No
90% No Yes
90% Yes Yes
95% No No
95% Yes No
95% No Yes
95% Yes Yes

4 Results 309

4.1 Scenario comparison 310

For each individual in each of the scenario combinations described in Table 3, we 311

calculate the probability of in-class infection of a non-immune individual during the full 312

semester by dividing the total number of replications in which they were infected in that 313

scenario by the total number of replications where that individual was not assigned 314

immunity in that scenario. We then generate distributions based on the non-immune 315

individuals’ probability of infection over the evaluated scenarios. This then represents 316

the probability distribution of individual probabilities of infection taken over the 317

individuals in the college. This captures differences in likelihood of infection due to 318

course schedules (e.g., a student with one small course vs. one with 4 large courses) and 319

room properties. We also compute the college-cumulative number of infections, 320
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hospitalizations, and deaths. We do this by summing each of these quantities over all 321

students and all faculty for each replication of each scenario. Together this process 322

yields the information needed to estimate probability density functions over the 323

individual probabilities of each outcome (infection, hospitalization, and death) and the 324

probability density functions over the total number of each outcome (infection, 325

hospitalization, and death) in the college. These support different decisions. The 326

individual-level probability estimates support decisions by both individuals and college 327

leadership about whether or not risk levels are acceptable at the individual level under 328

different mitigation options. The college-total estimates are aimed primarily at 329

supporting college-level decision-making about which mitigation options to implement 330

and the logistical and administrative impacts of these decisions. 331

While the true probability of infection in the fall 2021 semester cannot be precisely 332

predicted given the uncertainties inherent to COVID-19 and to simulation in general, 333

the low-transmissibility and high-transmissibility distributions provide bounds on 334

infection probabilities under the given conditions and assumptions. Stating this 335

differently, neither of these curves likely is the true risk curve for the college. The true 336

risk curve is likely somewhere between these bounds if our assumptions are reasonable. 337

For a more transmissible variant it is likely towards the upper end. For a less 338

transmissible variant it is likely near the lower end. From these we can compare 339

differences in risk when decision-makers introduce interventions. 340

Fig 2 and Fig 3 show the relative risk of in-class aerosol infection comparing 341

scenarios with and without masking for students (Fig 2) and faculty (Fig 3) with a 95% 342

immunity rate. The graphs show the model results in the form of inverse cumulative 343

density functions. These show the probability of exceeding a given number of infections. 344

Full results for student and faculty infections including other immunity rates and 345

scenarios are shown in 6. 346
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Fig 2. Inverse cumulative density functions for the total number of
students infected under the different scenarios. Each graph shows the
curve of the probability of exceeding a given number of infections.

Fig 3. Inverse cumulative density functions for the total number of faculty
infected under the different scenarios. Each graph shows the curve of the
probability of exceeding a given number of infections.

Consider first the results for student infections for the high transmissibility scenarios 347

in Fig 2. The dashed lines show that if there is 95% immunity and no masking, there is 348

a probability of about 0.943 of exceeding 50 infected students. If masking is added, the 349

probability of exceeding 50 infections drops to about 0.008. Similar figures for student 350

infection inverse cumulative density functions across all the tested interventions and 351

immunity rates summarized in Table 3 are presented in 6. We list the probability of 352

college infections exceeding example infection levels of 50 and 100 students in Table 4. 353
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Table 4. Probability of exceeding various student infection levels.
Immunity rate Masking UVC Fans P(Infections � 50) P(Infections � 100) P(Infections � 250) P(Infections � 500)

Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility

60%

No Masking No UVC >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999
With Masking No UVC >0.999 >0.999 >0.999 >0.999 0.956 >0.999 <0.001 >0.999
No Masking With UVC >0.999 >0.999 0.997 >0.999 <0.001 >0.999 <0.001 >0.999

With Masking With UVC 0.313 >0.999 <0.001 >0.999 <0.001 >0.999 <0.001 0.554

70%

No Masking No UVC >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.998 >0.999
With Masking No UVC >0.999 >0.999 0.994 >0.999 0.001 >0.999 <0.001 >0.999
No Masking With UVC 0.994 >0.999 0.066 >0.999 <0.001 >0.999 <0.001 >0.999

With Masking With UVC 0.001 >0.999 <0.001 >0.999 <0.001 0.368 <0.001 <0.001

80%

No Masking No UVC >0.999 >0.999 >0.999 >0.999 0.412 >0.999 <0.001 >0.999
With Masking No UVC 0.853 >0.999 0.002 >0.999 <0.001 >0.999 <0.001 >0.999
No Masking With UVC 0.014 >0.999 <0.001 >0.999 <0.001 0.991 <0.001 0.03

With Masking With UVC <0.001 0.993 <0.001 0.303 <0.001 <0.001 <0.001 <0.001

90%

No Masking No UVC 0.281 >0.999 <0.001 >0.999 <0.001 >0.999 <0.001 0.586
With Masking No UVC <0.001 0.999 <0.001 0.914 <0.001 0.003 <0.001 <0.001
No Masking With UVC <0.001 0.814 <0.001 0.034 <0.001 <0.001 <0.001 <0.001

With Masking With UVC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

95%

No Masking No UVC <0.001 0.943 <0.001 0.288 <0.001 <0.001 <0.001 <0.001
With Masking No UVC <0.001 0.008 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
No Masking With UVC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

With Masking With UVC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 4 shows that, given the model assumptions and without interventions, if 354

immunity in the community is instead 90%, there is near certainty (>0.999) of 355

exceeding 100 infections and a probability of 0.586 of exceeding 500 student infections in 356

the high transmissibility case. If masking is adopted with 90% immunity, the 357

probability of exceeding 100 and 500 infections drop to 0.914 and <0.001 respectively. 358

At the lowest immunity value used in this study, 60%, the probabilities of exceeding 100 359

and 500 student infections are approximately 1 both without and with masking. 360

Masking alone cannot counteract low immunity rates in this setting. It is only with the 361

addition of both masking and UVC with 60% immunity that the probabilities of 362

exceeding 500 student infections drops to 0.554 (the probability of exceeding 100 363

infections is still approximately 1). 364

Consider next the results for faculty infections for the high transmissibility scenarios. 365

Fig 3 shows that for the 95% immunity case the probabilities of exceeding 1 faculty 366

infection are between the low transmissibility and high transmissibility bounds of 0.159 367

and 0.734 without masking. With masking, these probabilities shift down to between 368

0.058 for the low transmissibility case and 0.328 for the high transmissibility case. 369

Corresponding figures for faculty infection inverse cumulative density functions across 370

all scenarios are presented in 6. We list the probability of cumulative infections 371

exceeding various infection levels for faculty in Table 5. 372

Table 5. Probability of exceeding various faculty infection levels.
Immunity rate Masking UVC Fans P(Infections � 1) P(Infections � 5) P(Infections � 10) P(Infections � 20)

Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility

60%

No Masking No UVC >0.999 >0.999 >0.999 >0.999 0.999 >0.999 0.887 >0.999
With Masking No UVC 0.993 >0.999 0.67 >0.999 0.091 >0.999 <0.001 >0.999
No Masking With UVC 0.936 >0.999 0.156 >0.999 0.002 >0.999 <0.001 >0.999

With Masking With UVC 0.589 >0.999 0.004 0.926 <0.001 0.38 <0.001 0.005

70%

No Masking No UVC >0.999 >0.999 0.992 >0.999 0.772 >0.999 0.033 >0.999
With Masking No UVC 0.91 >0.999 0.182 >0.999 0.003 >0.999 <0.001 0.999
No Masking With UVC 0.743 >0.999 0.026 >0.999 <0.001 0.992 <0.001 0.455

With Masking With UVC 0.382 0.987 <0.001 0.399 <0.001 0.018 <0.001 <0.001

80%

No Masking No UVC 0.977 >0.999 0.379 >0.999 0.011 >0.999 <0.001 0.997
With Masking No UVC 0.674 >0.999 0.006 0.997 <0.001 0.916 <0.001 0.092
No Masking With UVC 0.435 0.998 0.002 0.728 <0.001 0.132 <0.001 <0.001

With Masking With UVC 0.196 0.774 <0.001 0.039 <0.001 <0.001 <0.001 <0.001

90%

No Masking No UVC 0.497 >0.999 0.003 0.904 <0.001 0.339 <0.001 <0.001
With Masking No UVC 0.224 0.881 <0.001 0.109 <0.001 <0.001 <0.001 <0.001
No Masking With UVC 0.122 0.652 <0.001 0.008 <0.001 <0.001 <0.001 <0.001

With Masking With UVC 0.056 0.266 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

95%

No Masking No UVC 0.159 0.734 <0.001 0.018 <0.001 <0.001 <0.001 <0.001
With Masking No UVC 0.058 0.328 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
No Masking With UVC 0.043 0.204 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

With Masking With UVC 0.016 0.074 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Using Table 5 if we consider the 90% immunity scenario, the probabilities of 373

exceeding 5 and 20 faculty infections without masking are 0.9 and <0.001 under the 374

high transmissibility case. If masking is added, the probability of exceeding 5 infections 375

drops to 0.109 for the high transmissibility case. If only UVC is used (without masking) 376

this probability is instead 0.008. If both masking and UVC are employed, this 377

probability drops to <0.001. If we instead look at the 60% immunity scenarios, the 378

probabilities of exceeding 5 and 20 faculty infections are approximately 1 both without 379

and with masking in the high transmissibility case. Only if both masking and UVC are 380

implemented do these high transmissibility case probabilities drop to 0.926 and 0.005. 381

From these tables and their corresponding figures in 6, we see that the use of masks 382

significantly reduces the probability of infection for non-immune students and faculty, 383

consistent with international policy recommendations, guidelines, and mandates in place 384

over the pandemic period for indoor gatherings. In addition, the introduction of UVC 385

fans in every classroom reduces the risk of infection more than universal masking alone, 386

and UVC fans are not as directly dependent on behavioral compliance as masking. 387

Finally and as expected, masking and UVC fans used in combination show the greatest 388

reduction in risk compared to a no-intervention scenario. With the decreases in 389

infection rates we also see a narrowing of uncertainty bounds, indicating decreases in 390

uncertainty offered by these interventions. These figures and tables also highlight the 391

importance of high rates of immunity (vaccination plus immunity due to prior infection) 392

in the community. Masking or UVC alone cannot overcome the vulnerabilities caused by 393

lower immunity rates. Only when masking and UVC are used together do we begin to 394

see reduced transmission in the low immunity rate scenarios. 395

Fig 4 shows the cumulative density function over the probability of infection at the 396

level of individual students and faculty for those who are not vaccinated when 95% of 397

the population is immune for students and faculty. These plots allow a decision maker 398

to determine what fraction of the population is above a given level of individual risk 399

(e.g., a threshold or acceptable risk). With no masks and no UVC, the median (0.50 on 400

the y-axis) probability of infection is between <0.001 and 0.128 for students and 401

between <0.001 and 0.052 for faculty. In other words, if a student or faculty member 402

were drawn at random from the college, half would have a probability of infection at or 403

below the median level and half would have a probability of infection above the median 404
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level, reflecting differences in course schedules and classrooms. With masking added the 405

median probability of infection for students is between <0.001 and 0.033 and for faculty 406

the median probability of infection with masking added is between <0.001 and 0.016. 407

Adding UVC alone reduces these probability more than masking alone (between <0.001 408

and 0.019 for students, <0.001 to <0.001 for faculty). Together UVC and masking 409

results in further reductions relative to each separately. 410

If immunity rates were instead 90% (results shown in 6) the median probability of 411

infections for students without masking is between 0.029 and 0.426, and the median 412

probability of infection for faculty is between 0.011 and 0.195. If masking is added the 413

median range for students drops to 0.01 to 0.10 and the median bounds for faculty 414

drops to <0.001 to 0.042. If UVC fans were added rather than masking with 90% 415

immunity, the student median infection probability is between <0.001 to 0.044 and the 416

faculty median infection probability is between <0.001 and 0.019. These results show 417

clearly that masking and UVC fan interventions diminish both the probability of 418

infection as well as the range of uncertainty due to the different possibility 419

transmissibility k values. Similar plots showing student and faculty probabilities of 420

infection for other immunity rates are also in 6. 421
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Fig 4. Cumulative density functions over the probabilities of individual
student and faculty infection given 95% immunity in the college

Fig 5, similar to that featured in [20], summarizes the average number of modeled 422

classroom-acquired infections across scenarios and transmissibility k values. Adopting a 423

policy that employs both UVC fans and universal masking even in the highest 424

transmissibility scenario, shown by the solid red line with circle markers, reduces the 425

average number of infections more than doing nothing in a low transmissibility scenario, 426

shown by the blue dashed line with diamond markers. 427
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Fig 5. Average infections by immunity rate and scenario.

We evaluated health outcomes including hospitalization and death based on the 428

county health department rates described in the Data section. We show associated 429

probabilities for at least a number (N) of student hospitalizations in Fig 6 or deaths in 430

Fig 7 under 95% immunity rates for the no UVC scenarios with and without masking. 431

Fig 6. Inverse cumulative density functions for the total number of
students hospitalized under the different scenarios. Each graph shows the
curve of the probability of exceeding a given number of hospitalizations.
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Fig 7. Inverse cumulative density functions for the total number of
students that die under the different scenarios. Each graph shows the
curve of the probability of exceeding a given number of deaths.

Consider the scenario with 95% immunity and no masks in Fig 6 and Fig 7. Given 432

the assumptions and uncertainties underlying the model, the probability of at least 1 433

student being hospitalized due to transmission in the classroom is estimated to be 434

between 0.055 and 0.398 (low transmissibility and high transmissibility bounds 435

respectively) in Fig 6. For this scenario the probability of having one or more deaths of 436

students due to transmission in the classroom is between 0.001 and 0.01 shown in Fig 7. 437

With universal masking and 95% immunity, the probability of 1 or more hospitalized 438

students is estimated to be between 0.019 and 0.138, and the probability of 1 or more 439

student deaths is estiamted to be between <0.001 for low transmissibility and 0.003 for 440

high transmissibility. 441

We summarize results for different impact levels and varying masking and UVC use 442

at all immunity rates in Table 6. If UVC fans are added to masking in the 95% 443

immunity scenario, the probability of 1 or more hospitalized students is between 0.004 444

and 0.027, and the probability of 1 or more student deaths is between <0.001 and 0.005. 445

From these results for the the 95% immunity scenario, we see masking reduces the 446

probability of student hospitalization substantially and the probability of a student 447

death by an order of magnitude. Adding UVC fans to universal masking reduces the 448

probabilities of having one more student hospitalizations and one or more student 449

deaths by an additional order of magnitude each. 450
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Table 6. Probability of exceeding various student hospitalization and death
levels.
Immunity rate Masking UVC Fans P(Hospitalizations � 1) P(Hospitalizations � 10) P(Deaths � 1) P(Deaths � 5)

Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility

60%

No Masking No UVC >0.999 >0.999 0.450 >0.999 0.162 0.375 <0.001 <0.001
With Masking No UVC 0.853 >0.999 <0.001 0.992 0.036 0.306 <0.001 <0.001
No Masking With UVC 0.587 >0.999 <0.001 0.839 0.017 0.220 <0.001 <0.001

With Masking With UVC 0.239 0.951 <0.001 0.002 0.005 0.057 <0.001 <0.001

70%

No Masking No UVC 0.987 >0.999 0.018 0.980 0.080 0.282 <0.001 <0.001
With Masking No UVC 0.610 >0.999 <0.001 0.753 0.018 0.203 <0.001 <0.001
No Masking With UVC 0.373 0.999 <0.001 0.161 0.009 0.123 <0.001 <0.001

With Masking With UVC 0.140 0.759 <0.001 <0.001 0.003 0.027 <0.001 <0.001

80%

No Masking No UVC 0.760 >0.999 <0.001 0.561 0.027 0.175 <0.001 <0.001
With Masking No UVC 0.315 0.994 <0.001 0.044 0.007 0.094 <0.001 <0.001
No Masking With UVC 0.176 0.899 <0.001 <0.001 0.004 0.044 <0.001 <0.001

With Masking With UVC 0.063 0.414 <0.001 <0.001 0.001 0.010 <0.001 <0.001

90%

No Masking No UVC 0.227 0.951 <0.001 0.002 0.005 0.056 <0.001 <0.001
With Masking No UVC 0.081 0.564 <0.001 <0.001 0.002 0.016 <0.001 <0.001
No Masking With UVC 0.044 0.324 <0.001 <0.001 <0.001 0.007 <0.001 <0.001

With Masking With UVC 0.015 0.110 <0.001 <0.001 <0.001 0.002 <0.001 <0.001

95%

No Masking No UVC 0.055 0.398 <0.001 <0.001 0.001 0.010 <0.001 <0.001
With Masking No UVC 0.019 0.138 <0.001 <0.001 <0.001 0.003 <0.001 <0.001
No Masking With UVC 0.011 0.076 <0.001 <0.001 <0.000 0.001 <0.001 <0.001

With Masking With UVC 0.004 0.027 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Overall, Table 6 along with the corresponding plots in 6 show that increasing 451

immunity levels (under the perfect immunity assumption) is effective for diminishing 452

risk of hospitalizations and deaths in both low and high transmissibility specifications. 453

However, even in the 95% immunity scenario, masking and UVC fans yield substantial 454

further reductions in risk. Given uncertainty surrounding student immunity rates and 455

the challenges faced by a college in enforcing a vaccination mandate, these plots also 456

show how policy and facility interventions, individually or in combination, can 457

contribute to mitigating risk. 458

Fig 8 and Fig 9 similarly show the 95% community immunity rate probabilities of N 459

or more hospitalizations or deaths for faculty members, who are in higher risk categories 460

for negative health outcomes but perhaps hold fewer class hours than students. These 461

same plots for all scenarios and immunity rates are compiled in 6 and summarized 462

below for various impact levels in Table 7. 463

Fig 8. Inverse cumulative density functions for the total number of faculty
hospitalized under the different scenarios. Each graph shows the curve of
the probability of exceeding a given number of hospitalizations.
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Fig 9. Inverse cumulative density functions for the total number of faculty
that die under the different scenarios. Each graph shows the curve of the
probability of exceeding a given number of deaths.

Table 7. Probability of exceeding various faculty hospitalization and death
levels.
Immunity rate Masking UVC Fans P(Hospitalizations � 1) P(Hospitalizations � 10) P(Deaths � 1) P(Deaths � 5)

Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility Low Transmissibility High Transmissibility

60%

No Masking No UVC 0.915 >0.999 <0.001 0.455 0.325 0.792 <0.001 0.020
With Masking No UVC 0.407 0.998 <0.001 0.071 0.073 0.624 <0.001 0.003
No Masking With UVC 0.219 0.973 <0.001 0.004 0.036 0.444 <0.001 <0.001

With Masking With UVC 0.076 0.563 <0.001 <0.001 0.011 0.118 <0.001 <0.001

70%

No Masking No UVC 0.691 0.998 <0.001 0.087 0.165 0.640 <0.001 0.003
With Masking No UVC 0.223 0.968 <0.001 0.002 0.036 0.426 <0.001 <0.001
No Masking With UVC 0.127 0.841 <0.001 <0.001 0.021 0.255 <0.001 <0.001

With Masking With UVC 0.039 0.323 <0.001 <0.001 0.005 0.056 <0.001 <0.001

80%

No Masking No UVC 0.316 0.959 <0.001 0.002 0.056 0.405 <0.001 <0.001
With Masking No UVC 0.098 0.745 <0.001 <0.001 0.015 0.192 <0.001 <0.001
No Masking With UVC 0.053 0.450 <0.001 <0.001 0.007 0.088 <0.001 <0.001

With Masking With UVC 0.018 0.137 <0.001 <0.001 0.002 0.021 <0.001 <0.001

90%

No Masking No UVC 0.063 0.547 <0.001 <0.001 0.009 0.117 <0.001 <0.001
With Masking No UVC 0.024 0.198 <0.001 <0.001 0.004 0.033 <0.001 <0.001
No Masking With UVC 0.012 0.095 <0.001 <0.001 0.002 0.015 <0.001 <0.001

With Masking With UVC 0.005 0.029 <0.001 <0.001 <0.001 0.004 <0.001 <0.001

95%

No Masking No UVC 0.016 0.116 <0.001 <0.001 0.002 0.018 <0.001 <0.001
With Masking No UVC 0.005 0.040 <0.001 <0.001 <0.001 0.006 <0.001 <0.001
No Masking With UVC 0.003 0.022 <0.001 <0.001 <0.001 0.004 <0.001 <0.001

With Masking With UVC 0.001 0.007 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

Consider again the 95% immunity scenario without masks or UVC. The probability 464

of at least one faculty member being hospitalized is between 0.016 and 0.116, as shown 465

in Fig 8, and the probability of at least one faculty death is between 0.002 and 0.018, as 466

shown in Fig 9. If masks are added, the bounds on the probability of at least one 467

faculty hospitalization drop to 0.005 to 0.040 as shown in Fig 8, and the bounds on the 468

probability of at least one faculty death drop to <0.001 to 0.006 as shown in Fig 9. 469

Both of these are an order of magnitude lower than without masks. 470

As with the hospitalization and death results for students, we see that for faculty 471

high immunity rates effectively reduce risk. However, even at the high immunity rate of 472

95% immunity, the risk of hospitalizations and deaths is not zero. Masking and UVC 473

further reduce the risk by an order of magnitude. If decision makers have a clear level of 474

residual risk that they find acceptable, results such as these can help a decision maker 475

determine if mitigation measures are needed and, if so, which ones to implement. 476

As hospitalizations and deaths vary by age, we can also show a distribution of any 477

non-immune individual’s probability of hospitalization and death outcomes by age. 478
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Below in Fig 10 and 11, we show these distributions for the 95% immunity rate scenario. 479

Similar plots broken down by additional immunity rates can be found in 6. 480

Fig 10. Cumulative density function for the probability of hospitalization
by age group given 95% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 11. Cumulative density function for the probability of death by age
group given 95% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.

4.2 Sensitivity analysis 481

We conducted sensitivity analyses on several parameters to better understand the 482

impact of outside-class infections on in-class infections by testing different initial and 483

exogenous (outside the classroom) infection rates. These sensitivity analyses all assume 484
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no masking or UVC, 70% vaccination rate, and a weekly testing policy. 485

We compared initial infection prevalence values of 0.5% and 2.0% with the base case 486

value of 1.0% value used for the model runs as referenced in 2. Fig 12 shows that this 487

parameter does not visibly shift the results of the model over the 13 week semester. 488

Fig 12. Sensitivity of Model to Initial Infections Rate Parameter

We next evaluated the daily exogenously introduced infections parameter set to 0.2% 489

in the base case runs based on test positivity at the college in the most recent semester 490

previous to the creation of this model. We tested the model with the daily exogenous 491

infections set to 0.1% and 0.4%, which translates to about 0.5% and 2.0% weekly 492

infections respectively. For these runs we kept the initial infection rate consistent with 493

the original run of the model at 1.0%. From Fig 13 we see similar results in student 494

infections across the range of 0.1% to 0.4% daily exogenous infections showing that the 495

model is not sensitive to subtle differences in this parameter assumption that may come 496

from errors in data around community infection prevalence. However, this range may 497

not capture larger fluctuations in community infection prevalence from gatherings such 498

as the start of the school year or large events like football games. 499

Fig 13. Sensitivity of Model to Daily Community Prevalence (e.g.,
Exogenous Infections Rate Parameter in the Model)

We also evaluated our assumption of 40% mask effectiveness to determine the range 500

of masking’s impact on the model results. The original 40% value included in the model 501

was based on expert judgement of the effectiveness of surgical masks worn as they 502
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commonly are in practice. In Fig 13 we compare these base case results to results with 503

assumptions of 25%, 50%, 75%, and 95% mask effectiveness. This figure shows the large 504

potential impact of masking and highlights the critical role that individual mask 505

wearing can play on aerosol infection spread within a community. In particular, if an 506

educational institution could ensure that those in the classroom, both students and 507

faculty, wore high-quality masks and wore them fitted correctly, there is the 508

potential for a larger reduction in risk than the 40% effectiveness of masks we assumed 509

in our base case. Note, for these tests the initial infections parameter is set to 1.0% and 510

the daily exogenous infections parameter is set to 0.2%, we do not include UVC, we 511

assume a 70% vaccination rate, and a weekly testing policy. 512

Fig 14. Sensitivity of Model to Mask Effectiveness Parameter

As this model includes numerous other assumptions previously mentioned, future 513

sensitivity runs could evaluate the impact of our other chosen default parameters such 514

as asymptomatic rate, breathing rate, and room ACH. More in-depth sensitivity 515

analysis could include testing assumptions around the uniform distribution of viral load 516

to evaluate the role of super spreaders or the changing community infection prevalence 517

that would impact daily exogenous infection rates. Future sensitivity analysis could also 518

evaluate our assumptions around testing compliance, as students at colleges are known 519

to have not received mandated regular testing and to have continued to participate in 520

campus activities for substantial periods of time despite receiving a positive test result. 521

5 Discussion 522

These results highlight how this method can support risk-informed cost-benefit analysis 523

of intervention policies and prioritization of selected mitigation policies. Although UVC 524

fans are potentially more effective than a mask mandate and the impact of UVC fans 525

does not rely on the compliance of individual behavior as is the case with mask use, 526

countervailing factors such as cost, time required for installation, and other facility level 527

October 4, 2021 27/52

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21263860doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21263860
http://creativecommons.org/licenses/by-nc-nd/4.0/


limitations may prohibit the installation of UVC fans in every classroom. There does 528

remain uncertainty about the rate of deactivation of virions from UVC fans, and this 529

likely depends on specific configurations and rooms and requires careful engineering 530

design. This simulation method could be used to show where fan installation would 531

have the biggest impact on risk and account for relevant opportunity costs to optimize 532

the use of such equipment, even quantifying how many UVC fans are required to meet 533

the same expected risk as masking policies thus quantifying the cost of lifting a mask 534

mandate without increasing risk. Of particular note, masking and UVC effectiveness are 535

relatively insensitive to new variants or other novel aerosol viruses, unlike vaccines 536

whose effectiveness is primarily restricted to the particular vectors for which they were 537

developed. 538

In high uncertainty scenarios, evaluating such interventions and policies must reflect 539

a range of possibilities for variables outside of the decision makers’ control. The 540

variability in vaccine adoption and effectiveness across geographies, ideologies, age 541

groups, and virus variants in the U.S. impacts the effectiveness of the interventions over 542

which the college has control. Population level immunity rates change the magnitude of 543

the impacts of masking and UVC interventions, thereby affecting the cost-benefit ratio 544

of these interventions. Including these exogenous variables in risk-based simulation 545

modeling yields results that can inform decision making and policy prioritization under 546

low-data regimes and remain helpful as the situation and data progress. 547

Some will likely also ask why in-room HEPA filters were not included as a mitigation 548

option in our demonstration. We initially did include in-room filtration in the model. 549

HEPA filters reduce virus concentrations in the air through filtration. In conversations 550

with facility and instructional planners at our example college there were clear concerns 551

about the noise of HEPA filters used at a high enough setting to be effective for virus 552

removal. In the case of our example college nearly all classrooms are used for recording 553

lectures, making noise a substantial concern. In other settings or if lower-noise HEPA 554

filters were available these could be a viable option to consider and can be modeled. 555

In addition, it should be noted that vaccination is, by itself, a fragile policy. If a new 556

variant emerges that has a higher degree of escape of the vaccine and other mitigation 557

interventions are not in place, the college faces a substantial likelihood of increased 558

transmission and health impacts as well an increased chance of needing to return to 559
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virtual instruction. Defense in Depth, the use of multiple layers of interventions, is a 560

critical risk analysis approach to consider in cases of high uncertainty about future 561

conditions in order to have a response that is more robust and resilient in the face of 562

new and varying threats. A Defense in Depth approach means there are still at least 563

some protections in place if one layer of protection (e.g., vaccines) fails or is 564

dramatically reduced in its effectiveness. This provides a level of fault tolerance. 565

5.1 Limitations 566

While risk-based simulation offers the opportunity to model many scenarios related to 567

aerosol spread in classrooms, these models are still limited by time, data, and the 568

uncertainties of the reality being modeled. Computational run time and data 569

availability force model and parameter assumptions such that no model can perfectly 570

represent a real-world scenario. In this case, adopting the assumption of a well-mixed 571

room over computing the fluid dynamics of each classroom ignores the role of airflow 572

patterns and proximity to the infectious source on transmission. These can be critical in 573

some rooms. Moreover, a model can only be as good as its input data, so any 574

inaccuracy in scheduling or room data impact how representative results can be of the 575

future. For example, if airflow rates in classrooms are significantly lower than those we 576

used in this model, the results may understate risks associated with a do-nothing 577

scenario and the potential benefits of facility interventions. In addition to the 578

inaccuracies of data we do have access to, the lack of epidemiological data on COVID-19 579

(including variant transmissibility, vaccine efficacy against variants, and dose response 580

mechanisms) limit the accuracy of these results. As such, we consider the role of this 581

model in portraying relative risk across possible scenarios, rather than claiming to 582

precisely predict outcomes. Finally, this simulation can only capture some dimensions of 583

the risk involved with in-person instruction, namely the risk of infection, hospitalization, 584

and death. Risks associated with the economic, social, and educational costs of virtual 585

learning for faculty and students should also factor into decisions regarding in-person 586

operations. Also, the contributions of other risks outside of in-person classroom activity 587

need to be considered when arriving at a decision of a global systems-based nature. 588
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6 Conclusion 589

The simulation method for evaluating risk associated with aerosol spread of 590

SARS-CoV-2 in classes at a college developed in this paper contributes valuable 591

information to decision makers during a time of crisis as decisions around that crisis 592

evolve. These results show how simulation modeling can provide valuable data for risk 593

analysis and ultimately decision making even under great uncertainty. Particularly, we 594

show how decisions based on relative risk and the effectiveness of interventions can lead 595

to a more robust and resilient prioritization of policies and actions. Decision makers can 596

have risk and cost analysis on hand to manage risk levels before information such as 597

student body immunity rates or variant transmissibility parameters are available. 598

Decision makers are then further empowered to adapt those analyses as more data 599

becomes accessible over time. 600

This simulation model has the capability of expanding into modeling relative risks of 601

additional interventions in response to COVID-19, such as universal testing policies or 602

density protocols. Furthermore, this model has the potential for adoption beyond the 603

example college including to other colleges and universities as well as high-risk 604

population centers such as K-12 schools, day care facilities, or nursing homes. Beyond 605

SARS-CoV-2, this model can model aerosol spread of other diseases ranging from 606

annual influenza strains to future pandemics. 607

Despite this capacity for expansion into other populations and transmission 608

scenarios, this simulation model on its own cannot implement change. Responsible risk 609

communication that includes not only the decisions and actions taken but also the 610

accompanying rationale is an essential component of risk analysis for translating model 611

results into actual meaning for stakeholders. Appropriate risk communication involves 612

tailoring the reporting of model results to different audiences. For decision makers like 613

college leadership, risk communication must account for highlighting and explaining 614

information in a way that enables individuals to make decisions with that information. 615

For other stakeholders such as faculty and students, risk communication must account 616

for the value of transparency for informed consent, holding leadership accountable for 617

their decisions, and the communication of the residual risk that was accepted. 618

Beyond the COVID-19 pandemic, universities must be able to cope with many 619
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potential and often ignored hazards that affect in-person operations to keep their 620

students, faculty, staff, and surrounding community members safe. This proactive 621

identification of hazards and their associated risk is an essential component for any 622

organization to avoid the oft heard ‘unanticipated’ outcomes that many organizations 623

identify as the cause of many tragedies but are really the result of a lack of proactive 624

imagination and effort. Simulation-based risk analysis is a critical tool that helps 625

decision-makers prepare for, mitigate against, adapt to, and recover from such events to 626

evaluate the impacts of variables within and outside of decision-makers control. We 627

should continue developing simulation models for risk analysis to expand our toolbox to 628

better plan for and communicate risk to foster safer and more resilient communities. 629
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S1 Appendix. Algorithm Structure.

Algorithm 1 Class Period Exposure

1: if infected students = 0 then
2: Continue to next class
3: else
4: factors  (room height, width, airflow, employed mitigation measures, class duration, infected stu-

dents)
5: x  ExposureDose(factors)
6: Get list of infectable students
7: Increment infectable students’ viral exposure by x
8: end if

Algorithm 2 Daily Progression

1: for class in classes do
2: Run Class Period Exposure algorithm
3: end for
4: for student in students do
5: Evaluate student’s exposure for day in dose-response function
6: if student becomes infected then
7: Get infectivity duration from equation X
8: else if student does not become infected then
9: Reset student’s exposure to 0 for next day

10: end if
11: end for

Algorithm 3 Semester Progression

1: for i in 13 weeks do
2: for j in 7 days do
3: if j is weekday then
4: Run Daily Progression algorithm
5: end if
6: for student in infected students do
7: Decrement student’s remaining infectious days by 1
8: if Days since infection = 2 then
9: Remove from class until recovered

10: end if
11: if student’s remaining infectious days = 0 then
12: Add student to immune list
13: Add student to previously-infected list
14: end if
15: end for
16: end for
17: end for
18: for student in previously-infected list do
19: Evaluate student’s health outcomes with probability distribution X
20: Increment appropriate count for given health outcome
21: end for
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S2 Appendix. Model Equations. We build from the well-mixed, steady-state

room model of [3] together with the dose-response model of [17] to estimate the

concentration in a given classroom and the likelihood of infection for each individual

given the estimated concentration. These two models are reviewed here.

Concentration Model: The aerosol source rate (rsrc in nL/min from [3] ) is:

rsrc = fstudent ⇤NIstudent ⇤ (1�Mex) + ffaculty ⇤NIfaculty ⇤ (1�Mex) where NIstudent

and NIfaculty are the number of infected students and faculty in the room, Mex is the

fraction of aerosol particle blocked from exhaled air by masks if masks are present, and

fstudent and ffaculty represent the aerosol rates for students (set to 1 nL/min to

indicate minimal talking) and for faculty (set to 5 nL/min to indicate lecturing).

We follow [3] in defining the aerosol decay factor to be fa = ⌧a/(⌧room + ⌧a). Here

⌧room = 60/ACH where ACH is the air changes per hour of the room. ⌧a represents

other mechanisms through with aerosol particles are removed from the air in a room

including settling, deactivation through natural decay, deactivation through interaction

with a UVC field (if present) and potentially removal through filtration by an in-room

filter. Note that we did not include in-room HEPA filters in our study due to concerns

over interference of their noise with teaching as well as the recording of lectures that

occurs in many college classrooms. In our case ⌧a = 1/(1/⌧deact + 1/⌧settle + 1/⌧UV ).

⌧deact was set to 90 minutes in line with [3] . ⌧settle was set to 20 minutes. The effect of

UVC on virion deactivation were based on data provided by the manufacturer of a

particular type of fan-mounted, up-shining UVC, Big Ass Fans. This data was based on

chamber experiments with live SARS-CoV-2. ⌧UV was calculated as

⌧UV = 1/(k ⇤ L ⇤ tuv with k = 0.377 m2/J, L = 1 µW/cm2, and tuv = 5 sec. With unit

conversions that is ⌧uv = 1/(0.377 ⇤ 115/100) = 0.43 minutes.

We follow [3] in assuming a viral load of ⇢0 = 1000 virions/nL. We also follow [3] in

assuming a breathing rate of 10 L/min with a separate mask removal efficiency for

inhalation, possibly different from exhalation, of Min. We then define

rb = 10 ⇤ (1�Min). For a given room with volume V we define rroom = V/⌧room

The concentration in the room is then given by ⇢A = ⇢0 ⇤ (rsrc/rroom ⇤ fa). The

exposure to each individual in the room then given by exposure = ⇢A ⇤ rb ⇤ toccupancy

where toccupancy is the amount time the individual is the room.

Infection Likelihood Model: Finally, the probability of an individual being
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infected given a cumulative daily dose of Dday is given by 1� exp(�Dday/k. Because

the k value is unknown for SARS-CoV-2, we bounded by the k values for a different

coronovirus from [17] and run the model for both k=75 (high transmissibility) and

k=500 (low transmissibility).
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S3 Appendix. Inverse cumulative density functions for various outcomes

in the college under the different scenarios. Each graph shows the curve of

the probability of exceeding a given number of infections, hospitalizations,

or deaths.

Fig 15. Inverse cumulative density functions for total number of students
infected in the college.
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Fig 16. Inverse cumulative density functions for total number of faculty
infected in the college.
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Fig 17. Inverse cumulative density functions for total number of student
hospitalizations in the college.
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Fig 18. Inverse cumulative density functions for total number of faculty
hospitalizations in the college.
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Fig 19. Inverse cumulative density functions for total number of student
deaths in the college.
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Fig 20. Inverse cumulative density functions for total number of faculty
deaths in the college.
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S4 Appendix. Individual Probability of Outcomes by Immunity Rates

and Age Group.

Fig 21. Cumulative density functions over the probabilities of individual
student and faculty infection given 60% immunity in the college.
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Fig 22. Cumulative density function for the probability of hospitalization
by age group given 60% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 23. Cumulative density function for the probability of death by age
group given 60% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.
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Fig 24. Cumulative density functions over the probabilities of individual
student and faculty infection given 70% immunity in the college.
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Fig 25. Cumulative density function for the probability of hospitalization
by age group given 70% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 26. Cumulative density function for the probability of death by age
group given 70% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.
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Fig 27. Cumulative density functions over the probabilities of individual
student and faculty infection given 80% immunity in the college.
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Fig 28. Cumulative density function for the probability of hospitalization
by age group given 80% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 29. Cumulative density function for the probability of death by age
group given 80% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.
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Fig 30. Cumulative density functions over the probabilities of individual
student and faculty infection given 90% immunity in the college.

October 4, 2021 49/52

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21263860doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21263860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 31. Cumulative density function for the probability of hospitalization
by age group given 90% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 32. Cumulative density function for the probability of death by age
group given 90% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.
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Fig 33. Cumulative density functions over the probabilities of individual
student and faculty infection given 95% immunity in the college.
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Fig 34. Cumulative density function for the probability of hospitalization
by age group given 95% immunity. Note that all students are lumped
together into one age group, assumed to be the 18-24 age group.

Fig 35. Cumulative density function for the probability of death by age
group given 95% immunity. Note that all students are lumped together
into one age group, assumed to be the 18-24 age group.
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