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Supplementary Material for: 

 “Recruitment location influences bias and uncertainty in SARS-CoV-2 
seroprevalence estimates”  
GPS-estimated foot-traffic data: Filtering and aggregation 

We re-aggregated CBG data by electoral ward to match survey data on study participants' home 
locations using the following procedure: (1) A map of the CBG-level visitor data (where the number of 
visitors from each CBG is stored as an attribute of its corresponding polygon on the map) was rasterized, 
using the assumption that visitor counts are uniformly distributed across each polygon; (2) The 
rasterized polygons were reapportioned to the alternative geometry (wards) using the ``zonal statistics'' 
function in QGIS (https://qgis.org). For privacy purposes, the third-party data service does not report 
home location information for CBGs with < 2 visitors, and CBGs with < 4 visitors are all reported as 
having exactly 4 visitors. Given the potential uncertainty this introduces for wards with low visitor 
counts, we filtered the data to exclude wards contributing < 5 reported visitors and those representing 
less than 1% of total visitor traffic to the study site CBG (Supplementary Figures S1 and S2).  

Optimal sample allocation with heterogeneous seropositivity across subgroups 

To examine how sample allocation influences uncertainty in seroprevalence estimates when 
seropositivity is heterogeneous across subgroups, we modeled differences in subgroup size, subgroup 
seropositivity, and sample allocation. We examined a simple two subgroup system with total population 
size of 𝑁 = 100000, 𝑛 = 1000 individuals undergoing serological testing, true population 
seroprevalence of 5% and 20%. We let 𝑑, and 𝜋, both vary across {0.1, . . . ,0.9} (with corresponding 
values 𝑑3 = 1 − 𝑑, and 𝜋3 = 1 − 𝜋,). For each parameter combination, we report values for the width 
of the 95% confidence interval (W) as a proxy measure of uncertainty, and the proportion of samples 
allocated to population 1 that minimizes this uncertainty (arg min56𝑊(𝑝,)). 

Figure S3 shows that arg min56𝑊(𝑝,) increases with increasing values of 𝑑, and 𝜋,, i.e. as the size of a 
given subgroup and its true seropositivity increase, increasing the relative proportion of individuals 
sampled from this subgroup decreases variance in the resulting population-weighted seroprevalence 
estimates. 

We then generalized these findings to populations with more than two subgroups of interest, i.e. 𝑘 
subgroups indexed by 𝑖 ∈ {1, . . . , 𝑘}. Let 𝑑> be the proportion of the total population in subgroup 𝑖, let 𝜃> 
be the true underlying seropositivity in subgroup 𝑖, and let 𝑛> represent the number of individuals who 
undergo serological testing in each subgroup. Following [1], if the seroprevalences across groups are 
assumed to be independent of one another, the maximum likelihood estimate of 𝜃> is given by 

𝜃@> =
𝑛>,A/𝑛> − 𝑢
1 − 𝑢 − 𝑣  

where 𝑛>,A is the number positive serologic tests among 𝑛> individuals tested, 𝑢 = 1 − specificity, and 
𝑣 = 1 − sensitivity. We assume that sensitivity and specificity of serological testing are uniform across 
subgroups. The variance for this estimator is 

VarE𝜃@>F =
E𝑢 + 𝜃@>(1 − 𝑢 − 𝑣)FE1 − 𝑢 − 𝜃@>(1 − 𝑢 − 𝑣)F

𝑛>(1 − 𝑢 − 𝑣)3
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The variance of the resulting weighted seroprevalence estimate 𝜃@pop = ∑ 𝑑>> 𝜃@> depends on the variances 
of each 𝜃@>. 

VarE𝜃@pop F ≈ J𝑑>3
>

VarE𝜃@>F

≈ J𝑑>3
>

E𝑢 + 𝜃@>(1 − 𝑢 − 𝑣)FE1 − 𝑢 − 𝜃@>(1 − 𝑢 − 𝑣)F
𝑛>(1 − 𝑢 − 𝑣)3

			(1)
 

Finding 𝐧 = (𝑛,, . . . , 𝑛M) that minimizes VarE𝜃@pop F follows from the derivation of the Neyman 
allocation using the method of Lagrange multipliers [2,3]. Equation (1) is of the form 𝑓(𝐧) = ∑ OP

QP>  and 
is subject to the constraint ∑ 𝑛>> = 𝑛, where 𝑛 is the total number of individuals undergoing testing. The 
Lagrangian formulation for this constrained optimization problem is 

∇𝑓(𝐧) = 𝜆∇𝑔(𝐧)

𝑓(𝐧) =J
𝑐>
𝑛>

M

>

𝑔(𝐧) = J𝑛>

M

>

= 𝑛

 

which can be solved as 

∂𝑓
∂𝑛>

= 𝜆
∂𝑔
∂𝑛>

−
𝑐>
𝑛>3

= 𝜆

𝑛> ∝ X𝑐>

 

Applying this solution to Equation (3), the value 𝑛> that minimizes the variance of 𝜃@pop is given by 

𝑛> ∝ 𝑑>X[𝑢 + 𝜃>(1 − 𝑢 − 𝑣)][1 − 𝑢 − 𝜃>(1 − 𝑢 − 𝑣)]   (2) 

Thus, as shown in Figure S5 and Equation 2, if subgroup sizes are known and differences in subgroup-
level seropositivity can be inferred or assumed (for example, if public health data strongly indicates 
differences in epidemic activity or vaccination rates between locations), allocating samples to larger 
subgroups and those with higher expected seropositivity will improve precision for weighted population-
level seroprevalence estimates. If differences in seropositivity cannot be reasonably assumed based on 
available data, weighting sampling intensity by subgroup size alone can improve precision substantially 
(noting in Figure 1 that for any value of 𝜋,, arg min56𝑊(𝑝,) increases with increasing values of 𝑑,). 

Model-based comparison between sample allocation strategies 

We first considered a system of two subgroups with total population of 𝑁 individuals, with 𝑑1 and 𝑑2 
specifying the proportions of 𝑁 in each subgroup. We set a fixed number of total seropositive 
individuals, given by 𝑁 × 𝜃pop (the true seroprevalence in the entire population), and apportioned this 
total across the two subgroups according to the proportions 𝜋, and 𝜋3. This allowed for the population 
seroprevalence to be fixed across different parameter combinations in each simulation. The total number 
of individuals that underwent serological testing is given by 𝑛 and the proportion of these 𝑛 individuals 
sampled from each subgroup is given by 𝑝1 and 𝑝2. 
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Procedures for the numerical simulation are as follows: (1) Generate two subgroups with sizes 𝑑1 × 𝑁 
and 𝑑2 ×𝑁 and specify the true number of seropositive individuals in each subgroup as 𝑁 × 𝜃pop × 𝜋1 
and 𝑁 × 𝜃pop × 𝜋2; (2) Randomly draw, without replacement, 𝑝1 × 𝑛 and 𝑝2 × 𝑛 individuals from each 
subgroup; (3) Incorporate serological test performance by drawing the number of observed positives 
from binomial distributions with probabilities equal to the test sensitivity (for true positives) or 1 −
specificity (for false positives); (4) Calculate the estimated population seroprevalence via post-
stratification, 𝜃@pop = ∑ 𝑑>> 𝜃@>, where 𝜃@> is the observed seroprevalence, adjusted for test performance, in 
subgroup 𝑖. (5) Repeat steps 1-4 10000 times to generate a distribution of 𝜃@pop  values. We report 𝑊, the 
width of the 95th percentile interval for each distribution, as an approximate measure of uncertainty for 
𝜃@pop for a given set of parameters (𝑑1, 𝑑2, 𝜋,, 𝜋3, 𝑝1, 𝑝2). 

We extended this model to evaluate optimal sample allocation strategies in the case of heterogeneous 
seropositivity across multiple subgroups stratified by age and location. We used data from our 
Somerville, Massachusetts COVID-19 serosurveillance study and public health data on PCR testing for 
SARS-CoV-2 infection to inform the numerical simulation in this analysis.  

To examine how choice of sampling location influence uncertainty in seroprevalence estimates obtained 
via convenience sampling, we used a numerical model that incorporates performance characteristics of 
serological testing and heterogeneity in seropositivity across geographic and age-based subgroups. 
(Other demographic characteristics, including race and ethnicity, are not included in this example, but 
the model described here can be generalized to include any number of additional characteristics relevant 
for stratification.) 

Supplementary Figure S5 summarizes the procedures used in the extended numerical model. We 
assumed a simple synthetic population that is stratified over six age categories and seven geographic 
units (corresponding to the seven electoral wards in Somerville), informed by age distribution and ward-
level population data from Somerville. To specify “true” seropositivity in each of these 42 age-location 
subgroups, we assumed that the cumulative number of PCR-confirmed infections reported for each ward 
in Somerville, divided by the population of each ward, approximates the ward-level distribution of 
seropositivity across Somerville (noting that SARS-CoV-2 vaccination efforts had yet to begin at the 
time of our study). We then assumed that the distribution of cumulative incidence across age groups 
matches observed distributions for reported cases in Massachusetts [], and that the age distribution of 
cumulative incidence is the same for each ward. We used these assumptions to populate the matrix 𝚯, 
where each entry 𝜃],^  is the cumulative incidence of PCR-confirmed infection for age group 𝑗 in ward 𝑘. 
In the subsequent analysis, we multiplied 𝚯 by different values of 𝑚, to adjust for the factor by which 
true incident cases (and true seropositive individuals) exceed detected cases, with 𝑚 in {6,7,8, . . . ,40} 
following estimates in [4] and [5]. We assumed that 𝑚 is constant across locations and age groups (i.e. 
that case detection effort is equal across wards and age groups). 

We next generated matrices describing different survey participant catchment distributions, 𝐒, where 
each entry 𝑛],^ represents the number of serological tests performed (equal to the number of study 
participants) in each age-location subgroup and where 𝑛 represents the total number of all tests 
performed. We compare three different survey participant catchment distributions: (1) 𝐒op, optimal 
allocation of sampling effort for subgroup size and underlying cumulative incidence, given by Equation 
(2) in the Supplementary Information; (2) 𝐒site. the actual geographic distribution of participants in the 
Somerville venue-based sample; (3) 𝐒alt, the hypothetical geographic distribution of participants at an 
alternative study site in Somerville Ward 1, per GPS-estimated foot traffic data at that site. 
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COVID-19 serosurveillance data collected via venue-based sampling 

We use data from a venue-based convenience-sampled serosurveillance study in Somerville, 
Massachusetts, conducted in June 2020, as an example case illustrating how choice of study location can 
influence bias and uncertainty in SARS-CoV-2 seroprevalence estimates. This site for this study was 
adjacent to essential business that was not subject to state-mandated restrictions on in-person business 
activities and thus this location had a reliably high volume of visitors each day. Spanish-, Portuguese-, 
and English-speaking study staff wearing personal protective equipment (PPE) contacted business 
patrons directly as they were leaving or entering this essential business location, and individuals 
recruited this way were given a flyer that was used to identify “directly recruited” participants in the 
study. All adults over 18 years of age with no reported symptoms suggestive of active COVID-19 
infection were eligible to participate in the study. Research staff reviewed study procedures (including 
post-study medical follow-up for patients with positive serology) and risks and benefits of study 
participation before offering potential participants the opportunity to provide verbal informed consent to 
participate. 

Participants underwent testing for SARS CoV-2-specific IgG and IgM using an 
immunochromatographic lateral flow assay (LFA, Biomedomics, Morrisville, North Carolina, USA). 
Results from point-of-care antibody testing were returned to patients by a physician on the study team. 
In prior validation studies using confirmed clinical cases of COVID-19 as known positives and pre-
pandemic discarded blood samples as known negatives, the LFA was 90% sensitive among patients 
tested > 8 days after symptom onset and 99.2% specific [6]. The seroprevalence among all 398 
participants study, adjusted for test performance but unweighted by either age or location, was 0.113; 
seroprevalence was 0.130 among 228 directly recruited participants. 

Other statistical analysis 

We calculated correlations between several ward-level metrics in Somerville (including inter alia 
cumulative incidence, study participants, and GPS-estimated home locations) using Pearson’s 
correlation coefficient 𝑟. We evaluated the significance of these correlations via permutation testing, 
wherein the observed value for 𝑟 is compared against a null distribution of 10,000 𝑟 values obtained by 
randomly permuting ward assignments for the observed values for each variable. R code for this 
procedure is included at https://github.com/tsbrown-git/COVID19serosurveillance-Somerville. 
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Supplementary Figures 

 

Figure S1. Geographic distributions of (A) self-reported reported home locations for 
directly-recruited participants, (B) self-reported home locations all study participants 
(𝑝ghh), (C) GPS-estimated visitors to the study location (𝑣i>jk), and (D) GPS-estimated 
visitors to an alternative, hypothetical study site in Somerville Ward 1 (𝑣ghj). Insets 
show proportion of participants or visitors versus distance in kilometers from the study 
venue. Dark map areas and points designate wards contributing > 1% of the total 
participants or visitors for a given site, light blue designates wards contributing ≤ 1%, 
and white are wards contributing zero participants or visitors.  
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Figure S2. Geographic distributions of (A) self-reported reported home 
locations for directly-recruited participants (𝑝m>nkOj), (B) self-reported home 
locations all study participants (𝑝ghh), (C) GPS-estimated visitors to the study 
location (𝑣i>jk), and (D) GPS-estimated visitors to an alternative, hypothetical 
study site in Somerville Ward 1 (𝑣ghj), restricted to wards contributing > 1% 
of total number of participants or visitors. The upper right panel includes a 10 
km radius circle centered on the Somerville ward containing the study venue. 
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Figure S3. (A) Proportion of all SARS-CoV-2 test administered that were positive by 
Somerville electoral ward; (B) Total number of tests administered as a proportion of 
electoral ward population; (C) 2010 Environmental Justice Populations [7] by census 
block group, designated using data from the 2006-2010 American Community Survey 
(Minority population: >25% population identifies at non-white; Income: Households 
earn <65% of the statewide median household income; English isolation: >25% of 
households have no one over the age of 14 who speaks English only or very well.  
 

 

Figure S4. Geographic distributions of (A) proportion of all directly recruited study 
participants by ward (𝑝direct), (B) proportion of GPS-estimated visitors to the study 
location by ward (𝑣site), and (C) 𝑝direct versus 𝑣site, with significance of the correlation 
calculated as described above. 
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Figure S5. Optimal sample allocation for two subgroups with varying sizes and subgroup 
seropositivity. The value of 𝑝, that minimizes 𝑊, arg min56𝑊(𝑝,), is estimated across multiple 
combinations of 𝑑, (proportion of the total population in subgroup 1) and 𝜋, (proportion of the 
total number of prior infections in subgroup 1) with true cumulative incidence 𝜃pop = 0.05 or 0.2. 

 

Figure S6. Top: Procedure for specifying true underlying seropositivity by age-location 
group, where entries of matrix 𝜣, 𝜃],^ , are the estimated cumulative incidence of 
detected, confirmed cases (per PCR-confirmed cases reported to the City of Somerville) 
for individuals in location 𝑗 and age group 𝑘. Different underlying epidemic sizes are 
given by 𝜣𝒎, where 𝜃],^q = 𝑚 × 𝜃],^  and 𝑚 is a multiplier approximating the factor by 
which true infections exceed detected, PCR-confirmed infections. Bottom: Procedures for 
estimating uncertainty in serology-based cumulative incidence using different sampling 
strategies, 𝑺 (as described in Methods and Supplementary Information). The procedure in 
is repeated 1,000 times for each value of 𝑚 and 𝑛. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
increasing proportion of total 
population in subpopulation 1

in
cr

ea
si

ng
 p

ro
po

rti
on

 o
f t

ot
al

 
pr

io
r i

nf
ec

tio
ns

 in
 p

op
ul

at
io

n 
1

true population seroprevalence=0.05

d1

π1

d1

π1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

true population seroprevalence=0.20

0.
25

0.
50

0.
75

Proportion of samples
from subpopulation 1 that 
minimizes uncertainty

T
t

l
b

f
ti

i
t

t
t

d
(

)

ϴj,kϴj,k

m

ϴj,k

m
=mxϴj,k

Location

A
ge

 g
ro

up

Location

A
ge

 g
ro

up

nj,k

ij,k = Bin(nj,k,ϴj,k)
m

ij,k
Oj,k = TPj,k + FPj,k

TPj,k =Bin(ij,k,sens)
FPj,k =Bin(ij,k,spec)

Oj,k

S I O
Sampling strategy True prior infections Prior infections observed

Underlying incidence Adjusted underlying incidence

ϴj,kϴj,k

m

ϴj,k

m
=mxϴj,k

A
ge

 g
ro

up

Location

A
ge

 g
ro

up

nj,k

ϴ

ij,k = Bin(nj,k,ϴj,k)
m

ij,k
Oj,k = TPj,k + FPj,k

TPj,k =Bin(ij,k,sens)
FPj,k =Bin(ij,k,spec)

Oj,k

S I O

ϴm

Sampling strategy True prior infections
sampled

Prior infections observed

with serological testing

Underlying incidence Adjusted underlying incidence

Θ Θm



 9 

References 

1.  Larremore DB, Fosdick BK, Bubar KM, et al. Estimating SARS-CoV-2 seroprevalence and 
epidemiological parameters with uncertainty from serological surveys. Elife 2021; 10:e64206  

2.  Neyman J. On the two different aspects of the representative method: The method of stratified 
sampling and the method of purposive selection. Journal of the Royal Statistical Society 1934; 
97(4):558–625.  

3.  Singh S. Stratified and post-stratified sampling. In: Advanced sampling theory with applications. 
Springer, 2003: 649-748. 

4.  Havers FP, Reed C, Lim T, et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in 
the United States, March 23-May 12, 2020. JAMA Internal Medicine 2020; 180(12):1576–1586 

5.  Wu SL, Mertens AN, Crider YS, et al. Substantial underestimation of SARS-CoV-2 infection in 
the United States. Nat Commun 2020; 11(1):4507.  

6.  Naranbhai V, Chang CC, Beltran WFG, et al. High seroprevalence of anti-SARS-CoV-2 
antibodies in Chelsea, Massachusetts. J Infect Dis 2020; 222(12):1955-1959 

7. Massachusetts Executive Office of Energy and Environmental Affairs. Massachusetts 
Environmental Justice Populations. Available at: https://www.mass.gov/info-details/environmental-
justice-populations-in-massachusetts 

 


