Supplemental Digital Content

SDC, Materials and Methods:

1. Study design :

This two year prospective study relied on 38 kidney transplants from the Orléans Regional Hospital and University Hospital of Tours (France), within the framework of the clinical research project named RENALIFE, registered under ClinicalTrials.gov (NCT03024229). Patients were included if they met the following selection criteria: Donor aged at least 18 years, expressed non-opposition, dead brain deceased, and met the expanded criteria for renal retrieval (a donor aged either more than 50 or 60 years old, with two of the following criteria: a history of high blood pressure, a plasmatic creatinine greater than or equal to 1.5 mg/L, death resulting from a stroke). Immediately after the kidneys had been retrieved from the donor, they were stored on HMP, LifePort[®] Kidney Transporter 1.0 (Organ Recovery Systems). The organ preservation solution used in this device was KPS-1[®] solution (Organ Recovery System). The parameters of perfusion machine (i.e. temperature, flow, resistance) were recorded during kidney conservation. When the receiver was ready for transplantation, the graft was removed from the machine. An aliquot of the perfusion fluid was taken and immediately centrifuged at 3000g for 10 min then stored at -20°C. Just before transplantation, a systematic graft biopsy was also performed with a 16 Gauge gun (directed in order to sample the renal cortex). The biopsy was split transversely into two fragments: the first one was fixed in Bouin's solution (picric acid, acetic acid, formalin) or in AFA (acetic alcohol formalin) depending on the date of inclusion and then included in paraffin to carry out pathological classification, according to the revised Banff classification 2013; the second fragment was stored at -20°C. Each recipient benefited from a clinical and biological follow-up, including daily creatininemia measurement until day 7 and a collection of clinical events, which was

carried out during the entire follow-up period, i.e. 3 months post-transplantation. The primary endpoints for graft recovery were Immediate Graft Function (IGF), characterized by a creatininemia at day $7 \le 250 \ \mu mol/L$ without the necessity for dialysis and Delayed Graft Function (DGF), characterized by the necessity for dialysis within 7 days.

2. Reagents

Discovery HS F5-3 column (150 x 2.1 mm d.i., 3 μ m) (#567503-U), 2-Isopropylmalic acid (#333115), α -ketoglutaric acid (#75890), D-gluconic acid sodium salt (#G9005), D-Mannitol (#M4125), D-Ribose (#R7500), L-Carnitine (#8.40092), Magnesium D-gluconate hydrate (#G9130), P-Aminohippuric acid (#A1422) and Taurine (#T0625) were purchased from Sigma-Aldrich. Creatinine (27910) was purchased from Fluka. Taqman Low Density Array[®] (TLDA) cards were purchased from Thermofisher. The list of probe sets and manufacturer's code for TaqMan probes are listed in Supplementary Table 1.

3. Metabolomics analysis of graft preservation samples

3.1. LC-MS/MS-metabolomic analysis

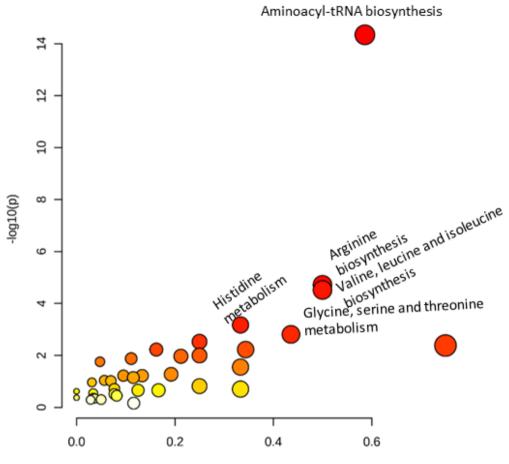
Mass spectrometry analysis of perfusion fluids was performed using LCMS-8060 (Shimadzu) tandem mass spectrometer and the LC-MS/MS "Method Package for Cell Culture Profiling Ver.2" (Shimadzu). In order to analyze compounds not initially included in this kit, an infusion of pure substances was performed and the corresponding transitions were added to the list of compounds to analyze. Briefly, 200 μ L of acetonitrile and 20 μ L of internal standard (2-Isopropylmalic acid [0.5 mmol/L]) were added to 100 μ L of preservative solution from each patient. After centrifugation at room temperature for 15 minutes at 15,000 g, the supernatant was diluted 1/10th in ultrapure water and transferred to a vial before injection of 3 μ L into the analytical system. For each transition analyzed, only well-defined chromatographic peaks were considered. Each sample was analyzed in duplicate. Quality controls were prepared by

mixing an equal volume of each patient's sample and were injected three times in all the series. Metabolites with a coefficient variation (CV) > 30% in guality controls were not retained for subsequent metabolomics analysis. Native KPS-1 was also injected to determine its basal metabolic composition. Raw spectrometric data sets were normalized in relation to the intensity of 2-Isopropylmalic acid as internal standard. Regarding the LC-MS/MS parameters: Chromatographic separation of the compounds was carried out with a Discovery HS F5-3 column (150 x 2.1 mm d.i., 3 μm) column thermostated at 40°C, at a flow rate of 350 μL/min according to the following linear mobile phase gradient: 0-1.4 min : 0% B ; 1.4-3.5 min : 0 to 25% B; 3.5-7.5 min; 25 to 35% B; 7.5 to 10.3 min: 35 to 95% B; 10.3-13.7: 95%B; 13.7-13.8 min: 95 to 0% B; 13.8-17 min: 0% B where A is a 0.1% solution of formic acid in water and B is a 0.1% solution of formic acid in acetonitrile. Detection was performed by electrospray ionization using the following source conditions: Nebulizing gas flow rate; 3 mL/min; Drying gas flow rate: 10 mL/min; Heating gas flow rate: 10 mL/min; Interface temperature: 300°C; Desolvation line temperature: 250°C; block heater temperature: 400°C; Compounds were detected in scheduled MRM (Multi Reaction Monitoring) mode alternately in positive and negative modes, used for compound identification: one transition for quantification and a minimum of one transition for confirmation and relative retention time (Supplementary Table 2).

3.2. Assessment of other biochemical compounds

COBAS 6000 analyzer (Roche Diagnostics) was used to determine sodium, potassium, calcium, phosphate, chloride, bicarbonate, urea, creatinine and glucose concentrations. The quantifiable features were then added to the list of metabolites measured by LC-MS/MS for subsequent analyses.

4. Transcriptional expression of tubular transporter


Frozen pre-implantation biopsies were used for RNA extraction, using the Nucleospin RNA/Protein kit (Macherey-Nagel), according to the manufacturer's instructions. RNA was then quantified using Qubit 4.0 with the Qubit RNA HS Assay kit (Thermofisher). RNA quality was assessed by RNA Integrity Number (RIN), determined with a Bioanalyzer 21 000 (Agilent). Agilent RNA 6000 Pico or Agilent RNA 6000 Nano kits were used according to RNA concentration. 200ng of RNA were then reverse transcribed into complementary DNA (cDNA) using the High capacity cDNA Reverse Transcription kit (ThermoFisher), according to the manufacturer's instructions. The TLDA card used enabled the quantification of 35 membrane tubular transporters, 3 aquaporins, 2 Na/K-ATPase subunits, and 4 housekeeping genes candidates (NME4, CHFR, C16ORF62 and NASP) chosen according to the literature. For each sample, a mix containing all the cDNA diluted in RNAse-free water q.s. 55µL and 55 µL TaqMan[®] Universal Master Mix II was prepared. 100 µL of this reaction mix was then loaded onto each slot of the TLDA card. After double centrifugation at 1,200 rpm for 1 minute, the card was sealed and subsequently analyzed using Polymerase Chain Reaction (PCR) QuantStudio 12K with mix-UNG Amperase following the program conditions: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C for 15 s followed by 60°C for 1 min. Undetermined or > 35 Ct values were replaced by 35. Renal transporters expression was then analyzed by the comparative $2^{-\Delta Ct}$ method with $\Delta Ct = Ct$ (target gene) – Ct (mean of the housekeeping genes finally retained). 2^{-ΔCt} were then normalized by log 2 transformation. Housekeeping genes finally retained for the 2^{-ΔCt} method (*NME4*, *CHFR* and *C16ORF62*) were selected using Genorm and Normfinder.

5. Statistical analyzes

The study had three objectives: (i) explore the impact of ischemia duration on the metabolomic content of perfusion liquids and on renal tubular transporters expression, (ii) explore relationships between metabolomic profiles and renal tubular transporters expression during HPM and (iii) find new biomarkers of IGF by comparing several parameters between patients with IGF or non-IGF. For the first objective, grafts were allocated to 1 out of 3 groups according to the perfusion duration in the machine: < 12h, between 12 and 20h, and > 20h. Metabolites intensities or concentrations (for those analysed with Cobas instrument) were normalized by the sum of all features and then log transformed. Auto scaling was performed prior to statistical analyses, in accordance with standard approaches for metabolomic analysis. A two-step statistical approach was performed for each objective. Univariate analyzes were performed using non-parametric tests, i.e. Wilcoxon and Kruskall-Wallis for two or more groups, respectively. P values were corrected for multiple statistical tests using the False Discovery Rate (FDR) method. Concerning multivariate exploration, unsupervised analysis by Principal Component Analyses (PCA) was performed prior to the use of different machine learning approaches (e.g. partial least-squares discriminant analysis (PLS-DA) and Random-Forest (RF)). Pathway analyzes were performed for metabolites identified as discriminant during multivariate analyzes. Correlation between normalized metabolites values and membrane transporters' expression ($log2(2^{-\Delta Ct})$) was evaluated by Partial Least Squares regression (PLS). The MetaboAnalyst 5.0 computational platform (www.metaboanalyst.ca/faces/home.xhtml) was used for all the statistical analyzes except for the PLS analysis which was used to study the correlation between transporter expression and metabolite content, performed using the MixOmics package (version 1.6.3) in the R software (version 4.0.2).

SDC, Figures:

Figure S1: Pathway analysis based on metabolites only detected in perfusates.

Pathway Impact

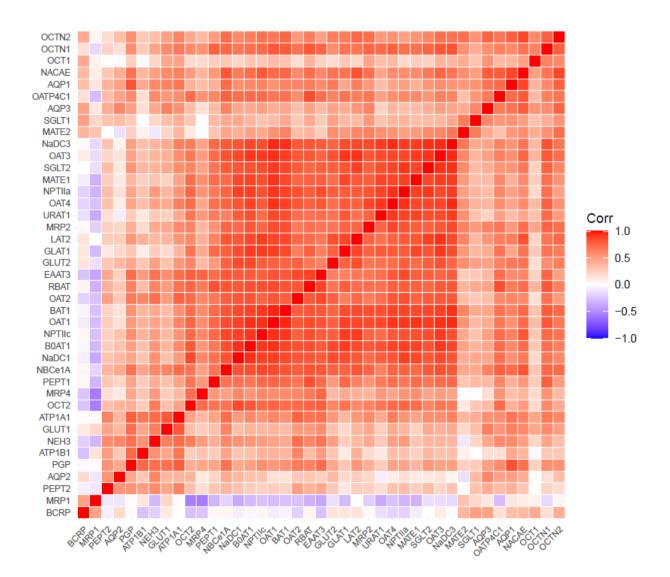


Figure S2: Correlation matrix between transporters found in pre-implantation biopsies. The

dark red and dark blue colors indicate positive and negative correlations, respectively.

Figure S3: Dot plot of pathway enrichment analysis based on the most important metabolites,

determined by Annova test, according to the perfusion time.

SDC, Tables:

Table S1: Custom-Designed TaqMan Low Density Array Card.

Assay ID	Gene Symbol(s)	Amplicon Length	
Hs00537914_m1	SLC22A6	68	
Hs00198527_m1	SLC22A7	69	
Hs00188599_m1	SLC22A8	144	
Hs01056646_m1	SLC22A8	76	
Hs00945829_m1	SLC22A11	82	
Hs00427552_m1	SLC22A1	79	
Hs01010726_m1	SLC22A2	70	
Hs00268200_m1	SLC22A4	76	
Hs00929869_m1	SLC22A5	65	
Hs00217320_m1	SLC47A1	74	
Hs99999905_m1	GAPDH	0	
Hs00945652_m1	SLC47A2	63	
Hs00960489_m1	ABCC2	62	
Hs00988720_g1	ABCC4	86	
Hs00988721_m1	ABCC4	141	
Hs01053790_m1	ABCG2	83	
Hs00184500_m1	ABCB1	67	
Hs01030727_m1	SLC22A12	64	
Hs00192639_m1	SLC15A1	76	
Hs01113665_m1	SLC15A2	69	
Hs00903842_m1	SLC9A3	77	
Hs00919316_g1	SLC13A2	72	
Hs00955744_m1	SLC13A3	68	
Hs01092910_m1	SLC34A1	84	
Hs02341453_g1	SLC34A3	94	
Hs00698884_m1	SLCO4C1	77	
Hs01573793_m1	SLC5A1	60	

Hs00894642_m1	SLC5A2	75
Hs00892681_m1	SLC2A1	76
Hs01096908_m1	SLC2A2	65
Hs00933601_m1	ATP1A1	76
Hs00426868_g1	ATP1B1	89
Hs01028916_m1	AQP1	96
Hs00292214_s1	AQP2	87
Hs00185020_m1	AQP3	63
Hs01047033_m1	SLC4A4	68
Hs01561483_m1	ABCC1	65
Hs01384157_m1	SLC6A19	70
Hs00909948_m1	SLC7A7	79
Hs00794796_m1	SLC7A8	87
Hs00374243_m1	SLC3A2	77
Hs00942976_m1	SLC3A1	66
Hs00204638_m1	SLC7A9	50
Hs00188172_m1	SLC1A1	76
Hs00943494_m1	CHFR	67
Hs00359037_m1	NME4	70
Hs01032748_g1	NASP	65
Hs00220422_m1	C160RF62	82

Table S2: MRM transitions, retention time and mass spectrometric conditions of metabolites

Compound	lonisation mode -	Precursor	Product ion				Retention
		ion m/z	1 m/z	2 m/z	3 m/z	4	time (min)
2-IsopropyImalic acid	Negative	175.15	113.05	<u>115.05</u>			5.2
1-Methylhistidine	Positive	170.00	83.10	<u>124.05</u>			2.0
2-Aminoethanol	Positive	62.15	27.10	44.10			1.8

2-Ketoisovaleric acid	Negative	115.20	43.20	59.20	<u>71.05</u>	4.8
3-Methyl-2-oxovaleric acid	Negative	129.20	57.00	<u>85.10</u>	111.00	4.9
4-Aminobenzoic acid	Positive	138.25	<u>65.10</u>	77.10		5.3
4-Hydroxyproline	Positive	132.10	<u>68.05</u>	86.05		1.3
4-Pyridoxic acid	Positive	184.00	<u>148.10</u>	166.10		4.8
5-Glutamylcysteine	Positive	251.10	<u>84.10</u>	122.10		3.0
5'-Methylthioadenosine	Positive	298.10	119.10	<u>136.10</u>		6.2
Adenine	Positive	136.00	65.00	119.05		4.9
Adenosine	Positive	268.10	119.00	<u>136.05</u>		5.0
Alanine	Positive	89.90	44.10	45.30		1.4
alpha-keto-glutarate	Negative	145.30	40.95	73.00	<u>83.00</u>	1.3
Anthranilic acid	Positive	138.00	65.05	<u>120.10</u>		5.3
Arginine	Positive	175.20	60.10	70.10	116.00	1.8
Aspartic acid	Positive	134.00	70.10	74.05	88.10	1.3
Biotin	Positive	245.10	97.05	<u>226.95</u>		6.0
Choline	Positive	104.10	45.10	60.05		2.7
Creatinine	Positive	114.10	43.10	<u>44.20</u>	86.20	2.9
Cystathionine	Positive	223.00	<u>88.05</u>	134.00		1.3
Cystine	Positive	241.00	73.90	119.95	151.95	1.3
Deoxycytidine monophosphate	Positive	308.10	95.10	<u>112.05</u>		1.3
D-Mannitol	Negative	181.10	71.05	<u>89.15</u>	101.10	1.3
D-Ribose	Negative	149.30	59.05	71.15	<u>89.05</u>	1.3
Gluconic acid	Negative	195.20	74.90	99.00	129.05	1.2
Glucosamine	Positive	180.00	72.10	162.10		2.0
Glutamic acid	Positive	147.90	56.10	84.10		1.4
Glutamine	Negative	145.20	109.00	127.15		1.4
Glutathione	Positive	308.00	130.10	179.10	276.00	3.2
Glycine	Positive	75.90	<u>30.15</u>			1.3
Guanosine	Positive	284.00	110.00	135.00	<u>152.00</u>	4.8
Hexose (Glucose)	Negative	179.20	<u>59.05</u>	89.10		1.2
Histidine	Positive	155.90	56.10	82.70	<u>110.10</u>	1.7

Inosine	Positive	269.10	110.00	118.95	137.05		4.8
Isoleucine	Positive	132.10	41.20	44.20	<u>69.15</u>	86.20	5.2
Kynurenine	Positive	209.10	94.10	118.10	145.90	192.05	5.9
Lactic acid	Negative	89.30	43.10	45.10	71.10	<u>192.05</u> 89.05	2.0
L-Carnitine	Positive	162.30	60.10	103.15	<u>/1.10</u>	89.05	3.2
Leucine	Positive	132.10	30.05	43.35	86.05		5.3
Lysine	Positive	132.10	56.10	<u>43.33</u> 84.20	130.10		2.0
Methionine	Positive	147.20	56.10	104.10	150.10		3.2
Methionine sulfoxide	Positive	166.00	55.95	74.10	102.00		1.4
Niacinamide	Positive	123.10	53.10	77.00	80.05		3.5
				77.00	80.05		
O-Phosphoethanolamine Ornithine	Positive	142.10	44.20	110.05			1.2
	Positive	133.10	<u>70.10</u>	116.05			1.6
Oxidized glutathione	Negative	611.10	143.05	<u>306.00</u>	420.45		4.8
PAH	Positive	195.00	65.20	<u>92.20</u>	<u>120.15</u>		5.0
Phenylalanine	Positive	166.10	77.10	<u>103.10</u>	120.10		5.7
Pipecolic acid	Positive	130.10	<u>56.10</u>	84.05	112.10		2.6
Proline	Positive	116.10	28.05	43.20	<u>70.15</u>		1.7
Riboflavin	Positive	377.00	172.00	197.00	<u>243.05</u>		5.2
Serine	Positive	105.90	42.30	<u>60.10</u>	70.10		1.3
Taurine	Negative	124.35	64.10	<u>79.95</u>			1.2
Threonine	Positive	120.10	56.05	<u>74.15</u>	102.10		1.3
Thymidine	Positive	243.10	109.00	116.00	<u>127.10</u>		4.8
Thymine	Positive	127.10	54.05	<u>110.05</u>			4.8
Tryptophan	Positive	205.10	91.00	118.00	146.10	<u>188.15</u>	6.8
Tyrosine	Positive	182.10	77.10	91.10	136.10		4.9
Uracil	Positive	113.00	70.00				2.1
Uric acid	Negative	167.10	96.20	<u>123.95</u>			2.4
Uridine	Positive	245.00	70.00	96.00	<u>113.05</u>		3.2
Valine	Positive	118.00	55.10	<u>57.10</u>			2.9
Xanthine	Negative	151.00	42.00	108.00			3.1
Xanthosine	Positive	284.90	135.95	153.05			4.8