
SUPPLEMENTAL FILE 1.  
Praveen et al.  

Table of Contents 

SUPPLEMENTARY APPENDIX:.............................................................................................. 2 

SUPPLEMENTARY FIGURES .................................................................................................. 6 

SUPPLEMENTARY FIGURE 1. .......................................................................................................... 6 
SUPPLEMENTARY FIGURE 2. .......................................................................................................... 7 
SUPPLEMENTARY FIGURE 3. .......................................................................................................... 8 
SUPPLEMENTARY FIGURE 4. .......................................................................................................... 9 

SUPPLEMENTARY NOTE ...................................................................................................... 10 

SUPPLEMENTARY METHODS ........................................................................................................ 10 
 
 



Supplementary Appendix: 1 
 2 

Regeneron Genetics Center Banner Author List and Contribution Statements  3 

 All authors/contributors are listed in alphabetical order.  4 
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Goncalo Abecasis, Aris Baras, Michael Cantor, Giovanni Coppola, Andrew Deubler, Aris 6 
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and  Katherine Siminovitch  8 

Contribution: All authors contributed to securing funding, study design and oversight. All authors 9 

reviewed the final version of the manuscript.  10 

Sequencing and Lab Operations  11 

Christina Beechert, Caitlin Forsythe, Erin D. Fuller, Zhenhua Gu, Michael Lattari, Alexander 12 

Lopez, John D. Overton, Thomas D. Schleicher, Maria Sotiropoulos Padilla, Louis Widom, Sarah 13 

E. Wolf, Manasi Pradhan, Kia Manoochehri, Ricardo H. Ulloa.  14 

Contribution: C.B., C.F., A.L., and J.D.O. performed and are responsible for sample genotyping.  15 

C.B, C.F., E.D.F., M.L., M.S.P., L.W., S.E.W., A.L., and J.D.O. performed and are responsible 16 

for exome sequencing.  T.D.S., Z.G., A.L., and J.D.O. conceived and are responsible for laboratory 17 

automation.  M.S.P., K.M., R.U., and J.D.O are responsible for sample tracking and the library 18 

information management system.    19 

Genome Informatics  20 

Xiaodong Bai, Suganthi Balasubramanian, Boris Boutkov, Gisu Eom, Lukas Habegger, Alicia 21 

Hawes, Shareef Khalid, Olga Krasheninina, Rouel Lanche, Adam J. Mansfield, Evan K. Maxwell, 22 



Mona Nafde,  Sean O’Keeffe, Max Orelus, Razvan Panea, Tommy Polanco,  Ayesha Rasool,  23 

Jeffrey G. Reid, William Salerno, Jeffrey C. Staples 24 

Contribution: X.B., A.H., O.K., A.M., S.O., R.P., T.P., A.R., W.S. and J.G.R. performed and are 25 

responsible for the compute logistics, analysis and infrastructure needed to produce exome and 26 

genotype data. G.E., M.O., M.N. and J.G.R. provided compute infrastructure development and 27 

operational support. S.B., S.K., and J.G.R. provide variant and gene annotations and their 28 

functional interpretation of variants. E.M., J.S., R.L., B.B., A.B., L.H., J.G.R. conceived and are 29 

responsible for creating, developing, and deploying analysis platforms and computational methods 30 

for analyzing genomic data.  31 

Clinical Informatics:  32 

Nilanjana Banerjee, Michael Cantor, Dadong Li, Deepika Sharma, Ashish Yadav  33 

Contribution: All authors contributed to the clinical informatics of the project  34 

Translational and Analytical Genetics:  35 

Alessandro Di Gioia, Sahar Gelfman 36 

Contribution: All authors contributed to the analysis of the project.  37 

Research Program Management  38 

Esteban Chen, Marcus B. Jones, Jason Mighty, Michelle G. LeBlanc and Lyndon J. Mitnaul   39 

Contribution: All authors contributed to the management and coordination of all research 40 

activities, planning and execution. All authors contributed to the review process for the final 41 

version of the manuscript. 42 
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GHS DiscovEHR banner authors 46 

Lance J. Adams, Jackie Blank, Dale Bodian, Derek Boris, Adam Buchanan, David J. Carey, Ryan 47 
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Frendewey3, Scott Gallagher1, John Lee1, John Keilty1, Christos Kyratsous3, Lynn Macdonald3, 57 

Adam T Palermo1, Kavita Praveen2, Leah Sabin3, Jonathon Whitton1, Brian Zambrowicz3 58 

 59 

Contribution: Authors helped frame research questions and contributed to the discussion and 60 

review of data and results.  Review and feedback on manuscript. 61 
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SUPPLEMENTARY FIGURES 72 
Supplementary Figure 1.  73 

 74 
 75 
Supplementary Figure 1: Q-Q plots for common and rare single variant and gene burden associations in UKB, GHS, 76 

MALMO, SINAI and FinnGen. 77 



Supplementary Figure 2.  78 
[See Supplemental File 2 for Supplementary Figure 2: Regional plots for novel common 79 
(MAF ≥ 1%) loci identified in hearing loss meta-analysis and forest plots corresponding to 80 
the index variant at each novel locus (panels A-R, 9 pages)] 81 
 82 
  83 



Supplementary Figure 3.  84 
 85 

 86 
 87 
 88 
Supplementary Figure 3: Heritability enrichments from stratified LD score regression 89 

analysis. Total SNP heritability for seven functional categories, each further stratified by MAF 90 

into a common variant (CV, MAF ≥ 0.05) and low-frequency variant (LFV, 0.001 ≤ MAF<0.05) 91 

bin, was estimated and enrichments for these categories was calculated (proportion heritability / 92 

proportion variants). Plotted are the resulting enrichments (common variant bins shown as solid 93 

circles and low-frequency variant bins as open triangles) with standard errors. Significant 94 

enrichments and depletions are denoted by asterisks (Bonferroni-corrected p<0.05 = *; p<0.01 = 95 

**; p<0.001 = ***)  96 



Supplementary Figure 4.  97 
 98 

 99 
 100 
Supplementary Figure 4: KLHDC7b is expressed in tissue within the temporal bone. RNA 101 

was extracted from different organs, and qPCR was performed using a primer/probe combination 102 

for KLHDC7b, and one for Drosha as a housekeeping control.  Data for each organ was normalized 103 

to the housekeeping control and then normalized to liver expression. Expression in cochlea and 104 

brain were not significantly different from expression in liver, which was relatively high. RQ = 105 

relative quantification compared to liver (see methods).   106 
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SUPPLEMENTARY NOTE 109 
 110 
Supplementary Methods  111 
 112 

Phenotype definition: 113 

Hearing loss in GHS, MALMO and SINAI was defined using ICD-10 codes: cases were 114 

individuals who had (1) a problem-list entry of the ICD-10 diagnosis code (H903-H908, H911, 115 

H919), (2) an inpatient hospitalization-discharge ICD-10 diagnosis code, or (3) an encounter ICD-116 

10 diagnosis code entered for 2 separate outpatient visits on separate calendar days. Controls were 117 

individuals without any of the criteria for case definition. Individuals were excluded if they had 118 

the relevant ICD-10 code associated with only one outpatient encounter. We also excluded from 119 

controls any individuals who were cases for ICD-10 Q16 (congenital malformations of ear causing 120 

hearing impairment) or ICD-10 H931 (tinnitus). 121 

In UKB, hearing loss was defined using ICD-10 codes and self-reports based on two 122 

questions: “Do you have any difficulty with your hearing?” (Field: 2247) and “Do you find it 123 

difficult to follow a conversation if there is background noise (such as TV, radio, children 124 

playing)?” (Field: 2257). Self-reported cases were individuals who (1) answered ‘yes’ to both 125 

questions or (2) were completely deaf or (3) were a case for any of the following ICD-10 codes: 126 

H903-H908, H911, H919. Phenotype definition of ICD10-based cases required one or more of the 127 

following:  a) ≥ 1 diagnosis in inpatient Health Episode Statistics (HES) records, b) a cause-of-128 

death diagnosis in death registry, c) ≥ 2 diagnoses in outpatient data (READ codes mapped to 129 

ICD10). ICD-based controls were individuals who did not meet the case critera, and were not cases 130 

for ICD-10 Q16 and ICD-10 H931. To obtain the overall cases in the analysis, self-reported and 131 

ICD-based cases were combined. Controls for the overall analysis were defined as individuals who 132 

(1) answered ‘No’ to both self-report hearing loss questions and, (2) did not report that they were 133 



deaf and (3) did not meet the criteria for ICD-based case definition and (4) did not have tinnitus 134 

based on ICD-10 (H931) or self-reported tinnitus (Field ID: 4803, 4814 and self-reported from 135 

verbal interview).   136 

 137 

Genotyping 138 

For SINAI and MALMO, DNA from participants was genotyped on the Global Screening 139 

Array (GSA), and for GHS genotyping was done on either the Illumina OmniExpress Exome 140 

(OMNI) or GSA. These cohorts were imputed to the TOPMed (GHS) or the HRC (MALMO, 141 

SINAI) reference panels (stratified by array for GHS) using the University of Michigan Imputation 142 

Server or the TOPMed Imputation Server (URLs). Prior to imputation, we retained variants that 143 

had a MAF ≥ 0.1%, missingness < 1% and HWE P > 10−15. Following imputation for GHS, data 144 

from the OMNI and GSA datasets were merged for subsequent association analyses, which 145 

included an OMNI/GSA batch covariate in addition to other covariates described below. UKB 146 

DNA samples were genotyped as described previously1 using the Applied Biosystems UK 147 

BiLEVE Axiom Array (N=49,950) or the closely related Applied Biosystems UK Biobank Axiom 148 

Array (N=438,427). Genotype data for variants not included in the arrays were imputed using three 149 

reference panels (Haplotype Reference Consortium, UK10K and 1000 Genomes Project phase 3) 150 

as described previously1. FinnGen data were derived from a custom Axiom array and imputed into 151 

the FinnGen SISu v3 reference panel (URLs).  152 

 153 

Exome sequencing 154 

High coverage whole exome sequencing was performed at the Regeneron Genetics 155 

Center as previously described2,3. NimbleGen probes (VCRome) or a modified version of 156 

the xGen design from Integrated DNA Technologies (IDT) were used for target sequence capture, 157 



and sequencing was performed using 75 bp paired-end reads on Illumina v4 HiSeq 2500 158 

or NovaSeq instruments to a coverage depth greater than 20x at at least 85% of targeted bases in 159 

96% of VCRome samples, and at least 90% of targeted bases in 99% of IDT samples. Sequence 160 

read alignment and variant calling was based on the GRCh38 Human Genome reference sequence. 161 

Ensembl v85 gene definitions were used to determine variants’ functional impacts. Predicted LOF 162 

genetic variants included (a) insertions or deletions resulting in a 163 

frameshift, (b) insertions, deletions or single nucleotide variants resulting in the introduction of a 164 

premature stop codon or in the loss of the transcription start site or stop site, and (c) variants in 165 

donor or acceptor splice sites. Missense variants were classified for likely functional impact 166 

according to the number of in silico prediction algorithms that predicted deleteriousness using 167 

SIFT, Polyphen2_HDIV and Polyphen2_HVAR, LRT and MutationTaster. We aggregated rare 168 

variants for gene burden testing as previously described4. Briefly, rare variants were collapsed by 169 

gene region, such that individuals who are homozygous reference for all variants are considered 170 

homozygous reference, heterozygous carriers of any aggregated variant are considered 171 

heterozygous, and only minor allele homozygotes for an aggregated variant are considered as 172 

minor allele homozygotes. Genotypes were not phased to consider compound heterozygotes in 173 

burden testing. For each gene, we considered four categories of aggregates: a strict burden of rare 174 

pLOFs and three more permissive burden of rare pLOFs and missense variants. The missense 175 

variants in the burden aggregates were defined as ‘strict deleterious missense’ if predicted 176 

deleterious by 5/5 prediction algorithms (SIFT, Polyphen2_HDIV, Polyphen2_HVAR, LRT, 177 

MutationTaster), and ‘deleterious missense’ if predicted deleterious by at least 1/54. For each of 178 

these groups, we considered five separate burden masks per gene, based on the frequency of the 179 

alternative allele of the variants that were screened in that group: MAF ≤ 1%, MAF ≤ 0.1%, MAF 180 



≤ 0.01%, MAF ≤ 0.001%, and singletons only. For the purposes of gene burden testing, the 181 

singleton mask includes minor allele homozygotes if no other variant carriers are observed in the 182 

dataset. We conducted further QC of associated variants post-hoc, based on mappability statistics 183 

from read alignment. 184 

 185 

Genetic association analyses  186 

Association analyses in each study were performed using the Firth logistic mixed model 187 

regression test implemented in REGENIE5. We included in step 1 of REGENIE (i.e. prediction of 188 

individual trait values based on the genetic data) directly genotyped variants with a minor allele 189 

frequency (MAF) > 1%, < 10% missingness, Hardy-Weinberg equilibrium test P > 10-15 and 190 

linkage-disequilibrium (LD) pruning (1000 variant windows, 100 variant sliding windows and r2 191 

< 0.9). The association model used in step 2 of REGENIE included as covariates (i) age, age2, sex, 192 

age-by-sex and age2-by-sex; (ii) 10 ancestry-informative principal components (PCs) derived from 193 

the analysis of a set of LD-pruned (50 variant windows, 5 variant sliding windows and r2 < 0.5) 194 

common variants from the array (imputed for the GHS study) data generated separately for each 195 

ancestry; (iii) an indicator for exome sequencing batch (GHS: three batches; UKB: six batches); 196 

and (iv) 20 PCs derived from the analysis of exome variants with minor allele count £ 20 and MAF 197 

< 1% also generated separately for each ancestry. 198 

We determined continental ancestries by projecting each sample onto reference principal 199 

components calculated from the HapMap3 reference panel.  Briefly, we merged our samples with 200 

HapMap3 samples and kept only SNPs in common between the two datasets. We further excluded 201 

SNPs with MAF < 10%, genotype missingness > 5% or Hardy-Weinberg Equilibrium test P < 10-202 

5.  We calculated PCs for the HapMap3 samples and projected each of our samples onto those PCs. 203 

To assign a continental ancestry group to each non-HapMap3 sample, we trained a kernel density 204 



estimator (KDE) using the HapMap3 PCs and used the KDEs to calculate the likelihood of a given 205 

sample belonging to each of the five continental ancestry groups. When the likelihood for a given 206 

ancestry group was > 0.3, the sample was assigned to that ancestry group. When two ancestry 207 

groups had a likelihood > 0.3, we arbitrarily assigned AFR over EUR, Admixed American (AMR) 208 

over EUR, AMR over East Asian (EAS), South Asian (SAS) over EUR, and AMR over AFR. 209 

Samples were excluded from analysis if no ancestry likelihoods were > 0.3, or if more than three 210 

ancestry likelihoods were > 0.3. Results were subsequently meta-analyzed across studies and 211 

ancestries using an inverse variance-weighted fixed-effects meta-analysis using an inverse 212 

variance-weighted model in METAL6. 213 

 214 

Finemapping and follow-on genetic analyses 215 

LD score (LDSC) regression7 was used to assess inflation (LDSC intercept) in our 216 

accounting for polygenic signal. We used LD scores calculated using genotyped or imputed 217 

variants INFO>0.3 and MAF>0.5% from 10,000 randomly chosen subjects from UKB, and 218 

restricted our analysis to HapMap3 variants.  219 

We defined previously associated loci by their index variants reported in previous hearing 220 

loss GWAS, and excluded 1 Mb regions surrounding them in the identification of novel loci in our 221 

analysis. We defined genome-wide significant loci in our analysis by linkage disequilibrium (r2 > 222 

0.1) with lead variants.  223 

Forward stepwise conditional analyses were carried out in every locus with GCTA-COJO 224 

using summary statistics and a UK Biobank subsample LD reference panel. Independent 225 

associations were determined using a joint P-value threshold of 1 × 10-5 and r2 cutoff of 0.9. 226 



Bayesian causal variant inference was conducted in available individual level data using 227 

FINEMAP8.  228 

Rare variant association analyses conditional on the common variant signal were carried 229 

out for four loci with both common (MAF ≥ 0.01) and single rare variant (MAF < 0.01) genome-230 

wide significant signals. For these loci, the dosages for variants representing the common variant 231 

signal were included as covariates in REGENIE logistic regression. The specific variants that best 232 

captured the common variant signal were ascertained through fine mapping analyses (FINEMAP 233 

80% credible sets when available, or GCTA-COJO-identified independent [r2 < 0.9] significant 234 

[joint P-value<1 × 10-4] variants). Burden analyses conditional on rare variants were carried out 235 

for five genes with significant single rare variants in addition to their burden associations. For 236 

these genes, conditional burden association statistics were obtained through inclusion of dosages 237 

for the top (most significant) single rare variant in each gene. Conditional analyses were performed 238 

for each cohort using REGENIE’s Firth-corrected logistic regression and the resulting summary 239 

statistics were meta-analyzed as described above. 240 

Assessment of heterozygous effects used association analyses excluding homozygotes as 241 

well as individuals potentially carrying compound heterozygous mutations (CHMs) called as 242 

follows. Available unphased genotype array data and genetically inferred pedigree structures 243 

determined by PRIMUS9 were used to create a phased genetic scaffold with the program 244 

MakeScaffold. The scaffold and the unphased exome data where then provided to SHAPEIT49,10 245 

to generate phased exome variant calls. We then identified pairs of exome sequenced variants 246 

(MAF < 2% and MAC > 1) within the same person and gene as potential CHMs (pCHM), and 247 

determined them to be in cis, trans or unknown based on the phased exome data. Trans or 248 

unknown-phase pCHMs were excluded.  249 



Power curves were generated by specifying risk allele frequency (RAF), ranging from 250 

1x10-6 to 1, and the numbers of cases and controls in our meta-analysis, and then determining 251 

which genotype relative risk (GRR) values provide 80 and 50 percent power given the risk allele 252 

frequency. z-score non-centrality parameters (NCP, i.e. expected values for Wald association test 253 

statistics) for a case-control study was obtained following Zaitlen et. al.11, power was obtained 254 

using the pnorm(u=NCP) and qnorm() R functions, and GRRs for 50 and 80% power curves 255 

given RAFs were estimated numerically. 256 

Heritability derived from variants in specific functional categories and minor allele 257 

frequency bins (in an approach similar to stratified LD score regression) was estimated using 258 

partitioned LD score regression (LDSC) of hearing loss association statistics on LD scores. In 259 

order to capture LD from both low-frequency and common variants, a reference panel (N = 10,000 260 

samples) generated from the merging of UK Biobank (European-ancestry) imputed and exome 261 

data was used. Reference panel variants were annotated using an internal pipeline and LD scores 262 

with respect to seven functional categories (coding-synonymous, coding-nonsynonymous, 5-263 

prime-UTR, 3-prime-UTR, splice site, intronic, and intergenic), each split into a common (MAF 264 

> 0.05) and low-frequency (0.001 < MAF ≤ 0.05) variant bin, were calculated. Variants used to 265 

calculate LD scores were filtered for false positives identified through support vector machine 266 

learning of QC metrics, and both reference panel variants and summary statistics were restricted 267 

to those with MAF > 0.001. Since our categories have a very small degree of overlap, with 268 

approximately 0.01 percent of variants falling into more than one category, reported per-category 269 

enrichment results were taken from the .results file (supplementary table 11) provided by LDSC 270 

when using the –overlap-annot flag. As LDSC does not provide per-category h2 estimates when 271 

using this flag, however, we used per-category heritability estimates taken from the .log file from 272 



non-overlap-annot runs to calculate h2
CV and h2

LFV each as the sum of the relevant common and 273 

low-frequency variant category heritabilities. 274 

For genes overlapping genome-wide significant hearing loss loci, coloc212 was used to 275 

assess evidence for co-localization between our hearing loss GWAS and GTEx (release v8) eQTL 276 

derived from 48 tissues (URLs). GWAS and eQTL summary statistics for all common (MAF > 277 

0.01) variants within each gene’s cis-region were used as input to coloc2, which then estimates 278 

posterior probabilities for five hypotheses (H0, no association; H1, GWAS association only; H2, 279 

eQTL association only; H3, both but not co-localized; H4, both and co-localized) given the 280 

association statistics and prior probabilities estimated from the observed data. Genes with posterior 281 

probability of H4 ≥ 0.5 were determined as having evidence for co-localization.  282 

 283 

Single-Cell RNA Sequencing and Analysis 284 

Cochlea and utricles from C57BL/6 mice at post-natal day 7 were micro-dissected and 285 

dissociated via incubation in 0.05% trypsin at 37°C for 20 - 30 min. Four volumes of 5% FBS in 286 

DMEM/F12 with a final concentration of DNAse (LK003170) greater than or equal to 100 Kunitz 287 

per mL was added to inactivate any remaining trypsin. The tissues were then triturated 20 times 288 

and passed through a 40-μm strainer to eliminate residual aggregates / clumps of cells. Cells were 289 

counted then resuspended in 0.04% BSA in PBS at a concentration of 200 cells / uL. 290 

Single cells suspended in PBS with 0.04% BSA were loaded on a Chromium Single Cell 291 

Instrument (10xGenomics). RNAseq libraries were prepared using the Chromium Single Cell 292 

3′Library, Gel Beads & Multiplex Kit (10x Genomics). Paired-end sequencing was performed on 293 

an Illumina NextSeq 500 (Read 1 26-bp for unique molecular identifier, UMI, and cell barcode, 8-294 

bp i7 sample index, 0-bp i5, and Read 2 55-bp transcript read). Cell Ranger Single-Cell Software 295 



Suite (10X Genomics, v2.0.0) was used to perform sample de-multiplexing, alignment, filtering, 296 

and UMI counting. The Mouse MM10 Genome assembly and UCSC gene models were used for 297 

alignment. CellRanger output was processed using Seurat V3.2 (URLs)13. Cells with number of 298 

genes detected of less than 500 or over 15000, or UMI ratio of mitochondria encoded genes vs. all 299 

genes over 0.15 were removed. Data normalization and scaling for each cell were achieved by 300 

using Seurat global-scaling “LogNormalize” method. To avoid potential sample-to-sample 301 

variation caused by technical variation at various experiment steps, we employed Seurat’s data 302 

integration pipeline to merge all cochlea and utricle samples into a single Seurat object for 303 

downstream analysis. Statistically significant principal components identified by Seurat’s 304 

“RunPCA” function were used to define the dimensions for the UMAP nonlinear dimensionality 305 

reduction analysis, which then visualized the cells on a 2D UMAP plot. Unsupervised clustering, 306 

via Seurat’s “FindClusters” method (resolution = 0.6), identified groups of molecularly distinct 307 

cells on the plot. Clusters in the UMAP plot were annotated based on cluster-specific genes 308 

identified via Seurat’s “FindAllMarkers” (min.pct = 0.25, thresh.use = 0.25) function.  The 309 

expression of cluster marker genes as well as canonical cell type-specific genes were used to label 310 

the cell type for each cluster. 311 

 312 

Mouse cochlea dissection for KLHDC7B quantitation: 313 

There were six biological replicates and three technical replicates of each sample. Cochlea 314 

were dissected from B6.CAST-Cdh23Ahl+/WT mice ears. Both cochleae were pooled per mouse 315 

from five female mice and one male mouse aged 11-28 weeks. Animals were sacrificed by carbon 316 

dioxide inhalation followed by immediate removal of the organs in question, which were stored in 317 

RNA later. Cochleae were pierced at the apex and oval window, then gently flushed with ~100 µl 318 



of RNA later, frozen on dry ice and stored at -80 degrees Celsius, while other organs were placed 319 

in RNA later and frozen at -20 degrees Celsius until RNA extraction. The vestibular system was 320 

included with the cochlea.  321 

 322 

RNA extraction and analysis: 323 

 Tissue/Cells were homogenized in TRIzol, and chloroform was used for phase separation. 324 

The aqueous phase, containing total RNA, was purified using MagMAX™-96 for Microarrays 325 

Total RNA Isolation Kit (Ambion by Life Technologies) according to manufacturer’s 326 

specifications. Genomic DNA was removed using RNase-Free DNase Set (Qiagen). 327 

mRNA was reverse-transcribed into cDNA using SuperScript® VILO™ Master Mix 328 

(Invitrogen by Life Technologies). cDNA was amplified with the SensiFAST Probe Lo-ROX 329 

(Meridian) using the 12K Flex System (Applied Biosystems). An endogenous control gene was 330 

used to normalize any cDNA input differences. The KLHDC7b primer/probe combination was 331 

forward: GGTGGCCCTGGATGGAATG, reverse: TCTGTGCGTGGGTCATAGC, probe: 332 

TTTATGCCATTGGTGGCGAGTGC. The Drosha housekeeping control spanned exons 34-35 333 

and was acquired from Thermofisher (Mm01310009_m1, catalogue number 4331182). Data is 334 

reported as the comparative CT method using DDCT. The DCt = Klhdc7b – Drosha (housekeeping 335 

transcript),  DDCt = DCt – DCt reference sample; Relative quantification (RQ) = 2^ - DDCt.  336 
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