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Supplementary Note S1: Annotation Sources 
Assemblies 

GRCh37 (hg19) 
● Project URL https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/ 
● File URL: 

http://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/all_ass
embly_versions/GCF_000001405.25_GRCh37.p13/GCF_000001405.25_GRCh37.p13_g
enomic.fna.gz 

GRCh38 
● Version: patch 13 
● Project URL: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39 
● File URL: 

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/all_asse
mbly_versions/GCF_000001405.39_GRCh38.p13 

Gencode GTF 
● Project URL: https://www.gencodegenes.org/pages/data_format.html 
● Downloads: https://useast.ensembl.org/info/data/ftp/index.html 
● Direct Download URL: ftp://ftp.ensembl.org/pub/release-

99/gtf/homo_sapiens/Homo_sapiens.GRCh38.99.chr.gtf.gz 
 
Genome Aggregation Database (gnomAD) 

● URL: https://gnomad.broadinstitute.org/ 
● Download URL: https://gnomad.broadinstitute.org/downloads 
● Version: 2.1.1 

 
ClinVar 

● Project URL: https://www.ncbi.nlm.nih.gov/clinvar/ 
● CSV File 

URL:https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz 
(contains data) 

● XML File URL (contains data and metadata): 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/xml/  

 
SpliceAI 

● GitHub URL: 
● Download URL (requires free registration): 

https://basespace.illumina.com/analyses/194103939/files/236418325?projectId=6602996
6 

● Version: v1pre3 
● Files: 

o spliceai_scores.masked.snv.hg38.vcf.gz 
o spliceai_scores.masked.indel.hg38.vcf.gz 

● https://github.com/Illumina/SpliceAI 



 
dbNSFP 

● Project URL: https://sites.google.com/site/jpopgen/dbNSFP 
● File URL: 

o ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbNSFP4.0a.zip  
o https://drive.google.com/file/d/1BNLEdIc4CjCeOa7V7Z8n8P8RHqUaF5GZ/vie

w?usp=sharing 
GTEx 

● Project URL: https://www.gtexportal.org/home/ 
● Download URL: 

https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-
05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz  

PharmGKB (Pharmacogenomics) 
● Project URL: https://www.pharmgkb.org/ 
● Download URL: https://www.pharmgkb.org/downloads 
● File: Variant Annotations Help File (annotations.zip)  

GERP Scores 
● Project URL: http://mendel.stanford.edu/SidowLab/downloads/gerp/ 
● Download URL: 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz 
  



Supplementary Note S2. Decision Tree Programming Object Model 
The internal object model for decision trees includes the following classes of objects: atomic 
condition (i.e., atoms), instructions and named states. There are two types of instructions: those 
that calculate values, and those that select into which bucket the result should be deposited. 
Values are most often calculated using complex conditions, i.e., logical combinations of atoms, 
but in rare cases can be calculated by calling a plugin function. At execution time, each 
instruction is related to a subset of data. In case of calculation instruction, it is a subset to which 
condition or function is applied. In the case of bucket selection instruction, it is a subset of 
records being put into the selected bucket. These subsets are in fact sub-cubes and can be 
visualized as pivot tables as conceptualized by the diagram in Figure 4. Named states are a more 
advanced entity and can be used if a calculation needs to be performed on a dataset different 
from the current one, just before a bucket selection instruction. They are used by the compound 
heterozygous variant caller. 
 
A decision tree can be projected to the user either as a script in a dialect of Python or as a 
combination of widgets used by the UI. Both projections are exposed via REST API. Due to 
complexity of the objects representing decision trees, the backend provides abundant metadata 
about them, like a markup for syntax highlighting of a script. Metadata is also provided through 
the REST API. The built-in UI client allows users to either type or edit the script for a decision 
tree or build/change the tree interactively. A rule represented as a decision tree is transparent and 
replicable, and its representation in a scripting language can be easily included in any protocol. 
 
A typical decision tree consists of about 15 nodes, with each node representing a complex 
condition on the functional, clinical, sequencing quality, call quality and/or population genetics 
data. In addition to allowing a user to view and edit a condition at each node, the UI gives the 
researcher or clinician a runtime capability to easily examine the variants at that node and review 
which variants have been put into which bucket. Therefore, a user who is developing a new rule 
can easily see any mistakes or inefficiencies and improve upon or optimize that rule. Application 
of a rule to an annotated and indexed whole genome (about 6 million variants) typically takes 
about one minute and produces a set of between a dozen and a few hundred variants that are 
presented to a clinical geneticist for subsequent manual review. 
  



 

Supplementary Note S3. Syntax for Inclusion and Exclusion Criteria 
Decision Tree Logic 

A Decision Tree consists of a sequence of branching points. A result of application of any 
Decision Tree is a set that we will call “final selection”. The process starts with a set consisting 
of all the variants (in a whole genome of patient family members or a cohort of patients). This set 
“travels” through a tree trunk. At each branching point a subset of variants is removed from the 
set and is either excluded from further consideration (thrown away) or unconditionally included 
in the final selection. Variants that have been neither excluded nor included, continue their 
“travel”. 

● Initially we have the whole set of items (variants) as working selection. 
● At each branching point: 

o If-instruction selects some subset of working selection; 
o Return-instruction determines whether the selected subset should be included in 

the “final selection” (return True) or excluded (return False): 

if condition: 
return bool decision 

● after If-instruction the selection set is (probably) reduced, and next instruction is applied 
to this reduced set; next instruction is one more If-instruction, or… 

● final instruction in code is always Return-instruction that determines what should be done 
to the rest of working selection: to include it in the “final selection” (True) or to exclude 
it (False): 

return bool decision 

There is only one other type of available instruction, Label-instruction: 
label (string) 

This instruction can be inserted to decision tree code before any If-instruction. So the user has a 
possibility to mark the state of working selection by label mark. This mark can be used in 
complex procedures (see functions reference: Filtering functions, 
functions Compound_Heterozygous() and Compound_Request()). 

Syntax Principles 

There are three levels of details in description of Decision Tree Python dialect: 

● necessary level: the dialect deals with very restricted subset of Python, so only a small 
subset of Python constructs is allowed; below is complete description of this subset 



● good practice level: some constructs discussed below are recommended as “good 
practice”; similar constructs that are not considered good practices could be refactored to 
their “good practice” analogues in the process of interactive changes of a decision tree 

● simplification level: since the dialect of Python is very “thin”, for purposes of easy 
typing and reading it supports the following “simplifications”: 

o string constants can be typed without quote symbols "" or '' if they 
are correct Python identifiers or constants True, False, None 

o lists vs. sets: in case when code refers list objects with [] parentheses, 
it is good practice to use set notation with {}; indeed, in most cases, order of elements in 
a “list” is irrelevant, while {} are more readable 

Decision Tree Syntax Reference 
Top level constructs 

There are three top level constructions available in the dialect: 
if condition : 
return bool decision 
 
return bool decision 
 
label (string) 

The following rules must be hold: 
● All instructions (excluding Return-sub-instruction of If-instruction) must 

start at the first character of a line, no indentation 

● A top-level Return-instruction must be the last non-empty line of code 
● Label-instruction can be used before any If-instruction 
● Empty lines between top-level constructions are allowed 
● Comments are acceptable only as a full line, not as a part of a line with code; 

comments should start with # character, possibly after spaces (note also that comments 
are not acceptable after the last instruction) 

● It is a good practice to place comment lines only before top-level instructions 
● condition in If-instruction might be quite long, so one might need multiple lines; 

It is good practice to use parentheses to group these lines, instead of \ characters. 

Conditions 

Combined conditions 

Operators and, or and not and parentheses () are fully supported for building complex conditions 
from atomic ones. 



Atomic condition uses an identifier of corresponding filtering property once per atomic 
condition. (See also Condition descriptor for understanding atomic operations.) 

Atomic numeric condition 

Has form of usual Python comparison operation with operators <, <=, ==, >=, >. Double form is 
acceptable, for example: 
min value < property_id <= max_value 

Best practice: use only operators <, <=, ==; in case of operator == place property identifier on 
the left. 

Atomic enumerated condition 

Has different form in dependency of join mode of condition: 
OR: 
property_id in { set/list of value strings } 
 
AND: 
property_id in all ({ set/list of value strings }) 
 
NOT: 
property_id not in { set/list of value strings } 
 

Notes: 
● notation above uses {} set parentheses; though it is recommended as a good practice, 

list parentheses [] are also supported 
● operator in is supported for all enumerated properties, including status (single-value 

properties) and multiset (multi -value properties). Semantic of status properties is simple 
and intuitive. 
 
In case of multiset properties, this notation is more sophisticated: the condition is positive 
when intersection of two sets is nonempty, i.e. at least one value of the property matches 
at least one value in the given set; it can be “explained” by a way that object representing 
filtering property redefines operator in from the left 

● in case of AND join mode interpretation of all() pseudo-function is 

even more sophisticated: it can be “explained” if result of all() redefines” in operation in 
a very specific way from the right. 

● in terms of Decision Tree there is no strong need for NOT join mode, 

because operator not is supported outside atomic conditions 



Atomic function conditions 

Function conditions have similar form to enumerated conditions with a change of property id to 
function_name (parameters) 

Syntax for parameters is Python standard. Since all values of the parameters must be JSON 
objects (however, with a change of JS constants true/false/null to Python 
counterparts True/False/None), there should be no problems in setting parameters up. 
(“Simplifications” are also acceptable for parameters). 

See Filtering functions for reference of available functions and their parameters. 

Decision Tree system support 

The following objects are explicated from the code of decision tree: 
● Points correspond to instruction in code; each If- or Return- instruction 

corresponds to a point with state of selection set: either working one or pre-final. The 
user needs to know how many items (variants) are in these sets, and moreover, has a 
possibility to study distribution of values for filtering properties of items in these sets.  

● Atomic conditions are “atomic” fragments of condition in If instructions. 
There can be many atomic conditions in one If instruction. It is important functionality of 
the system to locate them and provide their modifications. 

● State labels can be defined in code by Label instructions. They 
are used with complex functions. This functionality requires a high level of qualification 
and attention of the user; however they might be very important in practice. 

A decision tree can be modified in either of two ways: 

● manual typing and modifications of decision tree code 
● interactive actions modifying various details of decision tree, see 

Decision Tree modifying actions for reference. 

Interactive regime allows to make any meaningful transformation of a decision tree, so there is 
no strong need to use manual regime at all. Manual regime requires is helpful for complex 
manipulations with boolean logic of conditions and, of course for copy/paste operations. 
  



Supplementary Note S4. Variant Classification 
Anfisa provides users with the ability to semi-automate variant classification with a 

transparent decision model. Clinical classification of the sequence variants is calculated by a 
combination of intermediate parameters. The parameters are comprised of information 
programmatically assessed from various public databases, which include variant consequences, 
clinical significance allocated for the variant by HGMD and ClinVar databases and use of the 
genetic in-silico prediction tools, such as PolyPhen2, SIFT, FATHMM, Mutation Assessor and 
Mutation Taster. 

The variant’s consequence is divided into two groups identified either as a putative loss-
of-function variant or as unknown functional impact. By default, this grouping is the first step in 
a variant’s classification in Anfisa. The second step is filtering against the tags assigned to the 
variant in HGMD and ClinVar databases. The four values (consensus benign, consensus 
pathogenic, uncertain predictions and absent predictions) could be assigned to the variants. 
Consensus benign or pathogenic values are assigned to the variants for which HGMD and ClinVar 
tags are either concordant in both databases or have been tagged as consensus benign or pathogenic 
at least in one of the databases. An uncertain prediction value is assigned for the variants with 
discordant HGMD and ClinVar tags. For the variants with no consensus benign or pathogenic 
values, or variants that are absent from both databases, in-silico prediction tools are applied as a 
third step in the variant’s classification. Supplementary Table ST2 in the supplementary materials 
illustrates the variant classification algorithm. 

Corresponding to the variant classification, visual labels are assigned as crosses for variants 
leading to loss-of-function and as circles for the variants which do not implicitly disrupt function 
of the protein coding genes. The pathogenicity of the variants is coded by color. Benign variants 
are colored green, variants of uncertain significance are colored yellow, and pathogenic variants 
are colored red. However, in case of loss-of-function, benign variants are colored yellow despite 
being classified as not damaging due to nature of the variant consequence. Sequence variants 
which are not listed in HGMD and ClinVar and do not have in-silico predictions are displayed as 
gray circles. 
  



Supplementary Note S5. Landing page with datasets 
Analytical processing, annotation and loading of a whole genome into Anfisa Backend is 

a back-office operation. Therefore, in practice, user experience starts when a clinician is 
presented with a whole genome dataset in Anfisa UI.  The core of the dataset is a datacube, i.e., a 
multidimensional array of values accessible via standardized DBMS interfaces [54] representing 
the genetic variants. In addition, each dataset includes various supporting data and 
documentation (Figure SF1). All datasets provide information about the tools and their versions 
that have been used to process the data with the date when the tools have been executed. 
Additional documentation can include clinical notes, quality control and other reports. Anfisa 
handles the following formats for supporting documents: plain text (.txt), html and various image 
formats (.jpeg, .tiff, .png, etc.). Which specific documents are shown depends on the upstream 
pipeline and on how Anfisa is configured. For example, BGM and SEQuencing a Baby for an 
Optimal Outcome (SEQaBOO) implementations of Anfisa provided the following 
documentation: quality control (QC report, coverage histograms, ancestry principal component 
analysis plots, callability reports), reports from copy number variation analysis, and reports 
generated by a virus detection pipeline. 

 
Figure SF1. Landing page with genome datasets 

(1) Dataset name; (2) case documentation; (3) quick access to inclusion/exclusion panel 

 
 
  



Supplementary Note S6. Exploration of Pivot Tables 
It is often convenient to explore the number and basic properties of variants selected according to 
various combinations of filters without analyzing these variants individually. For example, a user 
may wish to quickly find out how many coding variants are present in the proband’s genome or 
how many of these variants have population frequencies below a given cutoff. Anfisa presents a 
summary of pivot tables that includes the number of variants in a subset, the ranges for all 
variant property values, and the distributions of variants in the value range.  
We illustrate this process in the study of Purpura fulminans (PF) patients [53]. These steps are 
illustrated in Figure SF2. 
 
Figure SF2. Pivot Exploration 

Exploration Interface for the PF dataset. (1) The jointly-called whole exome data set contains 1,577,451 
variants. (2) The user adds a condition on allele frequency from gnomAD, to review only the variants with 
allele frequency less than 0.05.  The number of variants is now reduced to 1,368,827. (3) The user 
selects variants from the Complement System Gene Panel, reducing the number of variants to 2,785. (4) 
The user selects only variants that are found in patients from the PF cohort, which brings the user to 
1,331 variants, scrolls down to the in-silico predictions section, and records the numbers of damaging and 
tolerated variants. Then the user changes the cohort to Sepsis (control). 

 

The next step is to change the gene panel to Coagulation System Gene List and compare PF 
and Sepsis cohorts. The exploration results are presented in Supplementary Table ST3. 
While the information obtained through the process described above cannot be used as evidence, 
it can provide a hypothesis that can subsequently be verified through rigorous statistical analysis.  
It should be noted that at no point in this procedure have we looked at individual variants (which 
is the next stage of the research process), but instead used pivot tables. 



Supplementary Note S7. Working with Decision Trees 
In Anfisa, the recommended first step of variant curation is the application of a high 

sensitivity filter to select a large set of putative variants, or rather to exclude variants that we are 
confident are irrelevant. The filter represents an inclusion/exclusion criterion and is usually 
implemented as a decision tree (Figure SF3). The operation corresponds to a database query and 
yields a compact subset of variants. The subset can be saved as a derived dataset, like 
construction of a materialized view in a Relational DBMS. In the current version of Anfisa, this 
is an explicit operation triggered by the user when selecting the “Save as derived dataset” 
operation from the menu. We anticipate that in future versions, it will become an implicit 
operation, like automated gear shifting in cars with automatic transmission. 
 
Figure SF3. Inclusion and Exclusion Criteria. 

Inclusion/exclusion criteria is implemented as a decision tree. Each block is a branching point. A condition 
shown in the center panel of the window is applied to a set of variants considered at the given step. 
Based on the condition, the variants are either ultimately included in the candidate list (shown with green 
“+” sign in the left panel) or excluded from further consideration (shown with brown “-” sign in the left 
panel). The right panel is a pivot table corresponding to a set of variants at a given step: under 
consideration, included or excluded. Each of these sets can be examined for more details. 

 
 



The inclusion/exclusion criteria can either be based on phenotypic information, when 
potentially damaging variants are selected from a user-defined list of genes, or on the “genetic 
first” approach [40], which uses a certain inheritance model consistent with the observed 
phenotypes. The Anfisa code base provides examples of decision trees for both approaches. The 
demo version of Anfisa includes benchmark variants from the whole genome of openly-
consented “Genome in a Bottle” Ashkenazi trio from the Personal Genome Project [55]. We use 
the high-confidence benchmarks provided by NIST version 4.2 [56]. 

From a datacube representing the whole genome, a user can create multiple derived 
datasets corresponding to different working hypotheses. In the demo version of Anfisa we 
provide three derived workspaces based on the NIST high confidence variants: one for hearing 
loss candidate variants, one based on the BGM “Red Button” criteria, and one based on the BGM 
research criteria.  



Supplementary Note S8. Variant curation within a derived dataset 
Each derived dataset provides the same functionality as a datacube with two additional features: 

1. Variants can be directly visualized and manually reviewed. 
2. More granular inclusion/exclusion criteria based on the selection of individual transcripts. 

For example, it is possible to pick variants that are selectively predicted to be damaging only in 
Ensembl transcripts or in a specified version of RefSeq transcripts. This is an important 
functionality for searching for compound heterozygous variants. 

During data transfer of the selected variants set into a derived dataset, each variant is 
classified according to ACMG guidelines, and assigned a color-coded label. 
Phenotype-based analysis (looking for potential hearing loss variants) 

A sample workflow for hearing loss can be illustrated using a demo dataset derived from 
the “Genome in a Bottle” Ashkenazi trio NIST v4.2. Because we are using public data, the 
proband has normal hearing, so the following workflow is for illustration purposes only. A user 
can either create a derived dataset by applying the “Hearing Loss v.5” decision tree or by using a 
prebuilt dataset named PGP3140_Hearing_Loss_Variants. 

The dataset contains 41 variants. Inside the dataset, the user first applies the “Hearing 
Loss Quick Filter”, which implements the logic based on the selection of individual transcripts to 
further reduce the number of variants to 24. The filter itself can be examined in the Decision 
Tree Panel. Apart from the variants found in the proband, the 24 variants include the carrier 
variants found only in parents. The user should exclude those variants by selecting “proband” in 
the “Sample” drop-down menu. That leaves 8 variants. The user then reviews these variants 
manually. 

The first variant is chr4:54727298 A>C in KIT (Figure SF4). It is included in the dataset 
because it has the “DM” tag in HGMD. However, it is a common variant in the Ashkenazi 
Jewish population to which the proband belongs and is annotated as “Benign” in ClinVar. A 
clinician would likely exclude this variant from consideration. In Anfisa, this is done by tagging 
a variant as “Likely Benign” and leaving a corresponding note. 
 
Figure SF4. Looking at KIT chr4:54727298 A>C Variant 

We illustrate working in a derived dataset on the PGP3140_WGS_HLPANEL dataset created for a 
custom hearing loss panel. The full dataset contains 2529 variants. After application of “SEQaBOO 
Hearing Loss v.3.5” preset filter (top left lis-box) a user is presented with 21 putative candidate variants. 
Selecting variants present in proband (“Select Sample” list-box further below) leaves the user with 11 
variants. 
The user then reviews these variants manually. We will look in details at the variant chr4:55569954 A>C 
(chr4:54703788 A>C in HG38) in KIT. It is included in the dataset because it has the “DM” tag in HGMD. 
However, it is a common variant in the Ashkenazi Jewish population to which the proband belongs and is 
annotated as “Benign” in ClinVar. A clinician would likely exclude this variant from consideration. In 
Anfisa, this is done by tagging a variant as “Likely Benign” and leaving a corresponding note. 



 
The next variant is chr5:71522350 G>C in BDP1. This one is more suspicious, because it 

is rare, though it is about 20 times more common in Ashkenazi Jews than in other populations 
and is not present in ClinVar or other databases. It is predicted to possibly cause a splice acceptor 
gain by the SpliceAI tool. It is a heterozygous variant in a gene associated with autosomal 
recessive hearing loss and inherited from the proband’s mother, and as such is unlikely to cause 
hearing loss. This can be tagged for further review by the user. 

The next KCNQ1 variant chr11:2847958 C>T and the last variant in JAG should be 
categorized like the KIT one. The rest are extremely rare variants without clear clinical 
annotations. A user might want to look at the transcripts tab to categorize them. The transcripts 
that served as a base for selecting variants are shown in bold. If the user checks “Show Selection 
Only” checkbox, then all other transcripts become hidden. 
Genetics first/Phenotype agnostic analysis 

Anfisa includes two built-in decision trees which illustrate the Genetics-first approach:  
BGM Red Button (BGMRB) and BGM Research (BGMR). The BGMRB decision tree 
generates a subset of relatively high-quality variants, for which there are at least some reasons to 
suspect that they might be causal for a genetic defect. The BGMR decision tree is a superset of 
BGMRB that includes auxiliary variants which, while there is no known evidence of them being 
causative, there is no evidence to the contrary either, as well as variants with poorer call quality. 

At the time of publication, a demo instance, based on Anfisa software version 0.6.12 and 
the Ashkenazi Trio high-confidence benchmarks VCF version 4.2 provided by NIST [56] is 
hosted at https://demo.forome.org/anfisa/app/dir. 

We first review the PGP3140_BGM_RedButton data set created by application of 
BGMRB. The X-chromosome variants are not identified in the publicly available dataset; hence 
the X-linked inheritance mode is not applicable in this example. Therefore, we only review the 
autosomal dominant and recessive inheritance modes. Selecting the Mendelian_Auto_Dom filter 



yields no variant either. It is understandable given the nature of the dataset: autosomal dominant 
variants usually require either running dedicated de-novo callers or more than just 3 relatives 
included in the Variant Call Format file. In this dataset, however, we only have a simple trio. 

Recessive analysis falls into two categories: homozygous and compound heterozygous. 
Selecting Mendelian_Homozygous_Recessive quick filter yields 6 variants in 5 genes, 5 missense 
and 1 in-frame insertion. All missense variants have mostly benign in-silico predictions and are 
not found in ClinVar. Detailed in-silico predictions can be examined in the Transcripts tab, 
where transcripts that served as the basis for inclusion of the variants in the list are shown in 
bold. By checking the “Show Selection Only” checkbox, the user can view only predictions 
relevant to the inclusion criteria. Selecting the Mendelian_Compound_Het filter displays a list of 
7 compound heterozygous variants in 3 genes. They can be reviewed in the same way as the 
homozygous variants. Scrolling through the list with the open Quality tab provides detailed 
information about the alleles. 

To get a better feel for how the filters are constructed, a user can click on the Conditions 
menu, click on the Filters button, then select Load and select one of the filters discussed above. 
Now the user can modify the filter by adjusting its options. 
  



Supplementary Note S9. Reporting chosen variants 
Manual review and tagging of the variants 

Once a user has chosen or built an appropriate filter for their analysis, they can manually 
review the selected variants. Each variant can be tagged with one or multiple tags. Most common 
tags are included in the default Anfisa package and users can add an unlimited number of their 
own tags. The user can also include a text note with each variant. Tags and notes are stored in the 
context of the primary datasets and are visible in all other datasets derived from the same source. 
An example of a tag can be: “include in the report”. 
Export options 

Anfisa supports several ways of exporting selected variants. A selection can be based on 
filters, tags, or both. 

To export selected variants as a Microsoft Excel Workbook, the user should first provide 
an export template. A template defines what properties of the variant are exported, in what order 
they are exported, and what colors/styles are used for specific columns. A sample template used 
for SEQaBOO project is included in the default package. 

Variants can be also exported as a simple tab-delimited file. By default, only gene name 
and variant notations are included as two columns in the file. This option can be customized for a 
specific installation by modifying the solutions.py module. 

Another option is to export variants in a JavaScript Object Notation (JSON) format that 
can be used for further machine processing. 

Finally, the user can detach a derived dataset that can be made available to a different 
group of users as a primary dataset. 
  



Supplementary Note 10. GitHub Repositories Structure 
The Forome platform includes the following repositories:  
 

Anfisa (https://github.com/ForomePlatform/anfisa) is the main repository for the backend 
and built-in Graphical UI (GUI). It is developed in Python and contains implementation of 
most of the algorithms used for curation. Its subfolder 
https://github.com/ForomePlatform/anfisa/tree/master/app/config/files contains the source 
code for gene lists (panels) (extension *.lst) and built-in decision trees representing 
complex inclusion and exclusion criteria (extension *.pyt). Python module 
https://github.com/ForomePlatform/anfisa/blob/master/app/config/solutions.py contains 
implementations of built-in filters. 
 
Functionality of the backend is exposed through REST API. The up to date description of 
the REST API is available at 
https://github.com/ForomePlatform/anfisa/blob/master/app/REST.txt 
 
Anfisa Front End (https://github.com/ForomePlatform/Anfisa-Front-End) is the repository 
for Vue.js based Front End. It communicates with the backend through the public REST 
API. 
 
Anfisa Annotations (https://github.com/ForomePlatform/Anfisa-Annotations) contains the 
annotation pipeline, which is a Java program. 
 
Variant Callers (https://github.com/ForomePlatform/variant_callers) is the repository for 
standalone Python implementation of BGM callers including the Bayesian De-Novo caller 
and tools for creation of the library for the Bayesian De-Novo caller. This is a completely 
redeveloped implementation of the algorithm described in [47]. 
Additional repositories contain various utilities and projects at early stages of development. 

  



Code Sample. Built-in Curation Rules 
For a full set of rules refer to: 
https://github.com/ForomePlatform/anfisa/tree/master/app/config/files 
Inclusion and Exclusion Criteria 
Rare Variants for a Trio 
 
#0.     Check sequencing quality 
if Proband_GQ <= 19: 
    return False 
if Min_GQ <= 39: 
    return False 
if QD <= 4: 
    return False 
if FS >= 30: 
    return False 
 
#Always include De-Novo variants 
if (Callers in {"BGM_BAYES_DE_NOVO"}): 
    return True 
if (Callers in {"RUFUS"}): 
    return True 
if (Callers in {"CNV"}): 
    return True 
 
#Exclude common variants 
if gnomAD_AF_Genomes >= 0.01: 
    return False 
if gnomAD_AF_Exomes >= 0.01: 
    return False 
#Exclude known homozygous variants 
if (gnomAD_Hom >= 1): 
    return False 
if (gnomAD_Hem >= 1): 
    return False 
 
#Exclude variants common for an ancestry group 
if (gnomAD_PopMax_AN >= 2000 and gnomAD_PopMax_AF >= .05): 
    return False 
 
#Exclude non-coding 
#   except those likely to alter splicing 
if ((Most_Severe_Consequence in 
            { 
                "intergenic_variant", 
                "intron_variant", 
                "non_coding_transcript_exon_variant", 
                "upstream_gene_variant", 
                "downstream_gene_variant", 
                "TF_binding_site_variant", 
                "regulatory_region_variant", 
                "5_prime_UTR_variant", 
                "3_prime_UTR_variant", 
                "splice_region_variant", 
                "TFBS_ablation", 
                "mature_miRNA_variant", 
                "synonymous_variant" 
            }) 
        and (splice_ai_dsmax <= 0.2)): 
    return False 
 
label("Comp-1") 
 
# Inheritance Mode 
if Inheritance_Mode() in {"Homozygous Recessive"}: 
    return True 



 
if Inheritance_Mode() in {"X-linked"}: 
    return True 
 
if Compound_Het(state="Comp-1") in {Proband}: 
    return True 
return False 

Variants for BGM Analysis (Undiagnosed Patients)  
 
#0.     Check sequencing quality 
if Proband_GQ <= 19: 
    return False 
 
#Always include De-Novo variants 
if (Callers in {"BGM_BAYES_DE_NOVO"}): 
    return True 
if (Callers in {"RUFUS"}): 
    return True 
if (Callers in {"CNV"}): 
    return True 
if (Variant_Class in {"CNV: deletion"}): 
    return True 
 
#Exclude common variants 
if gnomAD_AF_Genomes >= 0.01: 
    return False 
if gnomAD_AF_Exomes >= 0.01: 
    return False 
 
#Exclude variants common for an ancestry group 
if (gnomAD_PopMax_AN >= 2000 and gnomAD_PopMax_AF >= .05): 
    return False 
 
#Exclude very low impact variants 
#   except those likely to alter splicing 
if ((Most_Severe_Consequence in 
            { 
                "intron_variant", 
                "intergenic_variant", 
                "non_coding_transcript_exon_variant", 
                "upstream_gene_variant", 
                "downstream_gene_variant", 
                "TF_binding_site_variant", 
                "regulatory_region_variant" 
            }) 
        and (splice_ai_dsmax <= 0.2)): 
    return False 
 
label("Comp-1") 
 
# Inheritance Mode 
if Inheritance_Mode() in {"Homozygous Recessive"}: 
    return True 
 
if Inheritance_Mode() in {"X-linked"}: 
    return True 
 
if Inheritance_Mode() in {"Autosomal Dominant"}: 
    return True 
 
if Compound_Het(state="Comp-1") in {Proband}: 
    return True 
 
return False 
 



Hearing Loss variants 
#0.     Check sequencing quality 
if Proband_GQ <= 19: 
    return False 
if FS > 30: 
    return False 
if QD < 4: 
    return False 
#Exclude  variants not detected in the family 
if Num_Samples < 1: 
    return False 
#Exclude  variants not in hearing loss panel 
if Panels not in {All_Hearing_Loss}: 
    return False 
#Include Present in HGMD as "DM" 
if HGMD_Tags in {"DM"}: 
    return True 
# Exclude common variants AF> 5% 
if gnomAD_AF >= 0.05: 
    return False 
#Exclude variants farther then 5pb from intronic/exonic border 
if (not Region in {"exon"}) and Dist_from_Exon >= 6: 
    return False 
#2.a.  Include if present in ClinVar as: Path, Likely Path, VUS 
# (worst annotation, unless annotated benign by trusted submitter') 
if (Clinvar_Benign in {"False"} and 
        Clinvar_Trusted_Benign in {"False", "No data"}): 
    return True 
# 2.b. Include All de novo variants 
if (Callers in {"BGM_BAYES_DE_NOVO"}): 
    return True 
if (Callers in {"RUFUS"}): 
    return True 
if (Callers in {"CNV"}): 
    return True 
# 2.c. Include all potential LOF variants 
#       (stop-codon, frameshift, canonical splice site). 
if (Most_Severe_Consequence in { 
            'transcript_ablation', 
            'splice_acceptor_variant', 
            'splice_donor_variant', 
            'stop_gained', 
            'frameshift_variant', 
            'stop_lost', 
            'start_lost' 
        }): 
    return True 
# 3.a. Leave only: 
#   "Missense", "synonymous" and "splice region" variants 
if (Most_Severe_Consequence not in { 
        "inframe_insertion", 
        "inframe_deletion", 
        "missense_variant", 
        "protein_altering_variant", 
        "splice_region_variant", 
        "synonymous_variant", 
        "stop_retained_variant", 
        "coding_sequence_variant" 
        }): 
    return False 
#3.    Include: AF < 0.0007 (GnomAD Overall) 
#  And: PopMax < 0.01 
#       (minimum 2000 alleles total in ancestral group)') 
if (gnomAD_AF <= .0007 and 
        (gnomAD_PopMax_AN <= 2000 or gnomAD_PopMax_AF <= .01)): 
    return True 
 
return False 



Variants with Damaging Predictions 
if (Most_Severe_Consequence in { 
            'transcript_ablation', 
            'splice_acceptor_variant', 
            'splice_donor_variant', 
            'stop_gained', 
            'frameshift_variant', 
            'CNV: deletion', 
            'start_lost' 
        }): 
    return True 
 
if (Clinvar_stars in {'2', '3', '4'} and 
        ClinVar_Significance in { 
            'Likely pathogenic', 
            'Pathogenic', 
            'Pathogenic, Affects', 
            'Pathogenic, other', 
            'Pathogenic, protective', 
            'Pathogenic, association, protective', 
            'Pathogenic, drug response', 
            'Pathogenic, other, risk factor', 
            'Pathogenic, risk factor', 
            'Pathogenic/Likely pathogenic', 
            'Pathogenic/Likely pathogenic, drug response', 
            'Pathogenic/Likely pathogenic, risk factor', 
            'Pathogenic/Likely pathogenic, other', 
            'Likely pathogenic, drug response', 
            'Likely pathogenic, risk factor', 
            'Likely pathogenic, other', 
            'Likely pathogenic, association' 
        }): 
    return True 
 
if (Clinvar_stars in {'2', '3', '4'} and 
        ClinVar_Significance in { 
            'Benign', 
            'Benign, association', 
            'Benign, drug response', 
            'Benign, other','Benign, risk factor', 
            'Benign/Likely benign', 
            'Benign/Likely benign, Affects', 
            'Benign/Likely benign, association', 
            'Benign/Likely benign, drug response', 
            'Benign/Likely benign, drug response, risk factor', 
            'Benign/Likely benign, other','Benign/Likely benign, protective', 
            'Benign/Likely benign, protective, risk factor', 
            'Benign/Likely benign, risk factor' 
        }): 
    return False 
 
if splice_ai_dsmax > 0.5: 
    return True 
if Polyphen_2_HVAR in {"P", "D"}: 
    return True 
if Polyphen_2_HDIV in {"B"}: 
    return False 
if SIFT in {"deleterious", "deleterious_low_confidence"}: 
    return True 
if SIFT in {"tolerated", "tolerated_low_confidence"}: 
    return False 
if Polyphen_2_HDIV in {"P", "D"}: 
    return True 
if Polyphen_2_HVAR in {"B"}: 
    return False 
 
return False 
 



Simple Filters 
Most of the filters below are supposed to be applied to workspaces created by applying “Variants 
for BGM Analysis” and Exclusion Criteria or a similar curation rule. 
Common for all Mendelian Filters 

● FT in {PASS} 
● Proband_GQ >= 50 
● Min_GQ >= 40 # Minimum GQ for all family members 
● QD >= 4 
● FS <= 30 
● Transctipt_consequence in { 

o "CNV: deletion",  
o transcript_ablation,  
o splice_acceptor_variant,  
o splice_donor_variant,  
o stop_gained, frameshift_variant,  
o inframe_insertion,  
o inframe_deletion,  
o missense_variant,  
o protein_altering_variant,  
o incomplete_terminal_codon_variant,  
o synonymous_variant,  
o splice_region_variant,  
o coding_sequence_variant 

● } 
● Transcript_biotype in {protein_coding} 
● Transcript_source in {Ensembl} 

 
Mendelian Homozygous Recessive 
Common for all Mendelian filters plus: 

● Inheritance_Mode() in {"Homozygous Recessive"} 
 
Mendelian Compound Heterozygous 
Common for all Mendelian filters plus: 

• Compound_Het(approx = "transcript") in {Proband} 
 
Mendelian Autosomal Dominant 
Common for all Mendelian filters plus: 

● Inheritance_Mode() in {" Autosomal Dominant"} 



BGM De-Novo 
● Transctipt_consequence in { 

o "CNV: deletion",  
o transcript_ablation,  
o splice_acceptor_variant,  
o splice_donor_variant,  
o stop_gained, frameshift_variant,  
o inframe_insertion,  
o inframe_deletion,  
o missense_variant,  
o protein_altering_variant,  
o incomplete_terminal_codon_variant,  
o synonymous_variant,  
o splice_region_variant,  
o coding_sequence_variant 

● } 
● Callers in {BGM_BAYES_DE_NOVO, RUFUS} 

Impact Splicing 
● FT in {PASS} 
● Proband_GQ >= 50 
● Min_GQ >= 40 # Minimum GQ for all family members 
● QD >= 4 
● FS <= 30 
● splice_ai_dsmax > 0.2 

 

Supplementary Table ST1. Examples of Available Variant Curation 
Platforms 
Name Country References 
Genuity Science (Wuxi 
outside of China) US  

Illumia TruSight (incl 
BlueBee acq) US 

https://www.illumina.com/informatics/biological-interpretation/variant-
analysis/rare-variants.html 

Broad Institute Seqr (US) US  
Sophia Genetics 
(w/acquired Interactive 
Biosoftware) CH  

Agilent (w/acquired 
acquiring Alissa Interpret) 
(US) US  
Breakthrough Genomics 
Eliter US 

https://btgenomics.com/#technology 
https://enliter.btgenomics.org/user/login 

Invitae (US) incl Genosity 
& Sherloc US 

https://www.genosity.com/software/integrated-genomic-toolkit/ 
https://www.invitae.com/en/variant-classification/ 



Opko Health GeneDX  
https://www.genedx.com/wp-content/uploads/2020/08/40150_Clinical-
Genomics-Overview-Brochure-FINAL-07.2020.pdf 

Congenica UK  

Emedgene IL  

Fabric Genomics US https://fabricgenomics.com/fabric-gem/ 

Saphetor Varsome CH 
https://saphetor.com/ 
https://varsome.com/ 

GeneYX  IL https://geneyx.com/geneyxanalysis/ 

Nostos Genomics DE https://www.nostos-genomics.com/#product 

Genoox, Genoox Franklin US 
https://franklin.genoox.com/clinical-db/home 
https://www.genoox.com/bioinformatics-technology/genomic-tools/ 

GenomCore  
(+ Made of Genes - e2e 
clinical services) ES https://genomcore.com/en/technology-stack/ 
PierianDx (+Knome + Tute 
Genomics) US 

https://www.pieriandx.com/clinical-genomics-software-for-next-
generation-sequencing 

Ranomics US https://www.ranomics.com/solutions 

Qlucore SE https://www.qlucore.com/products 
Engenome (eVai 
Interpreter) IT https://www.engenome.com/product/ 
 
  



Supplementary Table ST2. Color and Shape codes used for variants 
visualization 
Algorithm for sequence variant’s classification used in Anfisa for color and shape coded variant’s 
labels. 
 
 HGMD DM HGMD 

DM? 
HGMD other or absent 

ClinVar 
pathogenic 

Consensus 
pathogenic 

Consensus 
pathogenic 

Consensus pathogenic 

ClinVar 
benign 

Consensus 
benign 

Consensus 
benign 

Consensus benign 

ClinVar 
other or 
absent 

Consensus 
pathogenic 

Consensus 
pathogenic 

In-Silico Predictions 

 Worst 
benign 

Worst 
possibly 
damaging 

Worst 
damaging 

Best 
Benign 

Consensus 
benign 

Uncertain Uncertain 

Best 
possibly 
damaging 

X Uncertain Uncertain 

Best 
damaging 

X X Consensus 
pathogenic 

No in-silico predictions: absent 

 



Supplementary Table ST3. Ratios of Damaging to Benign Variants for 
Sepsis Patients with and without PF 
  Complement System Coagulation System 

  PF Cohort Control Cohort PF Cohort Control 

Cohort 

PolyPhen 2 

HDIV 

Damaging 61 28 32 16 

Benign 61 41 48 23 

Ratio 1.00 0.68 0.67 0.70 

Polyphen 2 

HVAR 

Damaging 49 20 25 12 

Benign 77 55 56 28 

Ratio 0.64 0.36 0.45 0.43 

SIFT Damaging 87 53 41 20 

Benign 77 53 49 29 

Ratio 1.13 1.00 0.84 0.69 

FATHMM Damaging 42 19 54 32 

Benign 114 81 37 17 

Ratio 0.37 0.23 1.46 1.89 

 


