1	Supporting Information for Peng et al., "Practical Indicators for Risk of Airl	borne
2	Transmission in Shared Indoor Environments and their Application to COV	<u>′ID-19</u>
3	Outbreaks"	
4		
5	S1. Deviation of quanta concentration from steady state due to finite event	duration
6	In case of short events where quanta concentration does not reach steady state	, a correction
7	factor, r_{ss} , can be introduced to account for the deviation of average quanta conc	centration (c _{avg})
8	from that at steady state (c):	
9	$r_{ss} = c_{avg} / c$	(S1)
10	Under the assumption of no infectious quanta in the air at the beginning of the ev	vent, c _{avg} can be
11	easily obtained from the integration of equation (1). Details of the derivation can	be found
12	elsewhere. ^{1,2} For a period [0, D],	
13	$c_{avg} = E_p f_e / (V \lambda) x (1 - (1 - e^{-\lambda D}) / (\lambda D))$	(S2)
14	Inserting equations (2) and (S2) into equations (S1) yields:	
15	$r_{ss} = 1 - (1 - e^{-\lambda D}) / (\lambda D)$	(S3)
16	The value of r_{ss} as a function of λD is shown in Figure S3. r_{ss} approaches to $\lambda D/2$	2 when λD is
17	very small and to 1 when λD is very large, and reaches 0.6 at $\lambda D \sim$ 2.	
18		
19	S2. Monte Carlo uncertainty propagation for the fitting of attack rates vs. H	r
20	We follow the standard procedure of Monte Carlo uncertainty propagation ³ for th	e fitting of
21	attack rates vs. H_r . We assume log-normal distributions for the variables constra	ining H_r (r_E , r_B ,
22	D, V, and $\lambda;f_e$ and f_i are excluded as little to no mask wearing was reported for the transformation of	ne COVID-19
23	outbreaks analyzed in this study) to ensure positive values of their samples. $r_{\text{E}},r_{\text{E}}$	r_{B} , D, V, and λ
24	are assigned uncertainty factors of 2.5, 1.3, 1.1, 1.3, and 1.4 respectively (appro	ximately
25	corresponding to relative uncertainties of 150%, 30%, 10%, 30%, and 40%). The	e last three
26	uncertainties are typical values for outbreak case studies. The uncertainty factor	of 1.3 for r_B

27 mainly reflects the possible error arising from the discretization of physical intensity levels in the 28 ⁴ dataset. We assume an uncertainty factor of 2.5 for r_E because Buonanno et al.⁵ estimated the 29 uncertainty of $E_{p0}xr_E$ for COVID-19 to be an order of magnitude and we think that r_E , a relative 30 factor that depends largely on type of activity but not on that of disease, contributes only a minority of this uncertainty. Since attack rate (AR) is bounded between 0 and 100%, it does not 31 32 follow a log-normal distribution. We use a similar transformation as in Gans et al.⁶, i.e., AR / (1 -33 AR), to expand the domain of the samples from [0, 1] to $[0, +\infty)$. The intermediate samples then 34 can be depicted with a log-normal distribution. We assign an uncertainty factor of 1.1 to the 35 intermediate samples. The generated samples are then reversely transformed into the AR 36 samples. When AR is small, the assigned uncertainty factor of 1.1 approximately corresponds to 37 a relative uncertainty of 10% for AR; while when AR is close to 1, this uncertainty factor reflects 38 an approximate relative uncertainty of 10% for non-attack rate, i.e., (1 - AR). 10000 random 39 samples of r_E , r_B , D, V, λ , and AR are generated for each of the COVID-19 case studies in Table 40 1. A fitting can be done for one sample of r_E , r_B , D, V, λ , and AR of all those case studies, yielding a sample of the fitted parameter, E_{00} . This fitting is repeated for all 10000 samples of 41 42 the input parameters, giving 10000 samples of Ep0, apparently log-normally distributed, with 5th 43 and 95th percentiles being 8.7 and 45.4 quanta h⁻¹, respectively.

44

45

46 **References**

- 47 (1) Miller, S. L.; Nazaroff, W. W.; Jimenez, J. L.; Boerstra, A.; Buonanno, G.; Dancer, S. J.;
 48 Kurnitski, J.; Marr, L. C.; Morawska, L.; Noakes, C. Transmission of SARS-CoV-2 by
 49 Inhalation of Respiratory Aerosol in the Skagit Valley Chorale Superspreading Event.
 50 Indoor Air 2021, 31 (2), 314–323.
- (2) Peng, Z.; Jimenez, J. L. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. *Environmental Science & Technology Letters* 2021. https://doi.org/10.1021/acs.estlett.1c00183.
- 54 (3) Bipm; lec; lfcc; llac; lso; lupac; lupapoiml. JCGM 101: 2008 Evaluation of Measurement
 55 Data Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement " —
 56 Propagation of Distributions Using a Monte Carlo Method; 2008.

- 57 (4) EPA. Chapter 6—Inhalation Rates. In *Exposure Factors Handbook*; U.S. Environmental
 58 Protection Agency, 2011.
- (5) Buonanno, G.; Stabile, L.; Morawska, L. Estimation of Airborne Viral Emission: Quanta
 Emission Rate of SARS-CoV-2 for Infection Risk Assessment. *Environ. Int.* 2020, 141
 (April), 105794.
- 62 (6) Gans, B.; Peng, Z.; Carrasco, N.; Gauyacq, D.; Lebonnois, S.; Pernot, P. Impact of a New
 63 Wavelength-Dependent Representation of Methane Photolysis Branching Ratios on the
 64 Modeling of Titan's Atmospheric Photochemistry. *Icarus* 2013, *223* (1), 330–343.
- (7) Buonanno, G.; Morawska, L.; Stabile, L. Quantitative Assessment of the Risk of Airborne
 Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications.
 Environ. Int. 2020, 145, 106112.
- (8) Klink, K. Trends in Mean Monthly Maximum and Minimum Surface Wind Speeds in the
 Coterminous United States, 1961 to 1990. *Clim. Res.* **1999**, *13*, 193–205.
- (9) Liu, S.; Li, R.; Wild, R. J.; Warneke, C.; de Gouw, J. A.; Brown, S. S.; Miller, S. L.; Luongo,
 J. C.; Jimenez, J. L.; Ziemann, P. J. Contribution of Human-Related Sources to Indoor
 Volatile Organic Compounds in a University Classroom. *Indoor Air* 2016, *26* (6), 925–938.
- (10) ASHRAE. Ventilation for Acceptable Indoor Air Quality: ANSI/ASHRAE Standard 62.1 2019; ANSI/ASHRAE, 2019.
- (11) Davies, A.; Thompson, K.-A.; Giri, K.; Kafatos, G.; Walker, J.; Bennett, A. Testing the
 Efficacy of Homemade Masks: Would They Protect in an Influenza Pandemic? *Disaster Med. Public Health Prep.* 2013, 7 (4), 413–418.
- (12) Li, Y.; Qian, H.; Hang, J.; Chen, X.; Cheng, P.; Ling, H.; Wang, S.; Liang, P.; Li, J.; Xiao,
 S.; Wei, J.; Liu, L.; Cowling, B. J.; Kang, M. Probable Airborne Transmission of SARS-CoV-
- 2 in a Poorly Ventilated Restaurant. *Build. Environ.* **2021**, *196*, 107788.
- 81 (13) Jimenez, J. L.; Peng, Z. COVID-19 Aerosol Transmission Estimator
- 82 https://tinyurl.com/covid-estimator (accessed Mar 26, 2021).

84 Tables

Symbol	Physical meaning	Unit (dimension
		-less if no unit
		indicated)
В	Volumetric breathing rate of a susceptible person	m ³ h ⁻¹
B ₀	Volumetric breathing rate of a resting susceptible person	m ³ h ⁻¹
с	Virus concentration	quanta m ⁻³
Cavg	Average virus concentration in the air over the duration of the event	quanta m ⁻³
D	Duration of the event	h
E _p	SARS-CoV-2 exhalation rate by an infector	quanta h ⁻¹
E _{p0}	SARS-CoV-2 exhalation rate by an infector resting and only orally breathing	quanta h ⁻¹
f _e	Exhalation penetration efficiency for face covering	
fi	Inhalation penetration efficiency for face covering	
н	Infection risk parameter, as defined in equation (11)	persons h ² m ⁻³
H'	Infection risk parameter without activity taken into account, as defined in equation (14)	persons h ² m ⁻³

Hr	Relative infection risk parameter, as defined in equation (15)	h² m ⁻³
ηι	Probability of an occupant being an infector	
λ	First-order overall rate constant of the virus infectivity loss	h ⁻¹
λ ₀	Ventilation rate	h ⁻¹
λ_{cle}	Virus removal rate by cleaning devices	h ⁻¹
λ_{dec}	Virus infectivity decay rate	h ⁻¹
λ_{dep}	Deposition rate of airborne virus-containing particles onto surfaces	h ⁻¹
L	Ventilation rate per susceptible person	liter s ⁻¹ person ⁻¹
N	Number of occupants	
Ni	Number of infectors	
N _{sus}	Number of susceptible persons	
N _{si}	Number of secondary infections	
n	Amount of the virus infectious doses inhaled by a susceptible person in a given indoor environment	quanta
Ρ	Probability of infection of a susceptible person conditional on the presence of an infector	
Pa	Absolute probability of infection of a susceptible person	

r _{ss}	Ratio of the average virus concentration to that at steady state	
r _B	Relative breathing rate enhancement factor (vs. B_0) for an activity	
ΓE	Relative virus exhalation rate enhancement factor (vs. E_{p0}) for an activity	
V	Indoor environment volume	m ³

87 Table S1: mathematical symbols used in this study

90 (a)

	Activity	Relative quanta emission rate factor			
Physical intensity	Vocalization				
	Oral breathing	1			
Resting	Speaking	4.7			
	Loudly speaking	30.3			
	Oral breathing	1.2			
Standing	Speaking	5.7			
	Loudly speaking	32.6			
	Oral breathing	2.8			
Light exercise	Speaking	13.2			
	Loudly speaking	85			
	Oral breathing	4.3			
Moderate exercise	Speaking	20.4			
	Loudly speaking	132			
	Oral breathing	6.8			
Heavy exercise	Speaking	31.6			
	Loudly speaking	204			

92 (b)

Age group	Activity level											
(year)	Sleep or nap	Sedentary /passive	Light intensity	Moderate intensity	High intensity							
<1	0.63	0.64	1.6	2.9	5.4							
1 - <2	0.94	1.0	2.5	4.4	7.9							
2 - <3	0.96	1.0	2.5	4.4	8.1							
3 - <6	0.90	0.94	2.3	4.4	7.7							
6 - <11	0.94	1.0	2.3	4.6	8.7							
11 - <16	1.0	1.1	2.7	5.2	10							
16 - <21	1.0	1.1	2.5	5.4	10							
21 - <31	0.90	0.88	2.5	5.4	10							
31 - <41	1.0	0.89	2.5	5.6	10							
41 - <51	1.0	1.0	2.7	5.8	11							
51 - <61	1.1	1.0	2.7	6.0	11							
61 - <71	1.1	1.0	2.5	5.4	9.8							
71 - <81	1.1	1.0	2.5	5.2	9.8							

≥81	1.1	1.0	2.5	5.2	10
Average	1.0	1.0	2.4	5.0	9

- 95 Table S2: relative factors of (a) quanta emission and (b) volumetric breathing rates for different
- 96 activities according to refs ^{5,7} and ref ⁴, respectively. The values of relative quanta emission rate
- 97 factor for moderate exercise in (a) are interpolated as in ref².

Relative quanta emission factor		
Silent	1	
Speaking	5	
Shouting, singing	30	
Heavy exercise	7	
Relative breathing rate factor		
Silent	1	
Speaking	1	
Shouting, singing	1	
Heavy exercise	10	
Low occupancy	10	persons
High occupancy	100	persons
		-
Ventilation rate		
Outdoor and well ventilated	500	ACH
Indoor and well ventilated	10	ACH
Poorly ventilated	1	ACH
Face coverings		
Exhalation filtration efficiency	50%	
Inhalation filtration efficiency	30%	
Contact time		
Short	1	h
Long	10	h
Effective volume		
Indoor	300	m ³
Outdoor	300	m³

⁹⁸

100 volume is assumed to be the same as the indoor one (10 m x 10 m x 3 m box). The outdoor ventilation rate

101 corresponds to the ventilation by wind passing through a horizontal dimension of the outdoor box (10 m) at 5 km h⁻¹

102 (~1.4 m s⁻¹, toward the low end of the monthly mean wind speed in US cities).⁸ The outdoor box dimensions and wind

⁹⁹ Footnote: A rough estimate can be obtained as follows. To be comparable with the indoor volume, the outdoor

- 103 speed are input parameters for the table in the same format in the COVID-19 Aerosol Transmission Estimator (Figure
- 104 S2) for its users to more easily estimate equivalent outdoor ventilation.
- 105 Table S3: values of the parameters used for computation of Table 2 in the main paper.

Indoor	r _E	r _B	f _e xf _i	D (h)	N _{sus}	V (m ³)	λ_0 + λ_{cle}	r _{ss}	Н	Hr	Predicted number
environment type							(h⁻¹)		(persons	(h² m⁻³)	of secondary
									h² m⁻³)		cases
ASHRAE standard cases											
Prison dayroom	2.8	2.4	1	8	300	5.0E+03	0.76	0.84	3.6E+00	1.2E-02	1.8E+01
	2.8	2.4	0.35	4	150	5.0E+03	3.8	0.93	7.0E-02	4.7E-04	3.8E-01
Middle school	1	1.1 ^a	1	5	20	1.7E+02	2.8	0.93	2.1E-01	1.1E-02	1.1E+00
Classicom	1	1.1 ^a	0.35	2.5	10	1.7E+02	5.8	0.93	9.0E-03	9.0E-04	4.8E-02
	85	2.4	1	2	300	1.3E+04	0.49	0.36	7.0E+00	2.3E-02	3.5E+01
naintreater	85	2.4	0.35	1	150	1.3E+04	3.5	0.72	1.7E-01	1.1E-03	9.2E-01
Restaurant	4.7	1	1	1	50	2.1E+02	4.3	0.77	2.0E-01	3.9E-03	1.0E+00
	2.9 ^b	1	1 ^c	1 ^d	25	2.1E+02	7.3	0.86	4.0E-02	1.6E-03	2.1E-01
Hotel	2.8	2.4	1	8	50	1.0E+03	0.86	0.86	2.7E+00	5.3E-02	1.2E+01
lobbles/prefunction	2.8	2.4	0.35	4	25	1.0E+03	3.9	0.94	5.7E-02	2.3E-03	3.0E-01
Airport terminal	2.8	2.4	1	1	1000	1.0E+04	1.5	0.48	2.2E-01	2.2E-04	1.2E+00
nanway station	2.8	2.4	0.35	1 ^d	500	1.0E+04	4.5	0.78	2.0E-02	4.1E-05	1.1E-01
Hospital general	50 ^e	1	0.35 ^f	8	20	3.0E+02	1.6	0.92	5.3E+00	2.6E-01	1.5E+01

examination room	50 ^e	1	0.01 ^g	4	10	3.0E+02	9.0 ^h	0.97	7.2E-03	7.2E-04	3.9E-02
Library	1	1	1	2	100	3.0E+03	1.0	0.57	3.7E-02	3.7E-04	2.0E-01
	1	1	0.35	2 ^d	50	3.0E+03	4.0	0.88	2.5E-03	5.1E-05	1.4E-02
Museum/gallery	1.2	1.5	1	2	200	5.0E+03	0.66	0.44	9.7E-02	4.9E-04	5.2E-01
	1.2	1.5	0.35	2 ^d	100	5.0E+03	3.7	0.86	6.0E-03	6.0E-05	3.2E-02
Place of religious	30	1	1	2	100	8.3E+02	1.2	0.62	3.8E+00	3.8E-02	1.8E+01
worsnip	4.7 ⁱ	1	0.35	1	50	8.3E+02	4.2	0.76	1.8E-02	3.6E-04	9.6E-02
Mall common area	2.8	2.4	1	2	500	7.5E+03	1.1	0.59	4.9E-01	9.7E-04	2.6E+00
	2.8	2.4	0.35	1	250	7.5E+03	4.1	0.76	1.5E-02	5.8E-05	7.8E-02
Supermarket	2.8	2.4	1	8	100	7.5E+03	0.36	0.67	1.3E+00	1.3E-02	6.9E+00
	2.8	2.4	0.35	4	50	7.5E+03	3.4	0.93	1.7E-02	3.5E-04	9.2E-02
Gym, sports arena	6.8	9	1	1	100	1.4E+04	0.58	0.24	1.8E-01	1.8E-03	9.5E-01
	6.8	9	0.35	0.5	50	1.4E+04	3.6	0.53	5.6E-03	1.1E-04	3.0E-02
Other cases											
Physical education	6.8	9	1	1	30	1.3E+03	1.9	0.56	4.1E-01	1.4E-02	2.1E+00
	6.8	9	0.35	0.5	15	1.4E+04 ^j	4.9	0.63	1.4E-03	9.6E-05	7.7E-03
Subway car ^k	1	1	1	0.33	30	1.5E+02	5.7	0.55	6.5E-03	2.2E-04	3.5E-02

	1	1	0.35	0.33 ^d	30 ¹	1.5E+02	9.3 ^m	0.69	1.7E-03	5.8E-05	9.3E-03
Large family dinner	4.7	1	1	2	12	3.0E+02	0.5	0.37	2.8E-01	2.3E-02	1.4E+00
	2.9 ^b	1	0.35	2 ^d	6	3.0E+02	3.5	0.86	9.9E-03	1.7E-03	5.3E-02
Shared office	4.7	1	1	8	2	3.4E+01	2	0.94	1.0E+00	5.2E-01	1.9E+00
	1.7 ⁿ	1	0.35	4	1	3.4E+01	5	0.95	1.3E-02	1.3E-02	6.9E-02
Large university	30	1	1	1	150	7.0E+02	2	0.57	1.8E+00	1.2E-02	9.5E+00
003310011	4.7 ⁱ	1	0.35	1°	60 ^p	7.0E+02	11 ^q	0.91	1.2E-02	1.9E-04	6.2E-02
University	2.8	2.4	1	8	10	2.3E+02	6	0.98	3.9E-01	3.9E-02	1.9E+00
laboratory	2.8	2.4	0.35	4	3°	2.3E+02	9	0.97	1.3E-02	4.5E-03	7.1E-02
Outbreaks								<u>.</u>			
Guangzhou	9.3 ^r	1	1	1.2	20	9.7E+01	0.67	0.31	1.1E+00	5.4E-02	5.0E+00
lestaurant	4.7 ^s	1	1 ^c	0.6	10	9.7E+01	3.67	0.60	4.7E-02	4.7E-03	2.5E-01
Skagit Choir	85	2.5 ^t	1	2.5	60	8.1E+02	0.7	0.53	3.0E+01	5.0E-01	5.6E+01
	85	2.5 ^t	0.35	1.3	30	8.1E+02	3.7	0.79	7.3E-01	2.4E-02	3.7E+00
108 Footnote	es: a for s	sedenta	ry teena	gers; ^b ha	alf resting	- oral breathi	ng + half re	sting - sp	beaking; ^c no f	ace covering;	^d no
109 duration	reductio	on; ^e for	a coughi	ing infect	or (see F	ootnote e of T	able 1 for c	letail of ti	he estimation)	; ^f use of surg	ical
110 masks for the pre-pandemic setting; ⁹ N95 respirators and fit tests required (resulting in f_e and f_i of 0.1) before allowed											
111 indoors;	^h ventila	ntion rate	e increas	ed to 6 h	⁻¹ ; ⁱ reduc	ction of vocaliz	zation level	from loue	dly speaking t	o speaking (w	ith the
112 aid of, fo	r examp	ole, micr	ophone)	; ^j use of	a much la	arger room if t	the event ha	as to be i	ndoors; ^k real-	world case; ²¹	no

113 occupancy reduction; ^m $\lambda_{cle} = 3.6 h^{-1}$; ⁿ 4/5 resting - oral breathing + 1/5 resting - speaking; ^o real-world case; ⁹ p

114 occupancy reduction larger than 50%; ^q ventilation rate increased to the maximum and no additional virus removal

applied; ^r talking during half of the time and half normal / half loud talking assumed; ^s resting - speaking; ^t light
intensity for 61-<71 years.

117

118 Table S4: parameters for pre-pandemic use of various indoor spaces, and for possible lower-119 risk scenarios while COVID-19 is active (rows in gray). The predicted number of secondary 120 cases is estimated based on the fitted trend in Figure 1b. The ventilation rates (λ_0) of the 121 ASHRAE standard cases correspond to the minimum requirement recommended in ref ¹⁰. The 122 other cases are based on real-world indoor spaces or reasonable estimation. r_E and r_B are 123 estimated mostly based on the typical values for all-age-group averages in Table S2. No 124 additional virus-removal devices or no face covering are used in the pre-pandemic cases. 125 Common measures for the lower-risk scenarios in this table are half occupancy, half duration, 126 surgical mask wearing ($f_e \propto f_i = 0.35$),^{2,11} and use of additional virus-removing devices (e.g. 127 HEPA filter) with $\lambda_{cle} = 3 h^{-1}$. Two literature outbreaks in Table 1, i.e. the Guangzhou restaurant¹² 128 and Skaqit Choir¹ cases, are also shown for comparison. See footnotes for the exceptions to 129 these descriptions.

134 Figure S1: Attack rates of the COVID-19 outbreaks shown in Table 1 predicted according to the

- 135 fitted trend line in Figure 2b vs. actual attack rates of those outbreaks. The correlation
- 136 coefficient between the two types of attack rates and the 1:1 line are also shown.
- 137

	A	В	С	D	E	F	G H
	Estimation of COVID-1	9 aerosol tra	nsmissic	on: ma	ster spre	adsheet, ada	of this one to your case - Default values are for Skagit Choir outbreak
	This is a general spreadsheet app	licable to any situa	tion, under th	ie assum	ptions of this	model - See notes s	pecific to this case (if applicable) at the very bottom
	Important inputs as highlighted in	orange - change th	nese for your :	situation			
	Other, more specialized inputs are highlighted in yellow - change only for more advanced applications						
	Calculations are not highlighted - don't change these unless you are sure you know what you are doing						
	Results are in blue these are the numbers of interest for most people						
	Environmental Parameters						
		Value		Va	lue in other u	units	Source / Comments
	Length of room	30	ft		9.2	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
	Width of room	60	ft :	-	18.3	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
		1800	sq ft		167	m2	Can overwrite the m2 one. If you want to enter sq ft, enter "=B15*0.305^2" in the m2 cell, where B15 is the cell
	Height	16	ft :	-	4.8	m	Can enter as ft or as m (once entered as m, changing in ft does not work)
	Volume				810	m3	Volume, calculated. (Can also enter directly, then changing dimensions does not work)
	Pressure	0.95	atm				Used only for CO2 calculation
)	Temperature	20	C				Use web converter if needed for F> C. Used for CO2 calculation, eventually for survival rate of virus
	Relative Humidity	50	%				Not yet used, but may eventually be used for survival rate of virus
	Background CO2 Outdoors	415	ppm				See readme
	Duration of event	150	min		2.5	h	Value for your situation of interest
5							
5	Number of repetitions of event	1	times				For e.g. multiple class meetings, multiple commutes in public transportation etc.
7							
	Ventilation w/ outside air	0.7	h-1				Value in h-1: Readme: Same as "air changes per hour". Value in L/s/per to compare to guidelines (e.g. ASHR/
	Decay rate of the virus	0.62	h-1				See Readme, can estimate for a given T, RH, UV from DHS estimator
I	Deposition to surfaces	0.3	h-1				Buonnano et al. (2020), Miller et al. (2020). Could vary 0.24-1.5 h-1, depending on particle size range
	Additional control measures	0	h-1				E.g. filtering of recirc. air, HEPA air cleaner, UV disinfection, etc. See FAQs, Readme for calc for portable HEP
	Total first order loss rate	1.62	h-1				Sum of all the first-order rates
3							
	Ventilation rate per person	2.6	L/s/person				This is the value of ventilation that really matters for disease transmission. Includes additional control measure

- 139 Figure S2: screenshot of the COVID-19 Aerosol Transmission Estimator.¹³ The top of the sheet
- 140 simulating the Skagit Valley choir outbreak is shown.

141

142 Figure S3: Ratio of the quanta concentration averaged over a period [0, D] to that at steady

143 state (r_{ss}) as a function of the product of total first-order quanta loss rate constant (λ) and the

- 144 event duration (D).
- 145