Supplement: Consequences of COVID-19 vaccine allocation inequity in Chicago

Authors:

Sharon Zeng, BA¹ Kenley M. Pelzer, PhD² Robert D. Gibbons, PhD^{2, 3} Monica E. Peek MD, MPH, MS^{2,4} William F. Parker, MD, PhD^{2,5}

Author affiliations:

¹Pritzker School of Medicine, University of Chicago, Chicago, Illinois

²Department of Medicine, University of Chicago, Chicago, Illinois

³Department of Public Health Sciences, University of Chicago, Chicago, Illinois

⁴University of Chicago Division of the Biological Sciences, Chicago, Illinois

⁵MacLean Center for Clinical Medical Ethics, University of Chicago, Chicago, Illinois

Corresponding Author:

William F. Parker, MD, Ph.D. 5841 S Maryland Avenue MC 6076 Chicago, IL 60637 wparker@uchicago.edu

Code used for this project is available at

https://github.com/zengsharon/ChicagoVaccineAllocation

Figure S1: Visualizations of vaccination groups

(a) Line graph showing cumulative vaccinations in each zip code from December 13, 2020 to June 13, 2021. Color and dot shape represent vaccination groups to which the zip codes were assigned. Square brackets indicate which end points were included in a vaccination group. Vertical lines denote the first date of vaccination phases in Chicago (Phase 1A: residential healthcare facilities and healthcare workers; 4 weeks after Phase 1A: Estimated date that the earliest vaccine effect would be detectable; Phase 1B: aged 65+, non-healthcare residential settings, and frontline essential workers; Phase 1C: aged 16-64 with underlying medical conditions and all other essential workers; Phase 2: remaining Chicagoans aged 16+). (b) Histogram of vaccination levels. (c) Map of zip codes.

(a)

(c)

ZIP	Vaccination Group	First Doses by 3/28/21	% First Doses	Population
60621	[17.8, 26.9]	4997	17.8	28018
60633	[17.8, 26.9]	2342	18.5	12689
60624	[17.8, 26.9]	6972	20.0	34892
60636	[17.8, 26.9]	6201	20.7	30024
60644	[17.8, 26.9]	9952	21.4	46591
60649	[17.8, 26.9]	9990	21.4	46633
60620	[17.8, 26.9]	15079	22.3	67711
60637	[17.8, 26.9]	10681	22.6	47300
60628	[17.8, 26.9]	14680	22.8	64254
60617	[17.8, 26.9]	19256	23.0	83553
60619	[17.8, 26.9]	14958	24.4	61207
60651	[17.8, 26.9]	15785	24.9	63492
60653	[17.8, 26.9]	8920	26.9	33154
60659	[27.6, 39.4]	11801	27.6	42735
60656	[27.6, 39.4]	8159	28.9	28218
60612	[27.6, 39.4]	9832	29.1	33735
60638	[27.6, 39.4]	17111	29.2	58669
60609	[27.6, 39.4]	17910	29.4	60939
60623	[27.6, 39.4]	24570	30.2	81283
60652	[27.6, 39.4]	13102	30.2	43447
60629	[27.6, 39.4]	33889	30.8	110029
60634	[27.6, 39.4]	23302	31.0	75082
60641	[27.6, 39.4]	21887	31.3	69880
60639	[27.6, 39.4]	27757	31.5	88204
60645	[27.6, 39.4]	14973	31.7	47270
60630	[27.6, 39.4]	18616	33.0	56433
60643	[27.6, 39.4]	16161	33.1	48887
60632	[27.6, 39.4]	29868	33.2	89857
60616	[27.6, 39.4]	18036	33.3	54197

Table S1: List of zip codes and groups included in analysis

60626	[27.6, 39.4]	16843	33.3	50544
60625	[27.6, 39.4]	27436	34.5	79444
60615	[27.6, 39.4]	14097	34.7	40590
60618	[27.6, 39.4]	33035	34.8	94907
60655	[27.6, 39.4]	10126	35.4	28569
60647	[27.6, 39.4]	32117	36.6	87633
60660	[27.6, 39.4]	16461	37.0	44498
60601	[27.6, 39.4]	5801	38.5	15083
60608	[27.6, 39.4]	31581	39.4	80059
60614	[27.6, 39.4]	28380	39.4	71954
60610	[39.9 ,49.3]	16176	39.9	40548
60646	[39.9 ,49.3]	11520	40.3	28569
60642	[39.9 ,49.3]	8084	41.0	19716
60640	[39.9 ,49.3]	28609	41.2	69363
60622	[39.9 ,49.3]	22072	41.4	53294
60607	[39.9 ,49.3]	12197	41.6	29293
60631	[39.9 ,49.3]	12275	41.6	29529
60605	[39.9 ,49.3]	12378	42.6	29060
60661	[39.9 ,49.3]	4426	42.7	10354
60657	[39.9 ,49.3]	30545	43.0	70958
60613	[39.9 ,49.3]	21960	43.3	50761
60654	[39.9 ,49.3]	8728	43.6	20022
60611	[39.9 ,49.3]	16396	49.3	33224

Table S2: Zip codes excluded from analysis

List of zip codes excluded from analyses. Five zip codes (60602, 60603, 60604, 60606, 60666) were excluded because they contained fewer than 10,000 residents. 60707 and 60827 were excluded because they lie mostly outside the City of Chicago limits.

ZIP	Vaccination Group	First Doses by 3/28/21	% First Doses	Population
60602	Outliers	702	613	1145

60603	Outliers	709	67.4	1052
60604	Outliers	457	55.5	823
60606	Outliers	1584	48.2	3287
60666	Outliers	80	0	0
60707	Outliers	4827		
60827	Outliers	469		

Table S3: Demographics of study population

-	
Age	No. (%)"
Age 0-17	561320 (21)
Age 18-65	1790772 (67)
Age 65+	334263 (12)
Sex	
Female	1378658 (51)
Male	1307697 (49)
Race and Ethnicity	
Latinx	773938 (29)
Asian Non-Latinx	175220 (7)
Black Non-Latinx	783916 (29)
White Non-Latinx	894555 (33)
Other Race Non-Latinx	58726 (2)
High School Graduate or Higher	1582411 (84) ^b
With Health Insurance	2402389 (90) ^c
	\$ (IQR)
Median Household Income	52044 (51437)

52044 (51437)

^a No. (%) = total number across group (percentage of total group population)

^b Calculated as percentage of group population over 25 years old

^c Calculated as percentage of group civilian noninstitutionalized population

Table S4: Test for parallel trends

To test the parallel trends assumption during the decline in second wave COVID-19 deaths, we

fit the following model to the zip code-level data from December 13, 2020 to March 28, 2021:

 $\ln(Y_i) - \ln(Population) = \beta_0 + \beta_1(Week) + \beta_2(Vaccination_Group) + \beta_2(Vaccination_Group) + \beta_1(Week) + \beta_2(Vaccination_Group) + \beta_2($ (1)

β_3 (Week×Vaccination_Group)

Where $Week \times Vaccination_Group$ describes the effect of $Vaccination_Group$ on weekly slope during the decline of the second wave. An F-test for $Week \times Vaccination_Group[17.8, 26.9] =$ $Week \times Vaccination_Group[27.6, 39.4] = 0$ with 2 degrees of freedom resulted in a Chi-squared probability of 1.825 with a p-value of 0.4015. Thus, we fail to reject the null hypothesis that there was not a significant association of $Vaccination_Group$ on the weekly slope.

Predictors	Estimate	Std. Error	р
(Intercept)	-10.15	0.13	<0.001
Week	-0.13	0.02	<0.001
Vaccination_Group [17.8, 26.9]	0.44	0.16	0.007
Vaccination_Group [27.6, 39.4]	0.59	0.14	<0.001
Week * Vaccination_Group [17.8, 26.9]	0.02	0.02	0.412
Week * Vaccination_Group [27.6, 39.4]	-0.00	0.02	0.961
Observations	832		
R ² Nagelkerke	0.488		

Table S5: Complete Mixed-Effects Models Output

To analyze the correlation between vaccination levels on March 28, 2021 and spring wavespecific COVID-19 mortality, we narrowed our dataset to start at December 13, 2020, the peak of deaths during the second wave of COVID-19 mortality. We fit the data to the following models:

(2)
$$ln(Y_i) - ln(Population) = \beta_{0i} + \beta_1(Week) + \beta_2(Wave) + \beta_3(Wave \times Vaccinations)$$

(3)
$$ln(Y_i) - ln(Population) = \beta_{0i} + \beta_1(Week) + \beta_2(Wave) + \beta_3(Wave \times Vaccinations) + \beta_3(Wave$$

 $\beta_4(Recovered) + \beta_5(65+)$

Where $\beta_{0i} = \beta_0 + \nu_{0i}$ and is a randomly distributed intercept with random effects structure

$$v_{o_i} \sim N(0, \sigma_v^2)$$

Week is a continuous variable describing the number of weeks since the start of the data, *Wave* is a categorical variable describing whether at date was in the second or spring wave,

Recovered is a continuous variable describing the percentage of zip code residents who had recovered from COVID-19 by March 28, 2021, and 65 + is a continuous variable describing the percentage of zip code residents who are over 65 years old. *Wave×Vaccinations* describes the effect of a 10% increase in vaccinations by March 28, 2021 on the number of deaths per week in the spring wave.

	I	Jnadjusted			Adjusted	
Predictors	Estimate	Std. Error	р	Estimate	Std. Error	р
(Intercept)	-9.87	0.08	<0.001	-11.56	0.28	<0.001
Week	-0.11	0.01	<0.001	-0.11	0.01	<0.001
Wave	2.41	0.28	<0.001	2.39	0.27	<0.001
Wave×Vaccinations	-0.50	0.09	<0.001	-0.49	0.08	<0.001
Recovered				0.85	0.19	<0.001
65+				0.74	0.13	<0.001

Random Effects

σ ²	0.75	0.75	
T ₀₀	0.18 _{zip}	0.07 _{zip}	
ICC	0.19	0.08	
Ν	52 _{zip}	52 _{zip}	
Observations	1404	1404	_
Marginal R ² / Conditional R ²	0.295 / 0.430	0.396 / 0.446	

Table S6: Sensitivity Analyses

We ran Model 3 using the percentage of residents fully vaccinated by March 28, 2021, rather than the percentage of residents with at least one dose by March 28, 2021. A 1 unit increase of $Wave \times Percentage_Complete$ corresponds to a 10% increase in fully vaccinated residents. As a second sensitivity analysis, we ran Model 3 using the categorical variable $Week \times$

Vaccination_Group rather than continuous variable *Wave×Vaccinations*.

Percentage_Complete			Vaccination_Group			
Predictors	Estimate	IRR (CI)	р	Estimate	IRR (CI)	р
(Intercept)	-11.63	0.00 (0.00 - 0.00)	<0.001	-11.66	0.00 (0.00 - 0.00)	< 0.001
Week	-0.11	0.90 (0.88 – 0.91)	<0.001	-0.11	0.90 (0.88 – 0.91)	<0.001
Wave	2.24	9.39 (5.69 – 15.49)	<0.001	0.42	1.53 (1.03 – 2.26)	0.034
Recovered	0.85	2.34 (1.61 – 3.41)	<0.001	0.92	2.52 (1.70 – 3.73)	<0.001

65+	0.80	2.22 (1.73 – 2.84)	<0.001	0.76	2.13 (1.65 – 2.76)	<0.001
Wave×Percentage_Complete	-0.80	0.45 (0.34 – 0.59)	<0.001			
Wave×Vaccination_Group [17.8, 26.9]				0.92	2.52 (1.70 – 3.73)	<0.001
Wave×Vaccination_Group [27.6, 39.4]				0.33	1.39 (0.95 – 2.03)	0.089

Random Effects

σ^2	0.75	0.75
T _{00 zip}	0.07	0.08
ICC	0.08	0.09
N _{zip}	52	52
Observations	1404	1404
Marginal R^2 / Conditional R^2).386 / 0.437	0.381 / 0.437