Supplementary Material.

Integrating genome-wide polygenic risk scores and non-genetic risk factors to predict colorectal cancer risk

Table of Contents

Supplementary Methods 3
Base Genome-wide Association Study Meta-analysis 3
UK Biobank Dataset 3
Cancer Incidence Calculation 3
PRS Sample QC and dataset definitions 3
Figure S1. SNP QC 4
GWAS significant PRS 5
$\mathrm{C}+\mathrm{T}$ and SCT PRS. 5
LDpred2 PRS 5
Evaluation of polygenic risk score performance. 5
Validation of QCancer-10 6
Table S1: Mapping of UK Biobank ethnicity, smoking and alcohol data to QCancer-10 coding 7
Table S2: UK Biobank codes self-reported medical history for QCancer-10 predictors 8
Integrated model development 8
Software 8
Supplementary Results 9
Table S3: Characteristics and missingness of predictor values for the whole UKB cohort, excluding individuals with prevalent CRC 9
Table S4: Demographics of derivation and validation cohorts used in PRS development 11
Figure S2. Z-scores for LDpred2-grid PRS calculated across a grid of tuning parameters. 11
Figure S3. Age specific CRC rates 12
Figure S4. Distributions of standardised PRS for PRS Test Cohort and Validation Cohorts. 13 Interactions between PRS and Age 14
Table S5. Wald $\chi \mathbf{2}$ of interaction terms between PRS and age in logistic regression and Cox models 14
Figure S5. Marginal effect of standardised PRS in interaction with age 14
Table S6. Apparent performance of PRS assessed in logistic regression models in the Test Cohort, with and without adjustment for sex and age 15
Figure S6. Calibration plots of PRS models in logistic regression analyses in Validation Cohorts. 16
Table S7. Subgroup analysis of PRS logistic regression model performance 17
Figure S7. Calibration of PRS in logistic regression models in subgroup analysis 18
Figure S8. Observed and predicted probabilities of CRC for PRS logistic regression models across 5 year age bands in the Geographic Validation Cohort. 19
Figure S9. Kaplan-Meier curves across four risk groups (group 4 being highest risk) for PRS in the Geographic Validation Cohort compared with the Test Cohort 20
Figure S10. Calibration plots of PRS models in Cox models in the Geographic Validation Cohort 21
Table S8. Subgroup analysis of PRS Cox model performance by sex 22
Figure S11. Calibration of PRS in Cox models by sex in the Geographic Validation Cohort. 23
Figure S12. Observed and predicted probabilities of CRC for PRS Cox models across 5 year age bands in the Geographic Validation Cohort 24
Figure S13. Kaplan-Meier curves across four risk groups (group 4 being highest risk) for PRS in the Minority Ethnic Validation Cohort compared with the Test Cohort 25
Figure S14. Calibration plots of PRS models in Cox model in the Minority Ethnic Validation Cohort 26
Table S9. Characteristics of the UKB Integrated Modelling Cohort used for QCancer-10 validation, compared with the QCancer-10 derivation cohort 27
Figure S15. Calibration of QCancer-10 over 5-8 years of follow-up. 28
Table S10. Expected/observed ratio of risk over 5-8 years of follow-up for male and female for QCancer-10+LDP, QCancer-10+GWS and QCancer-10 models in subgroups analyses.. 2 29
Figure S16. Observed and predicted probabilities of CRC by age for male and female for QCancer-10+LDP, QCancer-10+GWS and QCancer-10 models 30
Figure S17. Calibration plots for individuals with a first-degree family history of CRC in QCancer-10+PRS and QCancer-10 models. 31
QCancer-10+PRS model specification 32
Table S11. Interaction terms in QCancer-10+LDP and QCancer-10+GWS models. 32
Figure S18. Marginal effect of QCancer-10 risk score in interaction with PRS in male QCancer-10+LDP and QCancer-10+GWS models 32
Table S12. Fold-increase in absolute risk between $95{ }^{\text {th }}$ centile and median risk for QCancer- 10+LDP, QCancer-10+GWS and QCancer-10 models 33
Table S13. Sensitivity of QCancer-10+GWS models for CRC diagnosis over 5 years of follow- up across top 25 centiles of absolute risk 34
Table S14. Sensitivity of QCancer-10 for CRC diagnosis over 5 years of follow-up across top 25 centiles of absolute risk 35
Table S15. Sensitivity of LDpred2-grid-sp PRS for CRC diagnosis over 5 years of follow-up across top 25 centiles of absolute risk 36
Table S16. Sensitivity of QCancer-10+LDP across top 25 centiles of relative risk 37
Table S17. Sensitivity of QCancer-10+GWS across top 25 centiles of relative risk 38
Table S18. Percentage of population and cases with relative risk > $\mathbf{2 . 2}$ for QCancer-10+LDP, QCancer-10+GWS and QCancer-10 models 39
References 40

Supplementary Methods

Base Genome-wide Association Study Meta-analysis

The base dataset for polygenic risk score (PRS) development was obtained through meta-analysis of the datasets included in Law et al., ${ }^{1}$ excluding the UK Biobank dataset. Summary data from the following genome-wide association study (GWAS) datasets was therefore included: NSCCG-OncoArray; SCOT; SOCCS/GS; SOCCS/LBC; CCFR1; CCFR2; COIN; CORSA; Croatia; DACHS; FIN; UK1; Scotland1; VQ58. The contributing datasets, genotyping and imputation information, quality control (QC) and study approvals are described in detail in Law et al. ${ }^{1}$ There were 26397 cases and 41481 controls, all of European ancestry based on principal components analysis (PCA). The meta-analysis was performed using the META package (v1.7), including SNPs imputed with an INFO score >0.8 from each dataset, using the fixed-effects inverse-variance method.

UK Biobank Dataset

UK Biobank (UKB) is a large multicentre prospective cohort study which recruited over half a million participants from the general population. Individuals registered with the NHS, aged between 40 and 69 and living within 40 km of 22 centres across the UK were invited to participate, and enrolled between 2006 and 2011. ${ }^{2}$

Genotyping and QC of UKB has been described in detail by Bycroft at al. ${ }^{3}$ In summary, participants were genotyped on one of two arrays (49950 individuals on the Applied Biosystems UK BiLEVE Axiom Array and the remainder on the Applied Biosystems UK Biobank Axiom Array) which share over 95\% content. Following QC, phasing was carried out using SHAPEIT3 with 1000 Genomes Phase 3 as a reference panel, followed by imputation using IMPUTE4 with the Haplotype Reference Consortium (HRC) dataset as the main reference panel, and secondarily with merged UK10K and 1000 Genomes phase 3 reference panels, and the datasets combined. SNP annotation was based on GRCh37 assembly of the human genome.

Cancer Incidence Calculation

Age-specific CRC incidence and directly age-standardised CRC incidence rates (ASIRs) were calculated for men and women in UKB overall and for the Integrated Modelling Cohort, and compared with Office for National Statistics 2013 cancer registry data for England (chosen as the approximate mid-point of available UKB follow-up). ${ }^{4}$

Age-specific rates were calculated in 5 year age bands between 40 and 80 as the number of first incident CRCs over the number of person years at risk. Age-standardised incidence rates were calculated using the 2013 European Standard Population aged 40-80. Rates are presented per 100000 person years at risk.

Whole UKB cohort CRC incidence rates were calculated based on linked registry cases, without removal of prevalent cases, to reflect registration as would occur in national data. In addition ASIRs were calculated in the Integrated Modelling Cohort, in which prevalent cases were removed and cases identified through cancer and death registry, and linked hospital inpatient data; follow-up duration was as defined in the main methods. This analysis used R packages 'survival' and 'epitools'. ${ }^{5,6}$

PRS Sample QC and dataset definitions

We performed standard per-person QC on all individuals with imputed genetic data available, removing those with sex chromosome aneuploidy, sex-mismatch and an excess of relatives in the dataset. The Derivation Cohort (see Figure 1) included individuals identified by UKB as having white-British ancestry (on the basis of self-report and principal components analysis), and recruited through English and Welsh centres. We performed further QC on this cohort, ${ }^{7}$ removing those who were not included in the PCA calculation (mainly due to relatedness), and restricting further to a genetically homogeneous subset (those within log-distance of 5 following computation of a robust Mahalanobis distance), resulting in a dataset of 310664 individuals.

The Geographic Validation Cohort comprised 34152 individuals recruited in Scotland and of European ancestry (UK Biobank self-reported ethnicities of "British", "Irish", "White", and "Any other white background") passing standard QC. Scotland was chosen for validation as this cohort contained more than the recommended number of cases for model validation (a minimum of 100 , and ideally 200, cases), ${ }^{8}$ and represents a population with different demographics to England and Wales, testing the models portability.

A Minority Ethnic Validation Cohort $(\mathrm{n}=27503)$ comprised all UK Biobank participants passing standard QC with self-reported ethnicities not in the above categories (including individuals who responded "Do not know" and "Prefer not to answer", but not those with missing ethnicity data).

Ten thousand individuals were used as a subset in which the linkage disequilibrium (LD) matrix was computed (used for C+T, SCT and LDpred2 models). ${ }^{7}$ However, owing to the relatively small number of cases in this set (136), we added an additional 20000 individuals to derive a Training Cohort of 30000 individuals for PRS hyper-parameter selection. The remaining 280664 individuals comprised the Test Cohort in which PRS performance was evaluated.

We used imputed dosage data from UK Biobank, restricting variants to those included in HapMap3, and with matched SNPs in the base data. Of 12972739 SNPs present in the base GWAS summary statistics, 1798524 ambiguous SNPs were removed and 1117002 variants matched with UK Biobank data. QC was performed as recommended by Privé et al. ${ }^{7}$ on the summary statistics, comparing standard deviations of genotypes in the summary statistics $\left(\mathrm{SD}_{\mathrm{ss}}\right)$ and 10000 individuals from the LDpred2 Training Cohort ($\mathrm{SD}_{\mathrm{ldtr}}$), and removing variants where $\mathrm{SD}_{\text {ss }}<0.5\left(\mathrm{SD}_{\text {ldtr }}\right.$), $\mathrm{SD}_{\text {ss }}>0.1+\mathrm{SD}_{\text {ldtr }}, \mathrm{SD}_{\text {ss }}<0.1$, or $\mathrm{SD}_{\text {ldtr }}<0.05$ (Figure S 1), ${ }^{7}$ leaving 1104409 SNPs included in analysis. Following QC, the minimum INFO score was 0.411 .

Figure S1. SNP QC based on standard deviations of genotypes in LDpred2 'validation' dataset and base data summary statistics (after Privé et al.)

GWAS significant PRS

We manually curated a list of SNPs derived from previously published GWAS in European populations including Law et al. and Huyghe et al. ${ }^{1,9}$ and the references within these. We excluded SNPs which did not reach genome-wide significance ($\mathrm{p}<5 \times 10^{-8}$) in our base meta-analysis, and used the effect sizes from our metaanalysis, adjusted for the winner's curse using the False Discovery Rate Inverse Quantile Transformation (FIQT) method. ${ }^{10}$ Where SNPs were reported at the same loci in different studies and were correlated at $r^{2}>0.1$ we retained the most significantly associated SNP. We confirmed that all of the included SNPs imputed well in the UKB data with INFO scores >0.9. The PRS was calculated as the sum of allele dosages weighted by their effect sizes.

C+T and SCT PRS

Clumping and thresholding approaches to SNP selection generate PRS scores across a range of LD r^{2} values (with a given window size for clumping selected) and association p value thresholds. We used R package bigsnpr by Privé et al. ${ }^{11}$ to generate scores across a grid of r^{2}, p -value threshold, and clumping window size values. Default parameters were used: clumping r^{2} of $0.01,0.05,0.1,0.2,0.5,0.8,0.95 ; 50 \mathrm{p}$-value thresholds spaced equally between 0.1 and the most significant p-value on the log scale; and a base clumping window size of $50,100,200$ and 500 (where actual window size in kb is the base size divided by clumping r^{2}).

From this grid, a maximum score was selected based on AUC (the $\mathrm{C}+\mathrm{T}$ score in this paper), and stacking used to learn the optimal linear combination of scores generated through efficient penalised regression (the SCT score). ${ }^{11}$

LDpred2 PRS

LDpred2 ${ }^{7}$ uses a Bayesian approach to SNP selection and shrinkage for PRS, based on an LD matrix and GWAS summary statistics, implemented in the R package bigsnpr. This updated version of LDpred has been demonstrated to provide higher predictive performance, particularly with large GWAS sample size as in this study, ${ }^{7}$ and also addresses previous instability issues. ${ }^{12}$ The use of a larger window of 3 cM (using genetic distance rather than number of bases) improves performance when causal variants are located in regions of longrange LD, such as HLA regions. Colorectal cancer-associated variants in these regions have recently been reported, ${ }^{1,9}$ and this improvement may therefore be of benefit in CRC-prediction. LDpred2 also evaluates more hyper-parameters (a grid of 126 instead of 7 in LDpred).

There are multiple options for PRS construction within LDpred2. An infinitesimal model (LDpred2-inf), in which all makers are assumed to be causal; grid models (LDpred2-grid) in the hyper-parameters SNP heritability, h^{2}, proportion of causal variants, p, and optionally sparsity, are tuned in a validation set; and an auto model (LDPred2-auto) in which sparsity and SNP heritability are estimated automatically, negating the need for a validation set. LDpred2 estimates heritability calculated from constrained LD score regression. The estimate for this dataset was 0.1602065 .

We evaluated LDpred2-inf and LDpred2-grid models (sparse and non-sparse), running them genome-wide as recommended. LDpred2-grid outputs SNP effect sizes for each of the grid values; the optimally performing model was then selected based on best Z-score for the logistic regression slope (Figure S2), in which we adjusted for array platform and first 4 principal components (PCs).

Clumping and thresholding and LDpred2 modelling code was adapted from code provided by Privé et al. at https://github.com/Privéfl/paper-ldpred2/tree/master/code, and their accompanying LDpred2 tutorial. ${ }^{7}$

Evaluation of polygenic risk score performance

Each PRS was evaluated in logistic regression and Cox models, including the PRS, age, sex, array and 4 principal components. Age, sex and PCs were all modelled as continuous variables, assuming a linear relationship. For Cox models we confirmed proportional hazards assumptions held through visual inspection of plots of Schoenfeld residuals. We evaluated potential interactions between PRS and age by examining the prognostic strength and significance of interaction terms based on Wald χ^{2} statistics, and plotting marginal effects of PRS with age. We compared model performance to a Null model, containing age, sex, array and 4 principal components, to assess the contribution of the PRS to model performance.

Further models were also derived which did not adjust for age and sex, to evaluate the contribution which these factors (known to be independent predictors for CRC risk) made to the performance of the full model.

In order to compare PRS distributions for each cohort, and effect sizes per SD of each PRS, we standardised the PRS to have a mean of 0 and standard deviation of 1 in the Test Cohort. We also used these standardised scores in plots of marginal effects of PRS in interaction with age. Remaining analyses used non-standardised scores.

In logistic regression models, we assessed discrimination using the C -statistic and Somers' D_{xy} rank correlation, scaled Brier Scores (a test of overall model performance, derived from the Brier score scaled to the maximum possible score for a given dataset, where a higher $\%$ score indicates better performance), ${ }^{13}$ goodness of fit using Nagelkerke's R^{2}, Nagelkerke's R^{2} attributable to the PRS (calculated as R^{2} of the full model minus R^{2} of the null model).

In Cox models, performance was assessed using scaled Brier Scores calculated at 8 years of follow-up. Discrimination was evaluated using Harrell's C-index, Somers' D_{xy} rank correlation, Royston's D statistic, and visual inspection of Kaplan-Meier curves across four risk groups, each evaluated over the follow-up time of the cohort. ${ }^{14}$ Explained variation was assessed using Royston and Sauerbrei's R_{D}^{2}.

Five hundred bootstrap samples were used to generate confidence intervals of apparent performance, and to calculate optimism and internally validate the models.

For each model the optimism-adjusted calibration slope was used as a global shrinkage factor to adjust the regression coefficients, and the intercept or baseline survival function was re-estimated (by refitting the model with the adjusted linear predictor as an offset). ${ }^{15}$

Performance of the adjusted model was then evaluated in the validation datasets, using the metrics described above. In addition, calibration was assessed using the calibration slope and calibration in the large (for logistic regression models). We also visually assessed calibration plots (plotted over 5-8 years of follow-up for Cox models). We evaluated potential improvements in calibration in validation datasets obtained through recalibration-in-the-large (in which the intercept or baseline survival function is re-estimated in the new dataset). Pre-specified subgroup analyses were performed as described in the main text.

Validation of QCancer-10

Validation of QCancer-10 in UKB permits evaluation of model performance in a population of approximately bowel screening age. Full QCancer-10 model specification is available at
https://www.qcancer.org/15yr/colorectal/. ${ }^{16}$
CRC outcomes were identified as described in the main paper. Of note, in QCancer-10 (colorectal cancer) development ICD-10 codes for anal cancer were included in case definition. We did not include these in this study, as anal cancers are of a different aetiology to CRC, and bowel cancer screening does not aim to detect these lesions. Coding of QCancer-10 predictors were matched as closely as possible. Previous medical history, alcohol and smoking status, and family history were all taken from self-reported data in baseline touch-screen and verbal UKB assessment centre interviews.

Mapping of ethnicity, smoking and alcohol intake is given in Table S1. Ethnicity was coded from self-reported ethnicity (UKB field 21000). Smoking history was compiled from the smoking summary field (field 20116), frequency of smoking (field 1239) and number of cigarettes smoked (field 3456). To calculate alcohol intake, reported alcohol intake frequency (field 1558) was combined with detailed drink-based intake reported in glasses/pints at touchscreen interview. Drinks intake was converted to units using NHS Choices Livewell alcohol units (as in Usher-Smith et al. ${ }^{17}$), and average daily units calculated.

Previous medical history of cancers was taken from self-reported cancer and non-cancer illnesses (fields 20001 and 20002) at touch-screen interview (Table S2).

Family history in UKB is for first degree relatives, detailed for father, mother and siblings separately; we considered positive family history to be CRC in any of these relatives. In QCancer-10 development, absence of data carries the assumption that the individual does not have any family history; family history was therefore coded as missing only if the answer for all of these was either 'Do not know' or 'Prefer not to answer'.

Distributions of continuous predictors were evaluated. One implausible value for BMI was set to missing and otherwise all values were retained. Of note there are a very small number of UKB participants aged 38-39 and 71-73 years at baseline assessment, who were included in our modelling.

Table S1: Mapping of UK Biobank ethnicity, smoking and alcohol data to QCancer-10 coding

QCancer-10 Coding UK Biobank Coding

Ethnicity	
White/not recorded	White, British, Irish, Any other white background, Prefer not to answer, Do not know, Missing
Pakistani	Indian
Bangladeshi	Pakistani
Other Asian	Bangladeshi
Caribbean	Asian or Asian British, Any other Asian background
Black African	Caribbean
Chinese	African
Other	Chinese
	Black or Black British, Any other Black background, Mixed, White and Black Caribbean, White and Black African, White
	and Asian, Any other mixed background, Other ethnic group

Smoking

Non-smoker	Smoking summary $=$ 'Never'
Ex-smoker	Smoking summary $=$ 'Previous'
Light smoker	Smoking summary $=$ 'Current' AND Cigarettes <10 OR frequency $=$ 'Only occasionally'
Moderate smoker	Smoking summary $=$ 'Current' AND Cigarettes $=10-19$
Heavy smoker	Smoking summary $=$ 'Current' AND Cigarettes >20
Missing	Smoking summary $=$ 'Missing' $/$ 'Prefer not to answer'

Alcohol	
Non-drinker	Alcohol frequency $=$ 'Never'
Trivial drinker	<1 calculated daily unit
Light drinker	$1-2$ calculated daily units
Moderate drinker	$3-6$ calculated daily units
Heavy drinker	$7-9$ calculated daily units
Very heavy drinker	10 or more calculated daily units
Missing	Alcohol frequency $=$ 'Missing'/ 'Prefer not to answer'

Table S2: UK Biobank codes self-reported medical history for QCancer-10 predictors

Medical condition	UK Biobank codes
Diabetes	1223,1220
Ulcerative colitis	1463
Bowel polyps	1460
Breast cancer	1002
Uterine cancer	1040
Ovarian cancer	1039
Cervical cancer	1041
Lung cancer	$1047,1048,1050,1051,1052,1053,1055,1056,1058$
Blood cancers	$1004,1005,1006,1010,1011,1012,1015,1077,1078,1079$

Integrated model development

Riley et al. propose minimum sample size requirements for developing new prediction models which go beyond the historically recommended 20 events per variable, implemented in R package pmsampsize. ${ }^{18}$ This uses the anticipated Cox-Snell R^{2}, number of predictors considered in the model, duration of follow-up, and expected event rate to calculate sample size and number of cases required.

We derived the Cox-Snell R^{2} as described by Riley et al. ${ }^{18}$ from the C-statistics from the open cohort of QCancer-10 validation performed in UK Biobank by Usher-Smith et al. ${ }^{17}$ (0.70 and 0.65 for male and female models respectively), and mean follow-up and CRC rates calculated for individuals available for the Integrated Modelling Cohort. The number of predictors included in the integrated model for each sex was calculated as follows for QCancer-10 risk score components: 1 for each degree of freedom of each categorical variable (alcohol intake $=5$; ethnicity $=8$; smoking $=4$); 1 each for continuous variables (BMI, Townsend Deprivation Score); 1 for each boolean predictor; 1 parameter for each fractional polynomial term for age; and 2 parameters for each interaction term calculated; 1 for the QCancer-10 risk score itself. With 1 additional parameter added for the PRS, this totalled 34 parameters for men and 33 for women.

Sample size calculations indicated that for the integrated male model, 27.43 events per candidate predictor parameter (EPP) are needed, giving a minimum sample size of 94996 and 933 events. As a result of lower CRC incidence and expected model performance in women, the EPP required was 47.53 , minimum sample size 253780 , with 1569 events. Whilst the numbers required for the male model are readily achievable, the sample size and cases available for the female model fall short in the our available Integrated Modelling Cohort ($\mathrm{n}=$ 238496 , including 1458 cases). Whilst we continued with model development, for the female integrated models the estimate of outcome risk may be less precise, and the model may be more subject to over-fitting. ${ }^{19}$ External validation of the integrated model will be essential prior to implementation.

We constructed Cox models in the Integrated Modelling Cohort including two predictors: the risk score from QCancer-10 and a PRS. We developed male and female models separately, and compared the use of the topperforming genome-wide PRS, and the GWAS-sig PRS. We truncated the lower and upper 0.5% of the distributions of each predictor to the outer bounds. ${ }^{20}$ Inspection of Schoenfeld residuals showed that the proportional hazard assumption held. We evaluated the use of multiple fractional polynomials to model the predictors. We assessed possible interactions between the predictors by visual inspection of plots of marginal effects of the QCancer-10 risk score across PRS values, and examining the prognostic strength and significance of interaction terms based on Wald χ^{2} statistics.

Software

R package bigsnpr v1.5.2 ${ }^{21}$ was used for genome-wide PRS development, epitools v 0.5-10.1, ${ }^{5} \mathrm{rms} v 5.1-4,{ }^{22}$ mfp v1.5.2, ${ }^{23}$ and survival v3.1-8 8^{6} for modelling, and packages from the tidyverse suite ${ }^{24}$ for data analysis and presentation (see code for all packages used).

Supplementary Results

Table S3: Characteristics and missingness of predictor values for the whole UKB cohort, excluding individuals with prevalent CRC. Values are numbers (\%) unless otherwise indicated. CRC - colorectal cancer, IQR - interquartile range, NA - not applicable. *not included in model for females but provided for information.

	Male	Female
Age (years), median (IQR)	58.0 (14.0)	57.0 (13.0)
Ethnicity		
White/not recorded	215121 (94.6)	257402 (94.6)
Indian	3003 (1.3)	2933 (1.1)
Pakistani	1118 (0.5)	716 (0.3)
Bangladeshi	159 (0.1)	74 (0.0)
Other Asian	996 (0.4)	857 (0.3)
Caribbean	1637 (0.7)	2855 (1.0)
Black African	1701 (0.7)	1677 (0.6)
Chinese	581 (0.3)	989 (0.4)
Other	3107 (1.4)	4529 (1.7)
Follow-up (years), median (IQR)	7.08 (1.34)	7.09 (1.31)
<5 years	405 (0.2)	490 (0.2)
Townsend deprivation index, median (IQR)	-2.1 (4.3)	-2.1 (4.1)*
Missing	293 (0.1)	325 (0.1)
BMI (kg/m2), median (IQR)	27.3 (5.1)	26.1 (6.3)*
Missing	1639 (0.7)	1448 (0.5)
Smoking status		
Non-smoker	110840 (48.7)	161336 (59.3)
Ex-smoker	86721 (38.1)	84928 (31.2)
Light smoker	11009 (4.8)	10158 (3.7)
Moderate smoker	6958 (3.1)	8402 (3.1)
Heavy smoker	10474 (4.6)	5708 (2.1)
Missing	1421 (0.6)	1500 (0.6)
Alcohol intake		
Non-drinker	14472 (6.4)	25889 (9.5)
Trivial drinker	48955 (21.5)	109497 (40.3)
Light drinker	66332 (29.2)	87095 (32)
Moderate drinker	69467 (30.5)	42795 (15.7)
Heavy drinker	17115 (7.5)	4374 (1.6)
Very heavy drinker	10323 (4.5)	1646 (0.6)
Missing	759 (0.3)	736 (0.3)
Family history of CRC	21638 (9.5)	24773 (9.1)
Missing	9652 (4.2)	7262 (2.7)
Diabetes	15513 (6.8)	9294 (3.4)
Missing	358 (0.2)	298 (0.1)
Colorectal polyps	711 (0.3)	708 (0.3)
Missing	378 (0.2)	310 (0.1)
Ulcerative colitis	1187 (0.5)	1379 (0.5)
Missing	378 (0.2)	310 (0.1)
Breast cancer	NA	11165 (4.1)
Missing	NA	649 (0.2)

Uterine cancer	NA	$1194(0.4)$
Missing	NA	$649(0.2)$
Ovarian cancer	NA	$811(0.3)$
Missing	NA	$649(0.2)$
Cervical cancer	NA	$1985(0.7)$
Missing	NA	$649(0.2)$
Lung cancer	$149(0.1)$	NA
Missing	$631(0.3)$	NA
Blood cancer	$1356(0.6)$	NA
Missing	$631(0.3)$	NA
Oral cancer	$576(0.3)$	NA
Missing	$631(0.3)$	NA
Imputed genetic data passing standard QC	$220923(97.1)$	$262403(96.5)$
Missing	$6500(2.9)$	$9629(3.5)$

Table S4: Demographics of derivation and validation cohorts used in PRS development (logistic regression modelling cohorts)

	Derivation Training		Derivation Test		Geographic Validation		Minority Ethnic Validation	
	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases
Male (n , \%)	13751 (46.5)	254 (57.0)	127823 (46.2)	2425 (57.3)	14851 (44.3)	330 (54.0)	12746 (46.8)	128 (50.2)
Female (n , \%)	15803 (53.5)	192 (43.0)	148611 (53.8)	1805 (42.7)	18690 (55.7)	281 (46.0)	14502 (53.2)	127 (49.8)
Age (mean, SD)	56.82 (8.01)	61.64 (6.10)	56.84 (7.99)	61.41 (6.15)	56.31 (8.05)	61.00 (6.51)	52.75 (8.25)	58.25 (7.97)
Age (min-max)	40-70	40-70	39-72	40-70	40-70	40-70	39-72	40-70

Figure S2. Z-scores for LDpred2-grid PRS calculated across a grid of tuning parameters: estimated heritability (h2), proportion of causal variants, \mathbf{p}, and sparsity (true or false) (after Privé et al.) For the top performing non-sparse grid PRS, the proportion of causal variants was 0.0056 , and heritability of 0.1121 ; for the topperforming sparse model, proportion of causal variants was 0.01 , and heritability 0.1602 , with sparsity 0.44137 .

Figure S3. Age specific CRC rates in men and women in the UK Biobank cohort overall and Integrated Modelling cohorts, compared to Office for National Statistics 2013 Cancer Registry data. ${ }^{4}$ Cases for the whole UK Biobank cohort are from linked cancer registry data; cases for the Integrated Modelling Cohort are from linked cancer registry, death registry, and hospital data.

Figure S4. Distributions of standardised PRS for PRS Test Cohort and Validation Cohorts. Case distribution is shown in green, controls in blue.

Interactions between PRS and Age

Evaluation of interaction terms (Table S5) indicated a significant interaction between age and PRS (at p <0.01) for the LDpred-inf model only in logistic regression models, and for LDpred2-grid, LDpred2-grid-sp and C+T Cox models. Plots of marginal effects (shown for logistic regression models in Figure S5) indicated a reduction in effect of PRS with increasing age. Plots for Cox models were similar. Given the weakness of the interaction terms relative to the other predictors based on Wald χ^{2}, we elected not to include interaction terms in the models.

Table S5. Wald χ^{2} of interaction terms between PRS and age in logistic regression and Cox models

	$\boldsymbol{\chi} \boldsymbol{2}$ (p value)		
	PRS	age	PRS * age
Logistic regression			
LDpred2-inf	529 (<0.001)	1254 (<0.001)	8 (0.004)
LDpred2-grid	860 (<0.001)	1254 (<0.001)	3 (0.065)
LDpred2-grid-sp	829 (<0.001)	1254 (<0.001)	3 (0.068)
SCT	500 (<0.001)	1254 (<0.001)	2 (0.136)
C+T	509 (<0.001)	1252 (<0.001)	3 (0.064)
GWAS-sig	447 (<0.001)	1248 (<0.001)	1 (0.457)
Cox regression			
LDpred2-inf	207 (<0.001)	575 (<0.001)	4 (0.038)
LDpred2-grid	428 (<0.001)	578 (<0.001)	9 (0.003)
LDpred2-grid-sp	405 (<0.001)	577 (<0.001)	8 (0.005)
SCT	222 (<0.001)	576 (<0.001)	4 (0.035)
C+T	242 (<0.001)	576 (<0.001)	9 (0.003)
GWAS-sig	225 (<0.001)	574 (<0.001)	7 (0.011)

Figure S5. Marginal effect of standardised PRS in interaction with age in linear regression models.

Table S6. Apparent performance of PRS assessed in logistic regression models in the Test Cohort, with and without adjustment for sex and age

	LDpred2-inf	LDpred2-grid	LDpred2-grid-sp	SCT	C+T	GWAS-sig
With sex and age						
C	0.704 (0.697-0.712)	0.717 (0.711-0.725)	0.716 (0.710-0.723)	$0.702(0.695-0.711)$	0.704 (0.697-0.711)	0.700 (0.693-0.707)
Dxy	0.407 (0.394-0.423)	0.435 (0.422-0.451)	0.432 (0.419-0.446)	0.404 (0.389-0.422)	0.407 (0.394-0.423)	0.400 (0.386-0.414)
R2 (\%)	5.5 (5.1-5.9)	6.3 (5.9-6.8)	6.2 (5.8-6.7)	5.4 (5.0-5.9)	5.4 (5.1-5.9)	5.3 (4.9-5.7)
Scaled Brier (\%)	0.87	1.05	1.03	0.86	0.85	0.83
Without sex and age						
C	0.597 (0.589-0.606)	0.626 (0.618-0.634)	0.623 (0.614-0.632)	0.594 (0.587-0.603)	0.597 (0.589-0.606)	0.592 (0.584-0.601)
Dxy	0.194 (0.178-0.212)	0.251 (0.235-0.268)	0.247 (0.229-0.264)	0.189 (0.175-0.206)	0.193 (0.178-0.211)	0.185 (0.169-0.202)
R2 (\%)	1.3 (1.1-1.5)	2.1 (1.8-2.4)	2.0 (1.8-2.3)	$1.2(1.0-1.5)$	1.3 (1.1-1.5)	1.1 (0.9-1.3)
Scaled Brier (\%)	0.21	0.34	0.33	0.19	0.19	0.17

Figure S6. Calibration plots of PRS models in logistic regression analyses in Validation Cohorts. Panels show calibration for the Geographic Validation Cohort before (A) and after (B) recalibration, and in the Minority Ethnic Validation Cohort before (C) and after (D) recalibration. Plots show predicted and observed risks by tenths of PRS for each model.

Table S7. Subgroup analysis of PRS logistic regression model performance by sex and in individuals with a first degree family history of CRC in the Geographic Validation Cohort.

	LDpred2-inf	LDpred2-grid	LDpred2-grid-sp	SCT	C+T	GWAS-sig
Males						
C	0.731 (0.705-0.760)	0.740 (0.716-0.767)	0.741 (0.715-0.768)	0.728 (0.702-0.753)	0.726 (0.702-0.755)	0.716 (0.689-0.743)
Dxy	0.463 (0.410-0.519)	0.481 (0.433-0.534)	0.481 (0.431-0.536)	0.455 (0.404-0.507)	0.453 (0.403-0.510)	0.433 (0.378-0.486)
R2 (\%)	7.6 (6.0-9.3)	8.3 (6.6-10.1)	8.3 (6.6-10.1)	7.2 (5.5-8.7)	7.2 (5.6-8.9)	6.6 (5.0-8.2)
Slope	$1.216(1.047-1.409)$	$1.171(1.025-1.343)$	$1.182(1.034-1.357)$	$1.178(1.006-1.354)$	$1.187(1.026-1.371)$	1.137 (0.968-1.320)
CITL	0.186 (0.075-0.287)	0.178 (0.068-0.279)	0.180 (0.070-0.281)	0.174 (0.067-0.275)	0.176 (0.066-0.278)	0.170 (0.061-0.273)
Scaled Brier (\%)	1.73	1.90	1.90	1.47	1.60	1.37
Females						
C	0.709 (0.680-0.739)	0.712 (0.682-0.741)	0.714 (0.684-0.743)	$0.694(0.666-0.723)$	0.699 (0.669-0.731)	0.673 (0.643-0.703)
Dxy	0.419 (0.360-0.477)	0.423 (0.365-0.481)	0.427 (0.368-0.486)	0.387 (0.331-0.447)	0.397 (0.338-0.462)	0.346 (0.287-0.406)
R2 (\%)	5.7 (4.0-7.4)	6.0 (4.1-7.7)	6.1 (4.3-7.8)	4.8 (3.2-6.6)	5.2 (3.3-6.9)	3.4 (1.8-5.1)
Slope	$1.102(0.919-1.292)$	1.035 (0.881-1.196)	$1.055(0.896-1.214)$	$1.002(0.839-1.185)$	1.041 (0.863-1.236)	0.862 (0.700-1.036)
CITL	0.230 (0.111-0.352)	0.221 (0.100-0.343)	0.223 (0.101-0.344)	0.217 (0.098-0.339)	0.218 (0.098-0.340)	0.215 (0.097-0.342)
Scaled Brier (\%)	1.04	1.20	1.22	0.90	0.98	0.59
First degree family history						
C	0.697 (0.637-0.748)	$0.701(0.642-0.754)$	0.706 (0.647-0.758)	0.685 (0.625-0.738)	0.703 (0.646-0.752)	0.668 (0.608-0.721)
Dxy	0.394 (0.275-0.496)	0.402 (0.283-0.509)	0.412 (0.293-0.515)	0.369 (0.251-0.475)	0.406 (0.292-0.504)	0.335 (0.217-0.443)
R2 (\%)	2.4 (-2.2-6.0)	3.4 (-1.1-7.4)	$36(-0.9-7.5)$	$18(-2.8-5.8)$	$29(-1.7-6.6)$	$05(-4.1-4.6)$
Slope	$1.021(0.714-1.322)$	0.971 (0.683-1.259)	0.997 (0.714-1.286)	0.948 (0.633-1.246)	$1.052(0.745-1.363)$	0.838 (0.518-1.145)
CITL	0.658 (0.462-0.827)	0.607 (0.409-0.771)	0.613 (0.414-0.776)	0.643 (0.451-0.812)	0.644 (0.453-0.810)	0.633 (0.443-0.809)
Scaled Brier (\%)	1.07	1.45	1.45	1.03	1.14	0.77

Figure S7. Calibration of PRS in logistic regression models in subgroup analysis in the Geographic Validation Cohort. Plots show predicted and observed risks by tenths of PRS for each model in males (A), females (B), and those with a first degree family history of CRC (C).

Figure S8. Observed and predicted probabilities of CRC for PRS logistic regression models across 5 year age bands in the Geographic Validation Cohort.

Figure S9. Kaplan-Meier curves across four risk groups (group 4 being highest risk) for PRS in the Geographic Validation Cohort compared with the Test Cohort

Figure S10. Calibration plots of PRS models in Cox models in the Geographic Validation Cohort. Plots show predicted and observed risks by tenths of PRS before (A) and after (B) recalibration for each model.

Table S8. Subgroup analysis of PRS Cox model performance by sex in the Geographic Validation Cohort. We did not assess performance specifically in those with a first degree family history, as there were too few incident cases in this group.

	LDpred2-inf	LDpred2-grid	LDpred2-grid-sp	SCT	C+T	GWAS-sig
Males						
C	0.709 (0.675-0.747)	0.724 (0.691-0.761)	0.723 (0.691-0.760)	0.711 (0.677-0.745)	$0.704(0.668-0.740)$	0.707 (0.675-0.740)
Dxy	0.419 (0.349-0.493)	0.448 (0.382-0.522)	0.446 (0.382-0.520)	0.422 (0.354-0.489)	0.408 (0.337-0.481)	0.414 (0.350-0.481)
D	1.197 (0.989-1.430)	1.272 (1.072-1.486)	1.271 (1.063-1.499)	1.149 (0.963-1.359)	$1.156(0.938-1.383)$	1.185 (0.991-1.394)
R2D (\%)	25.5 (18.9-32.8)	27.9 (21.5-34.5)	27.8 (21.2-34.9)	24.0 (18.1-30.6)	24.1 (17.3-31.3)	25.1 (19.0-31.7)
Slope	1.172 (0.954-1.431)	1.120 (0.942-1.327)	1.128 (0.944-1.350)	1.139 (0.947-1.370)	$1.117(0.896-1.365)$	1.157 (0.950-1.390)
Scaled Brier (\%)	0.82	0.84	0.85	0.67	0.67	0.72
Females						
C	0.707 (0.670-0.745)	0.711 (0.671-0.746)	0.713 (0.673-0.749)	0.700 (0.657-0.738)	0.696 (0.655-0.731)	0.680 (0.638-0.720)
Dxy	0.414 (0.340-0.490)	0.421 (0.342-0.492)	0.427 (0.345-0.498)	0.399 (0.313-0.476)	0.393 (0.309-0.461)	0.360 (0.276-0.439)
D	1.244 (0.994-1.492)	1.227 (0.985-1.459)	1.250 (1.005-1.485)	1.142 (0.882-1.398)	1.133 (0.887-1.377)	1.004 (0.769-1.245)
R2D (\%)	27.0 (19.1-34.7)	26.432 (18.8-33.7)	27.2 (19.4-34.5)	23.8 (15.7-31.8)	23.5 (15.8-31.1)	19.4 (12.4-27.0)
Slope	1.171 (0.912-1.460)	1.053 (0.827-1.278)	1.080 (0.847-1.304)	1.076 (0.822-1.354)	$1.058(0.802-1.312)$	0.944 (0.708-1.203)
Scaled Brier (\%)	0.55	0.52	0.56	0.44	0.41	0.30

Figure S11. Calibration of PRS in Cox models by sex in the Geographic Validation Cohort. Plots show predicted and observed risks by tenths of PRS for each model in males (A) and females (B).

Figure S12. Observed and predicted probabilities of CRC for PRS Cox models across 5 year age bands in the Geographic Validation Cohort

Figure S13. Kaplan-Meier curves across four risk groups (group 4 being highest risk) for PRS in the Minority Ethnic Validation Cohort compared with the Test Cohort

Figure S14. Calibration plots of PRS models in Cox model in the Minority Ethnic Validation Cohort. Plots show predicted and observed risks by tenths of PRS cohort before (A) and after (B) recalibration for each model.

Table S9. Characteristics of the UKB Integrated Modelling Cohort used for QCancer-10 validation, compared with the QCancer-10 derivation cohort. Values are numbers (\%) unless otherwise indicated. CRC - colorectal cancer, NA - not applicable.

	Male UKB cohort $(\mathrm{n}=196091)$	$\begin{gathered} \text { Male QCancer-10 } \\ \text { derivation } \\ (\mathrm{n}=2447866) \\ \hline \end{gathered}$	Female UKB cohort $(\mathrm{n}=238946)$	Female QCancer-10 Derivation ($\mathrm{n}=2495$ 899)
Age (years), mean (SD)	56.7 (8.2)	44.3 (14.8)	56.3 (8.0)	44.9 (15.9)
Ethnicity				
White/not recorded	185813 (94.8)	2231641 (91.2)	224316 (94.6)	2271520 (91.0)
Indian	2510 (1.3)	42771 (1.7)	2601 (1.1)	37773 (1.5)
Pakistani	903 (0.5)	17169 (0.7)	616 (0.3)	16893 (0.7)
Bangladeshi	132 (0.1)	17169 (0.7)	61 (0.0)	13170 (0.5)
Other Asian	841 (0.4)	24494 (1.0)	748 (0.3)	27750 (1.1)
Caribbean	1397 (0.7)	37003 (1.5)	1412 (0.6)	40742 (1.6)
Black African	1363 (0.7)	18553 (0.8)	2498 (1.0)	23920 (1.0)
Chinese	516 (0.3)	12493 (0.5)	865 (0.4)	17702 (0.7)
Other	2616 (1.3)	41738 (1.7)	3980 (1.7)	46429 (1.9)
Townsend deprivation index, mean (SD)	-1.3 (3.1)	0.3 (3.6)	-1.4 (3.0)	0.2 (3.6)
BMI (kg/m2), mean (SD)	27.8 (4.2)	26.3 (4.2)	27.0 (5.2)	25.7 (5.0)
Smoking status				
Non-smoker	97088 (49.5)	1081822 (44.2)	142569 (59.8)	1433446 (57.4)
Ex-smoker	75100 (38.3)	448480 (18.3)	74934 (31.4)	392870 (15.7)
Light smoker	9361 (4.8)	351559 (14.4)	8885 (3.7)	284482 (11.4)
Moderate smoker	5816 (3.0)	167089 (6.8)	7235 (3.0)	152115 (6.1)
Heavy smoker	8726 (4.4)	139985 (5.7)	4873 (2.0)	86114 (3.5)
Alcohol intake				
Non-drinker	11985 (6.1)	433515 (17.7)	22415 (9.4)	753150 (30.2)
Trivial drinker	41810 (21.3)	585589 (23.9)	96085 (40.3)	849734 (34.0)
Light drinker	57817 (29.5)	358713 (14.7)	76942 (32.3)	295009 (11.8)
Moderate drinker	60694 (31.0)	486003 (19.9)	37830 (15.9)	176644 (7.1)
Heavy drinker	14960 (7.6)	41223 (1.7)	3797 (1.6)	5332 (0.2)
Very heavy drinker	8825 (4.5)	18473 (0.8)	1427 (0.6)	3743 (0.1)
Medical history				
Ulcerative colitis	1053 (0.5)	8956 (0.4)	1211 (0.5)	8983 (0.4)
Colorectal polyps	616 (0.3)	3146 (0.1)	612 (0.3)	2447 (0.1)
Diabetes	12893 (6.6)	68727 (2.8)	7885 (3.3)	53070 (2.1)
Breast cancer	NA	NA	9448 (4.0)	25108 (1.0)
Uterine cancer	NA	NA	1030 (0.4)	1987 (0.1)
Ovarian cancer	NA	NA	724 (0.3)	2242 (0.1)
Cervical cancer	NA	NA	1711 (0.7)	3582 (0.1)
Lung cancer	125 (0.1)	1488 (0.1)	NA	NA
Blood cancers	1146 (0.6)	5953 (0.2)	NA	NA
Oral cancer	483 (0.2)	964 (0.0)	NA	NA
Family history of CRC	19505 (9.9)	29877 (1.2)	22252 (9.3)	43741 (1.8)

Figure S15. Calibration of QCancer-10 over 5-8 years of follow-up. Plots show predicted and observed risks by tenths of predicted risk in males (A) and females (B) before and after recalibration.

Table S10. Expected/observed ratio of risk over 5-8 years of follow-up for male and female for QCancer$10+$ LDP, QCancer-10+GWS and QCancer-10 models in subgroups analyses.

	Years of follow-up	QCancer-10+LDP	QCancer-10+GWS	QCancer-10
Family history of CRC				
Male	5	1.06	1.05	1.02
	6	1.04	1.02	0.99
	7	1.08	1.06	1.04
	8	0.97	0.95	0.93
Female	5	1.28	1.25	1.31
	6	1.22	1.19	1.25
	7	1.26	1.23	1.30
	8	1.19	1.16	1.23
Minority ethnicity				
Male	5	0.50	0.60	0.73
	6	0.57	0.68	0.82
	7	0.60	0.71	0.86
	8	0.70	0.83	1.01
Female	5	0.65	0.73	0.74
	6	0.58	0.65	0.65
	7	0.54	0.61	0.62
	8	0.49	0.55	0.56

Figure S16. Observed and predicted probabilities of CRC by age for male and female for QCancer10+LDP, QCancer-10+GWS and QCancer-10 models.

Figure S17. Calibration plots for individuals with a first-degree family history of CRC in QCancer-
10+PRS and QCancer-10 models. Plots show predicted and observed risks by tenths of predicted risk in males (A) and females (B)

QCancer-10+PRS model specification

We confirmed QCancer-10 risk score and PRS fulfilled proportional hazards assumptions. Evaluation of multiple fractional polynomials (MFP) for modelling of these predictors resulted in use of MFP terms for the PRS in the female QCancer-10+LDP model (see Model specification below). Evaluation of interaction terms (Table S11) indicated a significant interaction (at $\mathrm{p}<0.01$) for the male QCancer-10+GWS model only. Plots of marginal effects (Figure S18) indicated a reduction in effect of QCancer-10 with increasing PRS score. Given the weakness of the interaction terms relative to the other predictors based on Wald χ^{2}, we elected not to include interaction terms in the models.

Table S11. Interaction terms in QCancer-10+LDP and QCancer-10+GWS models. Evaluated using MFP terms for female QCancer-10+LDP model

	QCancer-10+LDP	QCancer-10+GWS
Male		
QCancer-10 LP	$635.85(<0.001)$	$652.88(<0.001)$
PRS	$390.82(<0.001)$	$264.36(<0.001)$
Interaction term	$6.29(0.012)$	$8.50(0.004)$
Female		
QCancer-10 LP	$293.43(<0.001)$	$302.90(<0.001)$
PRS	$297.96(<0.001)$	$135.83(<0.001)$
Interaction term	$0.15(0.699)$	$1.53(0.216)$

Figure S18. Marginal effect of QCancer-10 risk score in interaction with PRS in male QCancer-10+LDP and QCancer- $\mathbf{1 0}+$ GWS models

QCancer-10+LDP models for males after adjustment for optimism:
$\mathrm{LP}=0.9783043 *$ LDpred2.gsp $+0.976795^{*}$ QCancer-10
Baseline survival function
5 years: 0.9954855
6 years: 0.9944618
7 years: 0.9934987
8 years: 0.9924138

QCancer-10+LDP models for females after adjustment for optimism:
$\mathrm{LP}=0.2962966^{*}(\text { LDpred2.gsp }+1.4)^{2}+0.7871845^{*}($ QCancer-10+0.8 $)$
Baseline survival function
5 years: 0.9966845
6 years: 0.9959385
7 years: 0.9951428
8 years: 0.9944463

QCancer-10+GWS models for males after adjustment for optimism:
$\mathrm{LP}=0.8083617 *$ GWAS-sig $+0.9896891 *$ QCancer-10
Baseline survival function
5 years: 0.9953175
6 years: 0.9942564
7 years: 0.9932547
8 years: 0.9921095

QCancer-10+GWS models for females after adjustment for optimism:
$\mathrm{LP}=0.6610515^{*}$ GWAS-sig $+0.7995745^{*}$ QCancer- 10
Baseline survival function
5 years: 0.9965650
6 years: 0.9957923
7 years: 0.9949641
8 years: 0.9942322

Table S12. Fold-increase in absolute risk between $95^{\text {th }}$ centile and median risk for QCancer-10+LDP, QCancer-10+GWS and QCancer-10 models

	QCancer-10+LDP	QCancer-10+GWS	QCancer-10	LDpred2-grid-sp
Males	3.49	3.14	2.37	3.03
Females	2.75	2.37	2.06	3.06

Table S13. Sensitivity of QCancer-10+GWS models for CRC diagnosis over 5 years of follow-up across top 25 centiles of absolute risk in males and females

Centiles	Population per centile	Absolute 5-year risk centile cut-off (\%)	Cases per centile	Cumulative \% cases based on absolute risk (sensitivity)
Men				
1	1960	2.46	74	3.9
2	1961	2.15	65	7.3
3	1961	1.97	44	9.6
4	1961	1.83	54	12.4
5	1961	1.72	47	14.9
6	1961	1.63	39	17.0
7	1961	1.56	53	19.8
8	1961	1.50	37	21.8
9	1961	1.44	43	24.1
10	1961	1.39	47	26.6
11	1961	1.34	36	28.5
12	1960	1.30	42	30.7
13	1961	1.27	27	32.1
14	1961	1.23	47	34.6
15	1961	1.20	30	36.2
16	1961	1.17	28	37.7
17	1961	1.14	37	39.7
18	1961	1.11	22	40.9
19	1961	1.08	35	42.7
20	1961	1.06	39	44.8
21	1961	1.03	24	46.1
22	1961	1.01	31	47.7
23	1960	0.99	31	49.3
24	1961	0.96	32	51.0
25	1961	0.94	32	52.7
Women				
1	2384	1.18	37	2.5
2	2385	1.06	39	5.2
3	2385	0.98	35	7.6
4	2385	0.93	31	9.7
5	2385	0.88	28	11.6
6	2385	0.85	30	13.7
7	2385	0.82	29	15.7
8	2385	0.79	34	18.0
9	2385	0.77	24	19.6
10	2385	0.75	25	21.3
11	2385	0.73	30	23.4
12	2385	0.71	35	25.8
13	2385	0.70	28	27.7
14	2385	0.68	20	29.1
15	2385	0.67	22	30.6
16	2385	0.65	21	32.0
17	2385	0.64	25	33.7
18	2385	0.63	22	35.2
19	2385	0.62	26	37.0
20	2385	0.61	23	38.6
21	2385	0.60	27	40.5
22	2385	0.59	26	42.3
23	2385	0.57	22	43.8
24	2385	0.57	20	45.2
25	2385	0.56	21	46.6

Table S14. Sensitivity of QCancer-10 for CRC diagnosis over 5 years of follow-up across top 25 centiles of absolute risk in men and women. Calculated following recalibration of the QCancer-10 model.

Centiles	Population per centile	Absolute 5-year risk centile cutoff (\%)	Cases per centile	Cumulative \% cases based on absolute risk (sensitivity)
Men				
1	1960	1.90	49	2.6
2	1961	1.71	44	4.9
3	1961	1.60	51	7.6
4	1961	1.53	48	10.1
5	1961	1.47	51	12.8
6	1961	1.42	43	15.1
7	1961	1.38	35	16.9
8	1961	1.34	52	19.7
9	1961	1.31	36	21.6
10	1961	1.28	41	23.7
11	1961	1.25	37	25.7
12	1960	1.22	42	27.9
13	1961	1.20	38	29.9
14	1961	1.18	28	31.4
15	1961	1.16	39	33.5
16	1961	1.14	28	34.9
17	1961	1.12	36	36.8
18	1961	1.10	33	38.6
19	1961	1.08	27	40.0
20	1961	1.07	23	41.2
21	1961	1.05	27	42.6
22	1961	1.03	31	44.3
23	1960	1.01	25	45.6
24	1961	1.00	36	47.5
25	1961	0.98	22	48.7
Women				
1	2336	1.10	24	1.6
2	2344	0.98	38	4.3
3	2364	0.91	22	5.8
4	2422	0.86	21	7.2
5	2375	0.82	34	9.5
6	2203	0.80	18	10.8
7	2598	0.78	24	12.4
8	1827	0.76	25	14.1
9	2991	0.75	24	15.8
10	900	0.74	8	16.3
11	3846	0.72	38	18.9
12	2392	0.71	22	20.4
13	1543	0.70	20	21.8
14	2417	0.69	35	24.2
15	3216	0.68	33	26.5
16	2294	0.67	26	28.3
17	2328	0.66	23	29.8
18	2499	0.65	16	30.9
19	2306	0.64	23	32.5
20	2434	0.63	30	34.6
21	2418	0.62	15	35.6
22	2058	0.61	27	37.4
23	2388	0.60	16	38.5
24	2542	0.59	19	39.8
25	2539	0.58	27	41.7

Table S15. Sensitivity of LDpred2-grid-sp PRS for CRC diagnosis over 5 years of follow-up across top 25 centiles of absolute risk in men and women. Calculated in the Test Cohort following adjustment for optimism.

Centiles	Population per centile	Absolute 5-year risk centile cut-off (\%)	Cases per centile	Cumulative \% cases based on absolute risk (sensitivity)
Men				
1	1290	2.39	40	3.2
2	1291	2.07	34	5.9
3	1290	1.89	31	8.4
4	1291	1.75	29	10.7
5	1290	1.65	30	13.1
6	1291	1.57	34	15.8
7	1290	1.50	31	18.3
8	1291	1.43	31	20.8
9	1290	1.38	24	22.7
10	1291	1.33	35	25.5
11	1291	1.29	35	28.3
12	1290	1.25	24	30.2
13	1291	1.21	20	31.8
14	1290	1.18	20	33.4
15	1291	1.15	23	35.3
16	1290	1.12	16	36.6
17	1291	1.09	27	38.8
18	1290	1.06	24	40.7
19	1291	1.03	18	42.1
20	1291	1.01	24	44.0
21	1290	0.99	18	45.4
22	1291	0.97	27	47.6
23	1290	0.94	21	49.3
24	1291	0.92	16	50.6
25	1290	0.90	16	51.9
Women				
1	1494	1.49	33	3.7
2	1494	1.27	28	6.9
3	1495	1.15	31	10.4
4	1494	1.07	26	13.3
5	1494	1.00	13	14.8
6	1495	0.95	19	16.9
7	1494	0.91	22	19.4
8	1495	0.87	22	21.9
9	1494	0.84	17	23.8
10	1494	0.81	16	25.6
11	1495	0.78	15	27.3
12	1494	0.76	17	29.2
13	1494	0.74	11	30.4
14	1495	0.71	14	32.0
15	1494	0.69	16	33.8
16	1495	0.68	24	36.5
17	1494	0.66	12	37.9
18	1494	0.64	15	39.6
19	1495	0.63	13	41.1
20	1494	0.61	16	42.9
21	1494	0.60	17	44.8
22	1495	0.58	11	46.0
23	1494	0.57	10	47.1
24	1495	0.56	8	48.0
25	1494	0.55	14	49.6

Table S16. Sensitivity of QCancer-10+LDP across top 25 centiles of relative risk. Risk is calculated relative to an individual of the same age and sex, of white-British ethnicity, with no CRC risk factors, BMI of 25 , mean Townsend Deprivation Score, and mean PRS.

Centiles	Population per centile	Age-sex relative risk centile cut-off (\%)	Cases per centile	Cumulative \% cases based on relative risk (sensitivity)
Men				
1	1960	4.81	55	2.9
2	1961	4.14	49	5.5
3	1961	3.78	36	7.4
4	1961	3.51	47	9.9
5	1961	3.32	32	11.6
6	1961	3.15	35	13.4
7	1961	3.01	38	15.4
8	1961	2.89	29	16.9
9	1961	2.79	40	19.0
10	1961	2.70	31	20.6
11	1961	2.62	36	22.5
12	1960	2.55	35	24.3
13	1961	2.48	40	26.4
14	1961	2.42	27	27.8
15	1961	2.36	27	29.2
16	1961	2.31	27	30.6
17	1961	2.26	22	31.8
18	1961	2.21	31	33.4
19	1961	2.17	26	34.8
20	1961	2.12	29	36.3
21	1961	2.08	28	37.8
22	1961	2.04	33	39.5
23	1960	2.01	30	41.1
24	1961	1.97	29	42.6
25	1961	1.94	29	44.1
Women				
1	2199	3.89	46	3.2
2	2570	3.26	34	5.5
3	2384	2.90	41	8.3
4	2385	2.66	28	10.2
5	2386	2.48	29	12.2
6	2385	2.34	29	14.2
7	2385	2.23	25	15.9
8	2384	2.14	22	17.4
9	2386	2.06	26	19.2
10	2385	1.99	27	21.1
11	2385	1.92	26	22.9
12	2384	1.86	33	25.2
13	2385	1.81	21	26.6
14	2385	1.77	17	27.8
15	2386	1.72	14	28.8
16	2385	1.69	15	29.8
17	2385	1.65	17	31.0
18	2384	1.62	20	32.4
19	2386	1.58	19	33.7
20	2384	1.55	25	35.4
21	2385	1.52	18	36.6
22	2386	1.50	20	38.0
23	2385	1.47	21	39.4
24	2385	1.45	21	40.8
25	2385	1.42	19	42.1

Table S17. Sensitivity of QCancer-10+GWS across top 25 centiles of relative risk. Risk is calculated relative to an individual of the same age and sex, of white-British ethnicity, with no CRC risk factors, BMI of 25, mean Townsend Deprivation Score, and mean PRS.

Centiles	Population per centile	Age-sex relative risk centile cut-off (\%)	Cases per centile	Cumulative \% cases based on relative risk (sensitivity)
Men				
1	1960	4.08	36	1.9
2	1961	3.54	45	4.3
3	1961	3.25	47	6.8
4	1961	3.06	41	9.0
5	1961	2.90	33	10.7
6	1961	2.78	33	12.4
7	1961	2.68	33	14.1
8	1961	2.58	36	16.0
9	1961	2.50	38	18.0
10	1961	2.43	43	20.3
11	1961	2.37	30	21.9
12	1960	2.31	26	23.3
13	1961	2.26	23	24.5
14	1961	2.21	26	25.9
15	1961	2.16	23	27.1
16	1961	2.12	18	28.0
17	1961	2.08	36	29.9
18	1961	2.04	25	31.2
19	1961	2.01	25	32.5
20	1961	1.98	28	34.0
21	1961	1.94	25	35.3
22	1961	1.91	25	36.6
23	1960	1.88	26	38.0
24	1961	1.86	24	39.3
25	1961	1.83	21	40.4
Women				
1	2383	2.63	19	1.3
2	2386	2.36	35	3.7
3	2384	2.23	22	5.2
4	2386	2.12	24	6.8
5	2385	2.02	20	8.2
6	2385	1.95	22	9.7
7	2384	1.89	19	11.0
8	2385	1.84	20	12.4
9	2385	1.79	17	13.6
10	2385	1.75	33	15.9
11	2386	1.72	26	17.7
12	2385	1.68	20	19.1
13	2385	1.65	18	20.3
14	2385	1.62	21	21.7
15	2385	1.60	25	23.4
16	2385	1.57	19	24.7
17	2385	1.55	22	26.2
18	2385	1.53	19	27.5
19	2385	1.51	32	29.7
20	2384	1.49	21	31.1
21	2386	1.47	21	32.5
22	2384	1.45	21	33.9
23	2386	1.43	17	35.1
24	2384	1.41	19	36.4
25	2386	1.40	13	37.3

Table S18. Percentage of population and cases with relative risk $\mathbf{>} \mathbf{2 . 2}$ for QCancer-10+LDP, QCancer$10+$ GWS and QCancer-10 models

	QCancer-10+LDP		QCancer-10+GWS		QCancer-10	
	Males	Females	Males	Females	Males	Females
\% population with $R R>2.2$	18.2	7.2	14.2	3.2	4.1	1.2
\% of individuals with $R R>2.2$ without FDRCRC	75.9	69.6	70.8	44.8	29.4	30.3
\% cases with $R R>2.2$	34.0	16.5	26.3	6.0	4.9	1.6

References

1. Law PJ, Timofeeva M, Fernandez-Rozadilla C, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 2019;10(1):2154.DOI: 10.1038/s41467-019-09775-w
2. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.DOI: 10.1371/journal.pmed. 1001779
3. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.DOI: 10.1038/s41586-018-0579-z
4. Office for National Statistics. Cancer registration statistics, England [Available from:
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/ca ncerregistrationstatisticscancerregistrationstatisticsengland. Accessed September 2020].
5. Aragon TJ. epitools: Epidemiology Tools. 2020 https://CRAN.R-project.org/package=epitools.
6. Therneau T. A Package for Survival Analysis in R. 2015 https://CRAN.R-
project.org/package=survival.
7. Prive F, Arbel J, Vilhjalmsson BJ. LDpred2: better, faster, stronger. Bioinformatics. 2020;36(22-
23):5424-31.DOI: 10.1093/bioinformatics/btaa1029
8. Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med. 2016;35(2):214-26.DOI: 10.1002/sim. 6787
9. Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76-87.DOI: 10.1038/s41588-018-0286-6
10. Bigdeli TB, Lee D, Webb BT, et al. A simple yet accurate correction for winner's curse can predict signals discovered in much larger genome scans. Bioinformatics. 2016;32(17):2598-603.DOI: 10.1093/bioinformatics/btw303
11. Prive F, Vilhjalmsson BJ, Aschard H, Blum MGB. Making the Most of Clumping and Thresholding for Polygenic Scores. Am J Hum Genet. 2019;105(6):1213-21.DOI: 10.1016/j.ajhg.2019.11.001
12. Lloyd-Jones LR, Zeng J, Sidorenko J, et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat Commun. 2019;10.DOI: ARTN 5086
10.1038/s41467-019-12653-0
13. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the Performance of Prediction Models A Framework for Traditional and Novel Measures. Epidemiology. 2010;21(1):128-38.DOI:
10.1097/EDE.0b013e3181c30fb2
14. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33.DOI: 10.1186/1471-2288-13-33
15. Harrell FE. Regression Modeling Strategies: with Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, NY: Springer; 2001.
16. ClinRisk Ltd. QCancer®(15yr,colorectal). 2015 https://qcancer.org/ $15 \mathrm{yr} /$ colorectal/.
17. Usher-Smith JA, Harshfield A, Saunders CL, et al. External validation of risk prediction models for incident colorectal cancer using UK Biobank. Br J Cancer. 2018;118(5):750-9.DOI: 10.1038/bjc. 2017.463
18. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med. 2019;38(7):1276-96.DOI: 10.1002/sim. 7992
19. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368.DOI: ARTN m441
10.1136/bmj.m441
20. Royston P, Sauerbrei W. Improving the robustness of fractional polynomial models by preliminary covariate transformation: A pragmatic approach. Comput Stat Data An. 2007;51(9):4240-53.DOI: 10.1016/j.csda.2006.05.006
21. Prive F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics. 2018;34(16):2781-7.DOI:
10.1093/bioinformatics/bty185
22. Harrell FE. rms: Regression Modeling Strategies. $2019 \mathrm{https}: / / C R A N . R-p r o j e c t . o r g / p a c k a g e=r m s . ~$
23. Ambler G, Benner A. mfp: Multivariable Fractional Polynomials. 2015 https://CRAN.R-
project.org/package=mfp.
24. Wickham H, Averick M, Bryan J, et al. Welcome to the tidyverse. Journal of Open Source Software.

2019;4(43):1686.DOI: https://doi.org/10.21105/joss. 01686

