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Abstract  

This work shows a derivation of a multinomial probability function and quantitative measures of 

the data and epistemic uncertainty as direct output of a 3D U-Net segmentation network.  A set of 

T1 brain MRI images were downloaded from the Connectome Project and segmented using 

FMRIB’s FAST algorithm to be used as ground truth. A 3D U-Net neural network was trained 

with sample sizes of 200, 500, and 898 T1 brain images using a loss function defined as the 

negative logarithm of the likelihood based on a derivation of the definition of the multinomial 
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probability function. From this definition, the epistemic (model) and aleatoric (data) uncertainty 

equations were derived and used to quantify maps of the uncertainty in data prediction. The 

epistemic and aleatoric uncertainty decreased based on the increasing number of training data used 

to train the neural network. The neural network trained with 898 volumes resulted in uncertainty 

maps that were high primarily in the tissue boundary regions. The uncertainty was averaged over 

all test data (connectome and tumor separately) and the epistemic uncertainty showed a decreasing 

trend, as expected, with increasing numbers of data used to train the model. The aleatoric 

uncertainty showed a similar trend, but it was less obvious, which was also expected as the 

aleatoric uncertainty is not expected to be as dependent on the number of training data.  The 

derived data and epistemic uncertainty equations from a multinomial probability distribution are 

applicable for all 2D and 3D neural networks.   
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Introduction 

Neural network segmentation has fast become one of the important uses for machine learning in 

medical imaging.  Studies have used networks to segment brain tumors (Chen et al. 2020; Hussain, 

Anwar, and Majid 2018; Badža and Barjaktarović 2020; Reddick et al. 1998; Sharif et al. 2020; 

Dandıl and Karaca 2021), tumors of the head and neck (Fu et al. 2020; Gou et al. 2020; Park et al. 

2019), organs in the abdomen (Edwards et al. 2020; Jiang et al. 2017; Selver 2014; Rafiee, 

Masoumi, and Roosta 2009; Lee, Chung, and Tsai 2003; Hu et al. 2017).  The most popular neural 

network model for segmentation is the U-Net model (Ronneberger, Fischer, and Brox 2015) and 

its variants, including U-Net++ (Z. Zhou et al. 2018; Milletari, Navab, and Ahmadi 2016), V-Net 

(Lin et al. 2019), 3D U-Net (Çiçek et al. 2016) and 3D U2-Net (Huang et al. 2019).  The U-Net 

family of segmentation models takes in an image or volume and uses a set of steps to spatially 

down-sample the input and encode in an increasing number of channels, followed by an up-

sampling scheme with the same number of steps to the full spatial resolution.  The output of the 

network typically is a mask of the segmented region.  

Deep learning must be accurate and stable to remain reliable (Antun et al. 2020) for use in 

medical image diagnosis. In the Antun paper, they compared image reconstruction techniques and 

found the results were not stable to changes (e.g., noise or small perturbations in the image) to the 

input image. For medical image segmentation the errors may arise at the boundary of regions or 

where large regions are mislabeled. (Pai et al. 2017). Given potentially significant adverse 

consequences of inaccurate labeling for medical images, an estimate of the reliability of 

segmentations is needed if such AI tools are to be used in medical decision making(Senge et al. 

2014).  

There are two types of uncertainty in measuring a parameter(Hüllermeier and Waegeman 

2021): (1) aleatoric uncertainty refers to the variability of an outcome due to inherent random 

effects and cannot be reduced based on more data; (2) epistemic uncertainty is caused by lack of 

knowledge (shows what the model does not understand about the data) and can be decreased by 

adding more training samples. Each of these types of uncertainty are present in all predicted 

parameters from models, including trained neural networks(Hüllermeier and Waegeman 2021).  

Recently, there have been papers that have shown techniques to provide measures of 

uncertainty in the results of neural network segmentations. Currently, techniques for providing 
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measures of uncertainty rely on: (1) Bayesian inference with placing prior distributions over 

hierarchical models (Gelman et al. 2008), (2) Bayesian deep learning which places priors over 

network weights (Kingma et al. 2015).  Previously, Senge(Senge et al. 2014) showed classifiers 

can distinguish between aleatoric and epistemic uncertainty and more recently Amini (Amini et 

al. 2019) derived the epistemic and aleatoric uncertainty from the learned evidential distribution 

and applied it directly to a classification network. The Amini paper showed a classification model 

was able to produce not just the classification but also the data and epistemic uncertainty from 

within the model outputs.  

Our paper has furthered the quantification of uncertainty from a classification neural 

network (Amini et al. 2019; Senge et al. 2014) by deriving the epistemic and aleatoric uncertainty 

for a multi-class segmentation model and applied it to normal appearing MRI datasets and a set of 

brain tumor data. Aleatoric and epistemic uncertainty maps were created for a test set of 

segmentation data and for the tumor data. The aleatoric and epistemic uncertainties were averaged 

for each tissue over all test data to compare the changes over the number of training sets for the 

model. We hypothesize that aleatoric and epistemic uncertainty maps can be generated on U-net 

based segmentation of medical imaging, specifically MRIs of the brain. 

Methods 

Data 

The neural network segmentation was trained and tested based on T1 MRI images. The training 

data consisted of 928 T1 MRI images from the 1000 Connectome Project 

(https://www.nitrc.org/projects/fcon_1000/ from locations AnnArbor, Atlanta, Baltimore, Bangor, 

Beijing, Berlin, Cambridge, Cleveland, Dallas, ICBM, Leiden, Milwaukee, Munchen, Newark, 

NewHaven, and NewYork). The downloaded data consisted of skull-stripped data in NIFTI format 

and were downloaded to a local machine. The T1 data was then segmented into WM, GM and CSF 

masks using FMRIB’s Automated Segmentation Tool (Zhang, Brady, and Smith 2001) with 

parameters fast -S 1 -t 1 -n 3. The automated segmentation from FAST were reviewed by a board-

certified radiologist to confirm accuracy. The 1000 Connectome Project data was used for this 

project as it is an open source dataset, is very large, and has a consistent T1 acquisition. 
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A second set of T1 weighted data was used as a second test for the prediction and uncertainty and 

to visualize the epistemic and aleatoric uncertainty in the tumor region which was not a specific 

class used in training. This data consisted of a set of 10 T1 weighted scans acquired pre-operatively 

of patients who had visible brain tumors as part of their standard of care. This data was used 

retrospectively and was approved by the institute’s IRB. The only eligibility criteria is that there 

was a visible tumor in the T1 MRI images. The data was acquired on a Siemens 3T MRI scanner 

with parameters TR/TI/TE/flip angle = 2300 / 900 / 3.5 / 9º. The DICOM data was de-identified 

using internal software based on the RSNA MIRC Clinical Trials Processor 

(https://mircwiki.rsna.org/index.php?title=CTP-

The_RSNA_Clinical_Trial_Processor) de-identification standard and then converted to NIFTI 

format using dcm2niix (Li et al. 2016). For this dataset, skull stripping and FAST segmentation 

were not performed. 

Neural Network Training 

The 3D segmentation neural network used in this work was a convolutional neural network (CNN) 

based on a 3D U-Net (Udon n.d.; Çiçek et al. 2016) implementation in GitHub 

(https://github.com/UdonDa/3D-UNet-PyTorch/blob/master/src/model.py) consisting of five 

encoding and five decoding steps.  The U-Net was initialized with random weights based on the 

default random algorithm in PyTorch. A set of 30 datasets were held as a consistent test 

(prediction) set leaving 898 datasets for training.  The network was trained three times, first with 

N=200 datasets, second with N=500 datasets and lastly with N=898 datasets. The 500 datasets 

were chosen randomly from the 898 and the 200 datasets were chosen randomly from the 500. The 

goal was to minimize results that were dependent on the actual training set. All data randomization 

was done at the patient level. For each of the training a set of 30 data were randomly chosen for 

validation. The U-Net training used minimal data augmentation (1% perturbation on the signal 

intensity), Adam optimizer, learning rate of 0.0001, batch size of 3 and 140 epochs. The loss 

function is derived from a multinomial distribution of classes and is defined as the negative log-

likelihood: 
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𝐿(𝛼) = −log(Pr	(𝑌|𝛼)) = log/0𝛼!

"

!#$

1−0𝑐! log(𝛼!)
"

!#$

 (1) 

A full derivation of the loss function is shown in the Appendix. After each training, the weights 

were saved to be used during the prediction method. The Dice coefficient, defined as  

𝐷𝑖𝑐𝑒	 = 	
2|𝑋 ⋂𝑌|
|𝑋| 	+	 |𝑌| 

(2) 

 

was used as the mask overlap accuracy measure. The implementation was in PyTorch version 1.8 

(Paszke et al. 2019) and trained using a Titan XP GPU with 12GB RAM. 

Neural Network Predictions 

The Connectome test data held out was passed through each trained neural network and maps of 

the predicted segmentation, aleatoric uncertainty (Equation 4) and epistemic uncertainty (Equation 

5) were created.  The model output the values 𝜶, was the prediction of being within each tissue. 

The total 𝑆% was quantified by summing the tissue predictions, from the model, based on Equation 

3. The epistemic uncertainty was quantified from Equation 5 for tissue class j from the tissue’s 

predicted probably, 𝛼! and 𝑆%. Similarly, the aleatoric uncertainty was quantified using Equation 

4 and based on the tissue’s predicted probability 𝛼! and 𝑆%. The T1 brain tumor data was passed 

through each trained neural network and the same prediction and uncertainty maps were created.  

Comparison to Cross Entropy Loss 

A copy of the neural network was trained on the same network structure and optimizer but a cross 

entropy loss function, defined in PyTorch (v1.8), instead of the loss defined in this paper. The 

network was trained and the final dice scores of the test data were compared to the final dice scores 

of the test data from the network trained on the loss function defined in this paper.  
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Results 

Training Results 

The loss and accuracy (Dice) curves were quantified and the set from the N=898 training is shown 

in Figure 1.  The training loss (blue) and validation loss (orange) decayed smoothly over the 140 

training epochs (Figure 1, top left).  The accuracy curve (mean over the three tissues) increased 

smoothly up to approximately 

0.73 (Figure 1, top right). The 

training accuracy was plotted for 

each of the tissues to confirm the 

tissue accuracy curves were not 

disparate. The CSF had the lowest 

training accuracy (Dice score) of 

0.64, the WM followed the mean 

accuracy, and the GM had the 

best accuracy of 0.83 (Figure 1, 

bottom left).  The validation 

accuracy as a function of epoch 

and tissue type had a similar trend 

to the training accuracy, and is 

shown in Figure 1, bottom right).  

 

 

 
 

 
 

 
Figure 1:  Training loss (top left), accuracy (top right) along with 
the training dice score per tissue type for the training (bottom left) 
and validation data (bottom right). The data shown here is for the 
N=898 training session. 
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Connectome Data Results 

An example segmentation for one slice of one test dataset is shown in Figure 2.  The top row shows 

the tissue segmentation classes based on predictions from the N=200, N=500 and N=898 trained 

models, followed by the original T1 image. Generally, the tissue segmentation visually appears 

more accurate for the N=898 segmentation. The following panels have the aleatoric and epistemic 

uncertainty for each of the Background, CSF, WM, and GM classes. The colormaps are scaled 

such that all are between 

0 and 0.200 for easy 

comparison. The 

aleatoric uncertainty 

overall had an 

uncertainty value of 

approximately 0.075, or 

less, for all three tissues. 

Generally, the 

uncertainty lay at the 

border of the tissue 

boundaries. The 

epistemic uncertainty 

decreased spatially with 

more data used to train 

the network and for the 

N=898 predictions the 

highest uncertainty was 

primarily in the tissue 

boundaries. Some of the highest uncertainty lay in the regions of the caudate nucleus, internal 

capsule anterior horn and then putamen. Overall, the epistemic uncertainty decreased as the 

number of data used to train the model increased.  For example, in the white matter uncertainty 

maps, the larger white matter regions decrease from approximately 0.100 (N=200), to 0.05 

(N=500) to near zero (N=898).  This is consistent with the idea that the epistemic uncertainty will 

decrease with an increase in the number of data used for training.  The trend is slightly less clear 

 
Figure 2: Tissue class prediction and MPRAGE image (top row). The 
aleatoric and epistemic uncertainty are shown for each tissue class. For 
each set of three the first is based on the N=200 model, the second on 
the N=500 model and the third based on the N=898 model. Data shown 
here from one slice from the connectome dataset (and was part of the 
test dataset). 
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in the GM epistemic uncertainty maps as the GM ribbon around the cortex is thin and therefore 

will have partial volume with the WM.  But, even with it being thin, there is a decrease in the 

epistemic uncertainty from 0.175 (N=200) to 0.125 (N=500) to near 0.100 (N=898). Along with 

the quantitative decrease, there is clearly a visual difference in the GM epistemic uncertainty maps 

with increasing N.  

 Figure 3 shows the epistemic uncertainty (left) and aleatoric uncertainty (right), of the 

white matter, from the cerebellum to the top of the brain for the N=898 trained mode for a single 

test dataset. The highest epistemic uncertainty was primarily in the cerebellum. The aleatoric 

uncertainty was consistently lower than the epistemic uncertainty. There was a correspondence 

between increased epistemic uncertainty and increased aleatoric uncertainty.   
 

 
 

Figure 3: Whole brain epistemic uncertainty (left) and aleatoric uncertainty (right) of the white matter 
for one example volunteer scan from the 1000 connectome data.  
 

Brain Tumor Results 

Figure 4 shows one slice through a glioma brain tumor along with the predicted tissue labels as 

well as the data and epistemic uncertainty maps.  In general, there is a similar trend in the epistemic 

uncertainty and aleatoric uncertainty as was seen in a normal control (Figure 4). Much of the 

uncertainty is at the tissue boundaries (at least for the higher N).  The aleatoric and epistemic 

uncertainty at N=200 had the highest uncertainty in most of the tissue types and in the  
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region of the tumor. The 

tumor region had a signal 

appearance of CSF and 

was labeled as such by the 

network. The N=200 and 

N=500 epistemic and 

aleatoric uncertainty maps 

showed high uncertainty 

in the region of the tumor.  

The N=898 epistemic and 

aleatoric uncertainty 

maps, though, were much 

lower.  This is likely due 

to the signal in the tumor 

being very similar to the 

CSF and therefore was 

predicted as such with low 

uncertainty. 

 

Aggregated Results  

The aleatoric and epistemic uncertainty were averaged for each tissue over all test data as a 

function of the number of training sets for the model and is shown in Figure 5. The top panel shows 

the results for the test data and the bottom panel shows the results for the tumor data. Overall 

epistemic uncertainty was approximately twice that of the aleatoric uncertainty.  The epistemic 

uncertainty also followed a decreasing trend as a function of the number of training sets.  The 

aleatoric uncertainty had more variability and even though there appeared to be a decreasing trend 

it was small and likely just due to statistical fluctuations. 

 

 

 

 
Figure 4: Tissue class prediction and MPRAGE image (top row). The data 
and epistemic uncertainty are shown for each tissue class. For each set 
of three the first is based on the N=200 model, the second on the N=500 
model and the third based on the N=898 model.  Data shown for one 
example tumor patient from a slice through the middle of the tumor.  
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Figure 5: Mean epistemic and aleatoric uncertainty over all test images for each tissue class as a 
function of the trained model N=200 (black bars), N=500 (gray bars), N=898 (white bars). MPRAGE 
test images from 1,000 connectome project on top and tumor data on the bottom. 

 

Discussion 

The goal of this study was to quantify the epistemic and aleatoric uncertainty directly from the 

results of the neural network segmentation without need of repeated measurements, bootstrap 

quantification, or other advanced techniques. There are numerous datasets out there that have a 

similar set of T1 MRI scans including Human Connectome Project, OpenNeuro.org, and OASIS. 

The 1000 Connectome dataset was chosen as it was a large and consistent set of MRI volumes. 

The neural network was trained with N=200, N=500 and N=898 T1 brain data from a public dataset 

and the accuracy and loss during training followed an expected trend.  The epistemic and aleatoric 

uncertainty were quantified for each tissue class from each trained neural network in a test dataset 

and in a tumor image acquired at our site.  The mean epistemic and aleatoric uncertainty were 
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quantified for all control data and all tumor aleatoric and the epistemic uncertainty followed the 

expected trend of decreasing uncertainty as a function of number of data used to train the network.  

 This technique provides a simpler algorithm to quantify the data and epistemic uncertainty 

from a neural network prediction. There is not a requirement to assume prior distributions as 

required by some Bayesian inference models (Gelman et al. 2008).  Nor is there a requirement to 

place priors on the network weights (Kingma, Salimans, and Welling 2015). The technique derived 

here is an extension to a derivation to estimate the epistemic and aleatoric uncertainty in a 

classification model (Amini et al. 2019) and we extended their work to a segmentation neural 

network.  This extension should be appropriate for any type of U-Net as it only requires a change 

to the definition of the loss function.  

 The model loss was expected to decrease the more data added for training and the images 

showed this to be the case.  It was expected the aleatoric uncertainty would be more consistent 

with increasing N but here the aleatoric uncertainty decreased as well. This can be explained by 

the consistency property of the maximum likelihood estimator.  As the estimation of 

hyperparameters through minimizing the objective function can be seen as an analogy of maximum 

likelihood estimator (MLE), the consistency property applies here (Kiefer, et al. 1956). Moreover, 

the uncertainties are related to the hyperparameters through one-to-one functions (equation 4 and 

5).  The estimation of uncertainties converges to the truth in the order of 𝑂 =𝑛&
!
"?. It corresponds 

to the results in Figure 5. 

The main limitation to this technique, as implemented, is that it relies on signal comparison 

of a single signal intensity and therefore the uncertainty does not detect errors in segmentation 

class assignment. For example, the tumor segmentation in Figure 4 has a region with signal 

intensity similar to gray matter, and a region with a signal intensity similar to white matter. To 

minimize errors in this type of misclassification, a second complementary input could be added 

for more accurate classification.  Alternatively, a spatial constraint may help to minimize the 

misclassification and therefore low uncertainty in regions mis-classified. The loss function derived 

and used in this study should be applicable for all segmentation networks and imaging types, but 

other networks were not tested. The gold standard relied on in this paper was based on a binary 

segmentation of the tissues in the brain and this may bias the uncertainty to be at the tissue 

boundaries more than necessary. A fuzzy segmentation may provide better segmentation results 

and lower uncertainty throughout the brain.  There are options, though, to add other terms to the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13 

loss function which could add regularization or restrictions on the class definitions.  The goal of 

this study however was to estimate epistemic and aleatoric uncertainty, not to optimize 

segmentations and in a sense, imperfect segmentations provide more information about the 

estimations. 

Overall, the data and epistemic uncertainty were quantified per voxel throughout the whole brain 

based on the loss function implemented.  The uncertainties were quantified directly from the U-

Net output and did not rely on a bootstrap technique or assumptions about the underlying data. 

This uncertainty information could provide extra information for a radiological interpretation or 

may be used to provide an error measurement on the mask size. As the estimate of aleatoric 

uncertainty is statistically consistent, an estimate of this uncertainty would necessitate adequate 

sampling of data and its variance.  A benefit of estimating the epistemic uncertainty is the 

assessment of whether increasing data samples or optimizing the neural network could potentially 

improve accuracy of the model. In situations where epistemic uncertainty is low, and yet the model 

does not reach intended targets for accuracy, it may be futile to further attempt to generate a model 

that may be of utility.  

 

For medical applications, the accuracy of deep learning models needs to be evaluated 

(Senge et al. 2014) in order to determine the confidence level of the output for a particular model, 

whether it is for classification, segmentation, or other output. Specifically for segmentation, the 

inherent uncertainty of the segmentation output at the voxel level would potentially provide critical 

information to determine reliability of the data for medical decision making, for example in cases 

where accurate tumor volumes may be necessary to determine treatment. 

Conclusion 

The U-Net segmentation neural network was able to be trained on the loss function derived and 

maps of data and epistemic uncertainty were created. The data and epistemic uncertainty followed 

a trend of decreasing uncertainty as the number of data used to train the neural network increased. 

The segmentation aleatoric uncertainty was primarily at the tissue boundary as the N increased, as 

expected.  Overall, we believe this is a significant step forward for quantifying the uncertainty in 

neural network segmentations. 
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Appendix 

Loss Derivation 

The multi-class classification problem with one-hot encoding notation and suppose we have m 

classes. The observation that a voxel belongs to the 𝑗th class is denoted a vector 𝑌!with value 1at 

the 𝑗th element and 0	for all other elements. We assume 𝑌! ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃), for 𝜃 =

(𝜃$,, 𝜃(,… , 𝜃")), whereclasses. The observation that a voxel belongs to the 𝑗th class is denoted a 

vector 𝑌!with value 1at the 𝑗th element and 0	for all other elements. We assume 𝑌! ∼

𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃), for 𝜃 = (𝜃$,, 𝜃(,… , 𝜃")), where 

𝑃𝑟P𝑌!|𝜃Q = 𝜃! , 𝑤𝑖𝑡ℎ	0𝜃! = 1
"

!#$

 (A1) 

 

The Dirichlet distribution prior was assigned to 𝜃 is the Dirichlet distribution, with 

hyperparameters 𝛼 = (𝜶𝟏, 𝜶𝟐, … , 𝜶𝒎	)𝑻and 𝛼! > 0. The probability density function of the prior 

distribution is: is the Dirichlet distribution, with hyperparameters 𝛼 = (𝜶𝟏, 𝜶𝟐, … , 𝜶𝒎	)𝑻and 𝛼! >

0. The probability density function of the prior distribution is: 

Pr(𝜃|𝛼) =
∏ ΓP𝛼!Q"
!#$

ΓP∑ 𝛼!"
!#$ Q

X𝜃!
%#&$

"

!#$

 
 

(A2) 

 

Given the distribution and probability density function the prediction is defined as 

𝐸P𝑌!Z𝛼Q = 𝐸P𝜃!Q = 	
𝛼!
𝑆%
, 𝑤𝑖𝑡ℎ	𝑆% =0𝛼!

"

!#$

 (A3) 

 where the 𝛼! are the tissue probability predictions used to quantify the tissue class maps. 

As well, the aleatoric uncertainty is derived as: 

𝐸P𝑉𝑎𝑟(𝑌!)Q = 𝐸(𝜃!(1 − 𝜃!)) =
𝛼!
𝑆%
− \

𝛼!
𝑆%
]
(
−

𝛼!
𝑆%
=1 −

𝛼!
𝑆%
?

𝑆% + 1
	 (A4) 

and the epistemic uncertainty is derived as: 
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𝑉𝑎𝑟 =𝐸P𝑌!Q? = 𝑉𝑎𝑟P𝜃!Q =

𝛼!
𝑆%
=1 −

𝛼!
𝑆%
?

𝑆% + 1
 (A5) 

 

And the total uncertainty is 𝑉𝑎𝑟P𝑌!Q = 𝑉𝑎𝑟 =𝐸P𝑌!|𝜃Q? + 𝐸	 =𝑉𝑎𝑟P𝑌!|𝜃Q?.  

The marginal distribution of Y given 𝛼 can be derived by integrating out 𝜃 from the joint 

distribution, which has the following form,  

𝑃𝑟(𝑌|𝛼) =
ΓP∑ 𝛼!"

!#$ Q
ΓP1 + ∑ 𝛼!"

!#$ Q
X

ΓP𝑐! +	𝛼!Q
ΓP𝛼!Q

=
∏ 𝛼!

.#"
!#$

∑ 𝛼!"
!#$

"

!#$

 (A6) 

 

where 𝛤(𝑐) denotes the Gamma function, and 𝑐! = 1 if 𝑌 belongs to the 𝑗th class, 0	otherwise. 

Then the loss function can be calculated as the negative logarithm of the likelihood defined by 

Equation A6: 

𝐿(𝛼) = − log(Pr(𝑌|𝛼)) = log/0𝛼!

"

!#$

1 −0𝑐! logP𝛼!Q
"

!#$

 (A7) 

Therefore, the loss function defined in Equation A7 is the loss function used in the neural network 

training.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

References 

Amini, Alexander, Wilko Schwarting, Ava Soleimany, and Daniela Rus. 2019. “Deep Evidential 

Regression.” ArXiv [Cs.LG]. arXiv. http://arxiv.org/abs/1910.02600. 

Antun, Vegard, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen. 2020. “On 

Instabilities of Deep Learning in Image Reconstruction and the Potential Costs of AI.” 

Proceedings of the National Academy of Sciences of the United States of America 117 (48): 

30088–95. 

Badža, Milica M., and Marko Č. Barjaktarović. 2020. “Classification of Brain Tumors from MRI 

Images Using a Convolutional Neural Network.” NATO Advanced Science Institutes Series 

E: Applied Sciences 10 (6): 1999. 

Chen, Hao, Zhiguang Qin, Yi Ding, Lan Tian, and Zhen Qin. 2020. “Brain Tumor Segmentation 

with Deep Convolutional Symmetric Neural Network.” Neurocomputing 392 (June): 305–

13. 

Çiçek, Özgün, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger. 

2016. “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.” 

ArXiv [Cs.CV]. arXiv. http://arxiv.org/abs/1606.06650. 

Dandıl, Emre, and Semih Karaca. 2021. “Detection of Pseudo Brain Tumors via Stacked LSTM 

Neural Networks Using MR Spectroscopy Signals.” Biocybernetics and Biomedical 

Engineering 41 (1): 173–95. 

Edwards, Ka’toria, Avneesh Chhabra, James Dormer, Phillip Jones, Robert D. Boutin, Leon 

Lenchik, and Baowei Fei. 2020. “Abdominal Muscle Segmentation from CT Using a 

Convolutional Neural Network.” Proceedings of SPIE The International Society for 

Optical Engineering 11317 (February). https://doi.org/10.1117/12.2549406. 

Fu, Fan, Jianyong Wei, Miao Zhang, Fan Yu, Yueting Xiao, Dongdong Rong, Yi Shan, et al. 2020. 

“Rapid Vessel Segmentation and Reconstruction of Head and Neck Angiograms Using 3D 

Convolutional Neural Network.” Nature Communications 11 (1): 4829. 

Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. 2008. “A Weakly 

Informative Default Prior Distribution for Logistic and Other Regression Models.” The 

Annals of Applied Statistics 2 (4): 1360–83. 

Gou, Shuiping, Nuo Tong, Sharon Qi, Shuyuan Yang, Robert Chin, and Ke Sheng. 2020. “Self-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17 

Channel-and-Spatial-Attention Neural Network for Automated Multi-Organ Segmentation 

on Head and Neck CT Images.” Physics in Medicine and Biology 65 (24): 245034. 

Hu, Peijun, Fa Wu, Jialin Peng, Yuanyuan Bao, Feng Chen, and Dexing Kong. 2017. “Automatic 

Abdominal Multi-Organ Segmentation Using Deep Convolutional Neural Network and 

Time-Implicit Level Sets.” International Journal of Computer Assisted Radiology and 

Surgery 12 (3): 399–411. 

Huang, Chao, Hu Han, Qingsong Yao, Shankuan Zhu, and S. Kevin Zhou. 2019. “3D U $2$ -Net: 

A 3D Universal U-Net for Multi-Domain Medical Image Segmentation.” Lecture Notes in 

Computer Science. https://doi.org/10.1007/978-3-030-32245-8_33. 

Hüllermeier, Eyke, and Willem Waegeman. 2021. “Aleatoric and Epistemic Uncertainty in 

Machine Learning: An Introduction to Concepts and Methods.” Machine Learning 110 (3): 

457–506. 

Hussain, Saddam, Syed Muhammad Anwar, and Muhammad Majid. 2018. “Segmentation of 

Glioma Tumors in Brain Using Deep Convolutional Neural Network.” Neurocomputing. 

https://doi.org/10.1016/j.neucom.2017.12.032. 

Jiang, Fei, Huating Li, Xuhong Hou, Bin Sheng, Ruimin Shen, Xiao-Yang Liu, Weiping Jia, Ping 

Li, and Ruogu Fang. 2017. “Abdominal Adipose Tissues Extraction Using Multi-Scale 

Deep Neural Network.” Neurocomputing 229 (March): 23–33. 

Kingma, Diederik P., Tim Salimans, and Max Welling. 2015. “Variational Dropout and the Local 

Reparameterization Trick.” ArXiv [Stat.ML]. arXiv. http://arxiv.org/abs/1506.02557. 

Lee, Chien-Cheng, Pau-Choo Chung, and Hong-Ming Tsai. 2003. “Identifying Multiple 

Abdominal Organs from CT Image Series Using a Multimodule Contextual Neural 

Network and Spatial Fuzzy Rules.” IEEE Transactions on Information Technology in 

Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society 7 

(3): 208–17. 

Li, Xiangrui, Paul S. Morgan, John Ashburner, Jolinda Smith, and Christopher Rorden. 2016. “The 

First Step for Neuroimaging Data Analysis: DICOM to NIfTI Conversion.” Journal of 

Neuroscience Methods 264 (May): 47–56. 

Lin, Ning, Hang Lu, Jingliang Gao, Shunjie Qiao, and Xiaowei Li. 2019. “VNet: A Versatile 

Network for Efficient Real-Time Semantic Segmentation.” In 2019 IEEE 37th 

International Conference on Computer Design (ICCD), 626–29. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 18 

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. “V-Net: Fully Convolutional 

Neural Networks for Volumetric Medical Image Segmentation.” In 2016 Fourth 

International Conference on 3D Vision (3DV), 565–71. 

Pai, Akshay, Yuan-Ching Teng, Joseph Blair, Michiel Kallenberg, Erik B. Dam, Stefan Sommer, 

Christian Igel, and Mads Nielsen. 2017. “Chapter 10 - Characterization of Errors in Deep 

Learning-Based Brain MRI Segmentation.” In Deep Learning for Medical Image Analysis, 

edited by S. Kevin Zhou, Hayit Greenspan, and Dinggang Shen, 223–42. Academic Press. 

Park, Allison, Chris Chute, Pranav Rajpurkar, Joe Lou, Robyn L. Ball, Katie Shpanskaya, Rashad 

Jabarkheel, et al. 2019. “Deep Learning-Assisted Diagnosis of Cerebral Aneurysms Using 

the HeadXNet Model.” JAMA Network Open 2 (6): e195600. 

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, 

Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep 

Learning Library.” ArXiv [Cs.LG]. arXiv. http://arxiv.org/abs/1912.01703. 

Rafiee, Ali, Hassan Masoumi, and Alireza Roosta. 2009. “Using Neural Network for Liver 

Detection in Abdominal MRI Images.” In 2009 IEEE International Conference on Signal 

and Image Processing Applications, 21–26. 

Reddick, W. E., R. K. Mulhern, T. D. Elkin, J. O. Glass, T. E. Merchant, and J. W. Langston. 1998. 

“A Hybrid Neural Network Analysis of Subtle Brain Volume Differences in Children 

Surviving Brain Tumors.” Magnetic Resonance Imaging 16 (4): 413–21. 

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for 

Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted 

Intervention – MICCAI 2015, 234–41. Springer International Publishing. 

Selver, M. Alper. 2014. “Segmentation of Abdominal Organs from CT Using a Multi-Level, 

Hierarchical Neural Network Strategy.” Computer Methods and Programs in Biomedicine 

113 (3): 830–52. 

Senge, Robin, Stefan Bösner, Krzysztof Dembczyński, Jörg Haasenritter, Oliver Hirsch, Norbert 

Donner-Banzhoff, and Eyke Hüllermeier. 2014. “Reliable Classification: Learning 

Classifiers That Distinguish Aleatoric and Epistemic Uncertainty.” Information Sciences 

255 (January): 16–29. 

Sharif, Muhammad Irfan, Jian Ping Li, Muhammad Attique Khan, and Muhammad Asim Saleem. 

2020. “Active Deep Neural Network Features Selection for Segmentation and Recognition 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

of Brain Tumors Using MRI Images.” Pattern Recognition Letters 129 (January): 181–89. 

Udon. n.d. 3D-UNet-PyTorch. Github. Accessed March 31, 2021. https://github.com/UdonDa/3D-

UNet-PyTorch. 

Zhang, Y., M. Brady, and S. Smith. 2001. “Segmentation of Brain MR Images through a Hidden 

Markov Random Field Model and the Expectation-Maximization Algorithm.” IEEE 

Transactions on Medical Imaging 20 (1): 45–57. 

Zhou, Zongwei, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. 2018. 

“UNet++: A Nested U-Net Architecture for Medical Image Segmentation.” In Deep 

Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision 

Support, 3–11. Springer International Publishing. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.21263844doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.20.21263844
http://creativecommons.org/licenses/by-nc-nd/4.0/

