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Abstract18

Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public19

health burden, but the processes that promote spillover events are poorly understood in complex urban20

settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities21

occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat22

reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of23

rats or by the dispersal of bacteria in rainwater runo↵ and overflow from open sewer systems.24

Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by25

prospectively following a cohort of 1,401 residents to ascertain serological evidence for leptospiral infections.26

A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of27

‘rattiness’, our proxy for rat abundance and exposure of interest. We developed and applied a novel28

geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and29

human infection risk.30

Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1,000 follow-up31

events. Infection risk increased with age until 30 years of age and was associated with male gender.32

Rattiness was positively associated with infection risk for residents across the entire study area, but this33
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e↵ect was stronger in higher elevation areas (OR 3.27 95%CI 1.68, 19.07) than in lower elevation areas34

(OR 1.14 95%CI 1.05, 1.53).35

Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in36

regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by37

the distribution of local rat populations. The modelling framework developed may have broad applications38

in delineating complex animal-environment-human interactions during zoonotic spillover and identifying39

opportunities for public health intervention.40
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1 Introduction50

Zoonotic spillover, the transmission of pathogens from infected vertebrate animals to humans, is responsible for51

a significant public health burden globally. Understanding the processes that promote spillover transmission52

is essential for improving our ability to predict and prevent spillover events, but for many zoonoses, such53

as Leptospira interrogans, Escherichia coli O157 and Giardia spp., they are poorly understood [1]. This is54

due to the complex nature of the spillover system, in which the probability of transmission is governed by55

dynamic interactions in space and time between ecological, epidemiological, behavioural and immunological56

factors that determine pathogen pressure, exposure and host susceptibility. Zoonotic spillover research must57

explore interactions between the environment, disease reservoirs and local epidemiology, presenting two central58

challenges: i) the need for transdisciplinary studies at the animal-human disease interface (a One Health59

approach) that accurately collect data on multiple components of the spillover process at common temporal60

and spatial scales at which these events take place; ii) the development of integrative approaches to jointly61

analysing these diverse datasets within a spatially and temporally explicit framework [1–3].62

Leptospirosis, a neglected zoonotic disease caused by pathogenic bacteria from the genus Leptospira, is an63

important example of zoonotic spillover. Globally, it is estimated to cause more than one million cases and64
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over 58,000 deaths each year [4], with an annual global burden of 2.9 million DALYs [5]. This burden falls65

heavily on marginalised urban populations in low- and middle-income countries who live in areas characterised66

by high population density, poor quality housing and inadequate provision of healthcare, sanitation, and67

waste management services. In these settings, leptospiral infection occurs through contact with water or soil68

contaminated with leptospires shed in the urine of the principal reservoir, the Norway rat (Rattus norvegicus)69

[6]. These areas produce the socio-ecological conditions that allow rodent populations to proliferate and70

leptospires to persist for long periods in the environment [7]. Residents consequently have frequent, intense71

and largely unavoidable exposure to the contaminated environment, often exacerbated by their geographical72

vulnerability to flooding events [8]. In response, the World Health Organisation (WHO) has convened the73

Leptospirosis Burden Epidemiology Reference Group (LERG) which has recommended “Targeted intervention74

based on the improved knowledge of disease ecology” [9], highlighting the current knowledge gap for Leptospira75

transmission mechanisms and target points for e↵ective intervention.76

Multiple studies have helped to elucidate key aspects of the Leptospira transmission cycle in urban set-77

tings, identifying socioeconomic vulnerability, household environment and behavioural exposures as important78

determinants of infection risk [7, 10–19]. However, these variables have been unable to explain fine-scale spa-79

tial variation in risk [10, 12]. This is likely to be driven by the high spatial and temporal heterogeneity in80

environmental risk, observed in recent studies of Leptospira in soil, and surface and sewage waters [6, 20, 21].81

These findings lead to two key questions: i) to what extent does environmental contamination by localised82

rat shedding drive infection risk, rather than exposure to leptospires that have been dispersed by rainwater83

runo↵ and overflowing sewer systems; and ii) how does this change across the geography of a community, for84

example at di↵erent elevation levels?85

Establishing a dynamic link between rats, the environment and Leptospira transmission is complicated86

by the di�culty of measuring and modelling the rat contamination process. However, urban Norway rats87

have been found to have high Leptospira prevalence and shedding rates worldwide [22–28]. This suggests88

that rat abundance may be predictive of environmental risk, and could be used as a proxy for this shedding89

process. While several studies have identified associations between infection risk and household rat sightings90

and infestation [10, 12, 22, 29–31], their ability to explore fine-scale spatial variation in risk was limited by a91

reliance on household infestation surveys or aggregation of incidence and abundance indices to a common coarse92

spatial scale. All modelled abundance as a regression covariate, thereby not accounting for uncertainty in its93

measurement. The absence of methods to formally integrate abundance into analyses of spillover mechanisms94

is an issue for rodent-borne zoonoses more widely [3, 32].95
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There is no gold-standard index of abundance and field teams use a range of imperfect indices, such as96

traps, infestation surveys and track plates. In our previous work, we developed a multivariate generalized97

linear geostatistical model for joint spatial modelling of multiple imperfect abundance indices [33]. We use the98

term ‘abundance’ loosely here to denote all ecological processes that are associated with animal abundance,99

for example animal presence and activity, and that can be used to quantify exposure to a disease of interest.100

This methodology was then used to model the spatial distribution of ‘rattiness’, our proxy for rat abundance,101

at a fine scale within a community in Salvador, Brazil [33]. The spatial distribution of rattiness was highly102

heterogeneous, suggesting that it could be a driver of micro-heterogeneity in infection risk.103

To analyse reservoir host abundance and infection data at fine spatial scales, we propose that a framework104

should i) account for spatial correlation in human and reservoir host data; ii) jointly model multiple imperfect105

indices of abundance while accounting for the appropriate sampling distribution of each index; iii) account for106

uncertainty in abundance indices, iv) allow for the prediction of abundance and infection risk at all locations107

within the study area, and v) quantify the uncertainty associated with those predictions. Several studies have108

attempted to model spatial associations between disease reservoir or vector abundance and human infection109

for leptospirosis [34–36], tularemia [37]; Lyme disease [38]; West Nile Virus [39]; dengue fever [40]; and Lassa110

fever [41]. However, none of the approaches used satisfy all five of the above conditions. The development of111

new tools for the joint spatial analysis of abundance and human infection may consequently be beneficial for112

the study of other zoonoses and vector-borne diseases [42].113

The aim of this study was to develop a flexible modelling framework for zoonotic spillover to explore114

whether rattiness, acting as a proxy for local leptospiral contamination by Norway rats, can explain spatial115

heterogeneity in leptospiral transmission in a high-risk urban community in Brazil. We extend the rattiness116

framework of Eyre et al. [33] to include human infection risk. We describe findings from a transdisciplinary117

eco-epidemiological study which comprises a prospective community-based cohort study with two serosurveys118

and a fine-scale rat ecology study. The ecology study was used to collect information on the spatial distribution119

of rat abundance, our exposure of interest, in the period between the two surveys using multiple abundance120

indices. Then, we explore associations between infection risk, rattiness and a range of measured environmental121

and individual risk factors.122
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2 Materials & methods123

2.1 Study design124

2.1.1 Study area125

The study was conducted in Pau da Lima community (13�32’53.47” S; 38�43’51.10” W), a marginalised126

informal settlement located in the city of Salvador, Northeast Brazil. The study site has an area of 0.25km2
127

and is characterised by three connected valleys with large elevation gradients, high population density and a128

heterogeneous environment of vegetation, paved surfaces and exposed soil (Figure 1). There are significant129

gradients in socioeconomic status and infrastructure quality over small elevation increases - with the most130

marginalised members of the community living at lower elevations. The community su↵ers from low quality131

housing, poor provision of waste management services and inadequate drainage and sanitation systems [12,132

43]. Residents are consequently often unable to avoid intense exposure with mud and floodwater. These factors133

result in abundant rat populations [33] and a high estimated annual Leptospira infection rate of 35.4 (95%134

CI, 30.7, 40.6) infections per 1,000 annual follow-up events [12]. For this reason, Pau da Lima has become an135

exemplar for investigating urban Leptospira transmission in Brazil over the last 15 years.136

2.1.2 Serosurveys137

We conducted a prospective community cohort study with two serosurveys carried out in August-October138

2014 and January-April 2015. After an initial census of the study site, all ground floor households were visited139

and inhabitants who met the eligibility criteria of �5 years of age who had slept �3 nights in the previous140

week in a study household were invited to join the study.141

During each survey trained phlebotomists collected blood samples from participants and administered a142

modified version of the standardised questionnaire used previously [12, 29]. Information was collected on143

demographic and socioeconomic indicators, household environmental characteristics and exposures to poten-144

tial sources of environmental contamination in the previous six months (the average time between the two145

serosurveys). Study data were collected and managed using REDCap electronic data capture tools [44] and146

all individual data were anonymised. The locations of sampled households are shown in Figure 1A. If an indi-147

vidual was not found during a sample collection visit their house was revisited at least five times on di↵erent148

days of the week.149

The microscopic agglutination test (MAT) was used to determine titers of agglutinating antibodies against150
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pathogenic Leptospira in sera obtained from the blood samples collected in each serosurvey. Serological samples151

were reacted with a panel of two Leptospira reference strains that are dominant in Pau da Lima: Leptospira152

interrogans serovars Copenhageni (COPL1) and Cynopteri 3522C (C3522C). These two strains have been153

shown to have the same performance in identifying MAT seroconversion in our prospective studies as the154

WHO recommended battery of 19 reference serovars. When agglutination was observed at a dilution of 1:50,155

the sample was titrated in serial two-fold dilutions to determine the highest agglutination titer. The study156

outcome of leptospiral infection was defined as seroconversion, an MAT titer increase from negative to �1:50,157

or a four-fold increase in titer for either serovar between paired samples from cohort subjects. All laboratory158

analyses were performed in the Laboratory Pathology and Molecular Biology at Fiocruz, Salvador. As part159

of quality control procedures two independent evaluations were conducted by Yale University for all infected160

subjects and 8% of all samples, with high concordance between results.161

Serosurvey 1
August - October 2014

Serosurvey 2
January - April 2015

Rat ecology study
October - December 2014

A B

C

Figure 1: A) Map of the three valleys within the study site in Pau da Lima, with household locations for the serosurveys
marked as orange circles. Locations sampled in the the rat ecology study are shown for each of the rat abundance
indices as follows: Plates & Signs (track plates, burrows, faeces and trails), Traps & Signs (traps, burrows, faeces and
trails) and Signs only (burrows, faeces and trails); B) Land cover classification map (impervious cover is defined as
man-made structures e.g. pavement and buildings); C) Study timeline for the two community serosurveys and rat
ecology study.
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2.1.3 Rat ecology study162

To estimate exposure risk due to local rat contamination between the two serosurveys, a cross-sectional rat163

ecology study was conducted from October to December 2014. As has been described previously [33], the aim164

of this study was to collect data on the fine-scale spatial variation in rat reservoir population abundance. Data165

were collected for five indices of rat abundance: live trapping, track plates, number of active burrows present,166

presence of faecal droppings and presence of trails. Rat trapping was carried out at 189 locations, randomly167

distributed across the study area (see Panti-May et al. [45]). Two traps were deployed for 4 consecutive 24-hour168

trapping periods at each location. Trapping success and trap closure without a rat, a common malfunction,169

were recorded after each 24-hour period. Track plates were placed at 415 locations for two consecutive 24-hour170

periods following the standardised protocol for placement and survey developed and validated previously [46],171

with five plates placed at each location in the shape of a ‘five’ on a die. After each 24-hour period plates were172

repainted and any lost plates were recorded and replaced. On the first day of trapping or plate placement,173

a survey for signs of rat infestation, adapted from the Centers for Disease Control and Prevention [47] and174

validated in the study area [29], was conducted within an area of 10m radius around each trapping or plate175

location to record the number of active burrows and the presence of faecal droppings and trails. In total,176

595 independent locations were sampled for traps, track plates and the three survey indices for signs of rat177

infestation. The spatial distribution of these locations is shown in Figure 1A. At 21 locations, theft and local178

gang violence meant that data for track plates and traps was not collected and only the three survey indices179

for signs of rat infestation were used.180

2.1.4 Environmental data181

In addition to the environmental survey conducted at each household location, we also collected information182

for three spatially continuous environmental variables: elevation relative to the bottom of each valley, distance183

to large public refuse piles and the proportion of land cover classified as impervious (man-made structures)184

within a 30-metre radius. The land cover variable was created from Digital Globe’s WorldView-2 satellite185

imagery (8 bands) taken on February 17, 2013 which was classified using a maximum likelihood supervised186

algorithm and validated with ground truthed data collected from 20 randomly selected sites of size 5m by 5m.187

The classification map is shown in Figure 1B.188

7

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.21.21263884doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.21.21263884
http://creativecommons.org/licenses/by/4.0/


2.1.5 Ethics189

Participants were enrolled according to written informed consent procedures approved by the Institutional190

Review Boards of the Oswaldo Cruz Foundation and Brazilian National Commission for Ethics in Research,191

Brazilian Ministry of Health (CAAE: 01877912.8.0000.0040) and Yale University School of Public Health (HIC192

1006006956).193

For the rat ecology study, the ethics committee for the use of animals from the Oswaldo Cruz Foundation,194

Salvador, Brazil, approved the protocols used (protocol number 003/2012), which adhered to the guidelines195

of the American Society of Mammalogists for the use of wild mammals in research [48] and the guidelines196

of the American Veterinary Medical Association for the euthanasia of animals [49]. These protocols were197

also approved by the Yale University’s Institutional Animal Care and Use Committee (IACUC), New Haven,198

Connecticut (protocol number 2012–11498).199

2.2 Joint modelling rat abundance and human infection: the rattiness-infection200

framework201

The developed geostatistical modelling framework jointly models multiple rat abundance indices as measure-202

ments of a common latent process, called rattiness. Rattiness at each household location contributes to the203

risk of infection for all inhabitants, in addition to other measured individual or household-level explanatory204

variables.205

We model the rat abundance data following a similar structure to that previously outlined [33]. Let206

R(x) denote a spatially continuous stochastic process, representing rattiness. The rat data then consist of207

a set of outcomes Yi = (Yi,k : k = 1, . . . , 5), for i = 1, . . . , Nr, collected at a discrete set of locations208

X = {xi : i = 1, ..., Nr}. The outcome variables Yk : k = 1, ..., 5 are the set of five rat abundance indices that209

provide information about R(x): traps (k = 1), track plates (k = 2), number of burrows (k = 3), presence of210

faecal droppings (k = 4) and presence of trails (k = 5).211

Human data are collected from Nh households and consist of an infection outcome Zi,j for individual j212

at household location i, for i = Nr + 1, . . . , Nr + Nh, collected at a discrete set of locations X = {xi : i =213

Nr + 1, ..., Nr +Nh}.214

Let “[·]” be a shorthand notation for “the probability distribution of ·.” We write Y = (Y1, . . . , YNr ),215

Z = (ZNr+1, . . . , ZNr+Nh) and R = (R(x1), . . . , R(xNr+Nh)). We assume that the Yi,k : k = 1, ..., 5 and Zi,j216
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are conditionally independent given R(xi), from which it follows that217

[Y, Z|R] =
NrY

i=1

5Y

k=1

[Yi,k|R(xi)]
Nr+NhY

i=Nr+1

JiY

j=1

[Zi,j |R(xi)]. (1)

where [·] is a shorthand notation for “the distribution of” and Ji denotes the number of individuals at household218

i. This model structure is shown schematically in Figure 2.219

Y1 Y5

R(x)

Risk,
pj(x)

Health outcome, Z

dh

dr

Y2 Y3 Y4
Rat indices

Explanatory 
variables

e

Figure 2: Directed acyclic graph (DAG) of the rattiness-infection model framework. R(x) is the value of a spatially
continuous stochastic rattiness process at location x. The outcome variables Yk : k = 1, ..., 5 are the set of five rat
abundance indices that provide information about R(x): traps (k = 1), track plates (k = 2), number of burrows (k = 3),
presence of faecal droppings (k = 4) and presence of trails (k = 5). The outcome variable Zi,j is the observed health
outcome, in this case this represents infection status. The terms dh and dr represent the sets of spatially continuous
explanatory variables which contribute to spatial variation in infection risk in humans and R(x), respectively. The
terms dh and dr are not mutually exclusive groups of explanatory and the same variables may contribute to both
infection risk and R(x). The term e represents a set of individual- and household-level explanatory variables which
contribute to variation in infection risk. Square objects correspond to observable variables, and circles to latent random
variables.
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2.2.1 Rattiness220

We define rattiness at location x as

R(xi) = d
|
r
(xi)�r +

p
 S(xi) +

p
1�  Ui. (2)

The terms on the right-hand side of 2 have the following interpretations: dr(xi) is a vector of explanatory221

variables with associated regression coe�cients �r; Ui is a set of independently and identically distributed222

zero-mean Gaussian variables with unit variance; S(xi) is a stationary and isotropic spatial Gaussian process;223

 2 (0, 1) regulates the relative contributions of spatially structured variation, S(xi), and unstructured random224

variation, Ui, to R(xi).225

For the Gaussian process, S(xi), we specify an exponential spatial correlation function:

Corr(S(x), S(x0)) = e
�u/�

where u = ||x�x
0|| is the Euclidean distance between x and x

0, and � regulates how fast the spatial correlation226

decays to zero with increasing distance u.227

228

2.2.2 Rat abundance outcomes229

The variable Yi,1, conditionally on R(xi), is a binomial variable representing the number of traps, out of ni,1,

in which rats were captured. We assume that the times of rat captures from a trap follow a time-varying

inhomogeneous Poisson process with intensity tiµ2(xi), where ti is the time (in days) for which a trap is

operative and log{µ2(xi)} = ↵1 + �1R(xi). It follows that the probability of capturing a rat is

1� exp{�tiµ2(xi)}.

If a trap is found closed without a rat, we assume that the trap was disturbed and set t = 0.5. In all other230

cases, t = 1 day.231

Yi,2, is the number of track-plates, out of ni,2, that show presence of rats. We model this as a binomial232

variable with ni,2 trials and probability µ2(xi) where log{µ2(xi)/(1� µ2(xi)} = ↵2 + �2R(xi).233

Yi,3, is the number of active rat burrows found at location xi. We model this as a Poisson variable with234

10
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rate µ3(xi) where log{µ3(xi)} = ↵3 + �3R(xi).235

The variables Yi,4 and Yi,5 are binary indicators taking value 1, if at least one faecal dropping or trail,236

respectively, was found at location xi and 0 otherwise. We model the probability of finding a sign of faecal237

droppings or trails, µ4(xi) and µ5(xi), using logit-linear regressions log{µ4(xi)/(1� µ4(xi))} = ↵4 + �4R(xi)238

and log{µ5(xi)/(1� µ5(xi))} = ↵5 + �5R(xi).239

2.2.3 Human infection outcome240

Conditionally on R(xi), we model the binary human infection outcome Zi,j as a Bernoulli variable with the

probability, pj(xi), that individual j at location i is infected. This is modelled with a logit link function and

the following linear predictor

log

⇢
pj(xi)

1� pj(xi)

�
= ↵h + d

|
h
(xi)�h + e

|
i,j
� + ⇠(xi)R(xi) + Vi (3)

where: dh(xi) is a vector of spatially continuous explanatory variables with associated regression coe�cients241

�h; ei,j is a vector of household-level and individual-level explanatory variables with associated regression242

coe�cients �; Vi is a set of independently and identically distributed zero-mean Gaussian variables with243

variance �2 representing unexplained household-level variation; ⇠(xi) regulates the contribution of rattiness244

to risk of infection.245

2.2.4 Parameterising to test for an interaction with elevation246

To explore variation in the role of local rat populations in transmission within di↵erent sections of the study247

area, ⇠ was parameterised to test for an interaction between rattiness and household elevation level on human248

infection risk. This was implemented by dividing the study area into three elevation levels with an equal number249

of households in each: low (0� 6.7m from bottom of valley), medium (6.7� 15.6m) and high (> 15.6m). We250

then define the set of household locations in each low, medium and high elevation level as xlow, xmed and251

xhigh, respectively. Three values of ⇠ were then estimated such that:252

⇠(xi) =

8
>>>>>><

>>>>>>:

⇠low at locations xi 2 xlow

⇠med at locations xi 2 xmed

⇠high at locations xi 2 xhigh

(4)
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2.3 Variable selection253

2.3.1 Predictors of rattiness254

The exploratory analysis for the rattiness model followed the steps developed and described previously [33].255

Firstly, we explored the functional form of the relationship between rattiness and three continuous explanatory256

variables: relative elevation, distance to large refuse piles and land cover type. To do this, we fitted a simplified257

rattiness model that did not include covariates or account for spatial correlation. Rattiness is consequently258

modelled purely as unstructured random variation; hence R(xi) = Ui [33]. We then computed the predictive259

expectation of this simplified rattiness process, Ûi, at all locations for which rat index measurements were260

observed. A generalized additive model (GAM) [50] was then fitted to the Ûi with the three explanatory261

variables and the shape of each fitted smooth function was used to assess whether the relationship between262

each variable and rattiness was linear. Non-linear relationships were modelled using linear splines based on263

the identified functional form, with knots placed at relative elevations of 8m and 22m, and at a distance from264

large refuse piles of 50m (see Supplementary file 1). For variable selection, linear models with all combinations265

of these variables were fitted and ranked by their Akaike Information Criterion (AIC) value [51]. The model266

with the lowest AIC included all of the variables and their linear splines (Supplementary file 2).267

Following the methodology outlined previously [33], we fitted the full geostatistical rattiness model using the268

variables selected in Section 2.3.1. We then plugged in the maximum likelihood estimates and made predictions269

for rattiness at all human household locations; here, the predictive target is T (x) = dr(x)|�r+
p
 S(x) rather270

than R(x) as defined by (2) because the predicted value of the spatially uncorrelated U(x) at any location x271

where rat abundance indices have not been recorded is zero. The expectation of this predictive distribution272

was then computed to provide an estimate of mean predicted rattiness at all household locations. This was273

then used as an exploratory covariate in the following section.274

2.3.2 Risk factors for human infection275

All explanatory variables were grouped into the following four domains: social status, household environment,276

occupational exposures and behavioural exposures. A group of a priori confounding variables was then277

identified, with age, gender and household per capita income selected based on previous findings [10–12], and278

valley also included to account for otherwise unmeasured di↵erences between the three valley regions within279

the study area.280

The relationship between continuous explanatory variables and infection risk (on the log-odds scale) was281
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assessed for linearity by fitting a GAM while controlling for the four confounders. As before, non-linear282

relationships were modelled using linear splines based on the identified functional form. Age was modelled with283

a knot at 30 years old, education at 5 years and relative elevation at 20m (Supplementary file 1). A univariable284

analysis was conducted to explore the relationship between each explanatory variable and infection risk while285

controlling for the four a priori confounding variables. Crude and adjusted odds ratios were estimated using286

a mixed e↵ects logistic regression with a random e↵ect to account for unexplained variation at the household-287

level.288

For the multivariable model, variable selection was conducted within each domain separately. Mixed-e↵ect289

logistic regression models were fitted for all combinations of the variables in each domain and were ranked290

by their Akaike Information Criterion (AIC) value (Supplementary file 2). Variables in the model with the291

minimum AIC value were selected for each domain. Age, gender, household per capita income and valley292

were controlled for in all models throughout this process. Then, the variables selected from each domain were293

combined and the mean predicted rattiness estimate (obtained in Section 2.3.1 at each household location)294

was included with an interaction with elevation level. This set of variables was reduced once more following295

the same process and all selected variables were included in the final multivariable model (Supplementary file296

3).297

2.4 Model fitting298

All rat and human variables selected in Section 2.3 were then included in the full joint model defined in299

Equations (2) and (3). We fit this model using the Monte Carlo maximum likelihood (MCML) method [52]300

as described in Supplementary file 4, and compute 95% confidence intervals by re-fitting the model for 1,000301

parametric bootstraps.302

2.5 Prediction maps303

The maximum likelihood parameter estimates were then used to make prediction maps for rattiness and304

infection risk as follows.305

To map a general predictive target, T (x) say, we first define T
⇤ = (T (x⇤

1), . . . , T (x
⇤
H
)), where X

⇤ =306

{x⇤
1, ..., x

⇤
H
} is a finely spaced grid of locations to cover the region of interest. We then draw samples from the307

predictive distribution of T ⇤, i.e. its conditional distribution given all relevant data. These samples can then308

be used to compute any desired summary of the predictive distribution. In our analysis, we used as summaries309
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the expectation and 95% prediction interval.310

Our first predictive target is rattiness, for which T (x) = d
|
r
(x)�r+

p
 S(x). Our second is human infection311

risk, for which T (x) = d
|
h
(x)�h + e

|
� + ⇠(xi)R(x) + Vi. In either case, we first sample from [R|W ; ✓,!] using312

the same sampling algorithm as for maximizing the likelihood in Section 2.2, with the parameters ✓ and !313

fixed at their maximum likelihood estimates. After obtaining samples r(b), b = 1, . . . , B, we then sample from314

[T ⇤|r(b)], which in both cases follows a multivariate Gaussian distribution with mean and covariance matrix315

easily obtained from their joint Gaussian distribution, [R, T
⇤]. The resulting values, t(b)(x

⇤
h
), h = 1, . . . , H; b =316

1, . . . , B, constitute b samples drawn from [T ⇤|W ] as required. Note that each t(b)(x
⇤
h
), h = 1, . . . , H is a sample317

from the joint predictive distribution of the complete surface of T (x) over the whole of the region of interest318

and can therefore be used to make inferences about spatially aggregated properties of T (x) if required.319

2.6 Data accessibility320

Data and code used in this analysis are publicly available at https://github.com/maxeyre/Rattiness-inf321

ection-framework and have been published [53]. However, household coordinates and valley ID have been322

removed from the human data to ensure participant anonymity. The analysis was conducted using R [54] and323

the following packages: tidyverse [55], mgcv [56], PrevMap [57], MuMIn [58] and lme4 [59].324

3 Results325

3.1 Study overview326

In Pau da Lima, we identified 3,179 eligible residents using a baseline community census, household visits and327

through other members of the household. Of these, 2,018 (63.4%) individuals consented to join the study328

and provided a blood sample in the first serosurvey (August-October 2014). As a result of loss to follow-up,329

only 1,401 (69.4%) of these participants (from 669 households) completed the second serosurvey (January-330

April 2015). Individuals were lost to follow-up because they could not be found after at least five attempts331

(44.4%), had moved out of the study area (31.1%) or did not wish to provide a second blood sample (19.8%).332

An overview of participant recruitment is provided in Figure 3. Individuals lost to follow-up were similar in333

age to those who remained in the study cohort (mean 29.0 and 28.8 years old, respectively, t-value= �0.37,334

df = 1288.5, p = 0.7) but were more likely to be male (49.8% male compared to 42.6%, �2 = 8.5, df = 1,335

p < 0.01). A full description of the study cohort is included in Supplementary file 5.336
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Eligible residents 
n = 3,179

Total recruited
n = 2,018

EXCLUDED:
• Declined participation n = 1,161 

Completed follow-up
n = 1,401

Mean follow-up
period = 6.3 months

LOST TO FOLLOW-UP:
• Not found after 5 visits n = 274
• Moved out of the study area n = 192
• Declined to provide a second sample n = 122
• Passed away n = 4

Data available for 
multivariable analysis

n = 1,399

INCOMPLETE DATA: 
• No response to survey 

question about sewer water 
contact  n = 2

Figure 3: The study participant flow chart in line with the STROBE (Strengthening the Reporting of Observational
Studies in Epidemiology) statement (http://www.strobestatement.org))

Between the two serosurveys there was serological evidence of 72 leptospiral infections in the cohort, with337

an overall infection rate of 51.4 (95%CI 40.4, 64.2) infections per 1,000 follow-up events. Valleys 2 and 3338

had high estimated infection rates with 66.4 (95%CI 47.3, 90.2) infections per 1,000 follow-up events and 49.6339

(95%CI 33.6, 69.9) infections per 1,000 follow-up events, respectively, compared to 23.2 (95%CI 9.2, 46.9)340

infections per 1,000 follow-up events in Valley 1. In the rat ecology study: a rat was captured in 129 (9.0%)341

out of 1,512 trapping-days; 263 (37.4%) out of 703 track plate days had at least one positive plate; 28.5%,342

19.7% and 25.9% of the 580 sampled locations found at least one sign of active burrows, faecal droppings and343

trails, respectively.344
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3.2 Exploratory analysis and model selection345

The results from the exploratory multivariable analysis of rattiness are shown in Table 1. The linear splines346

used were informed by the functional forms shown in Supplementary file 1. The relationship between rattiness347

and relative elevation demonstrates a trade-o↵ between the high availability of food sources at the bottom348

of the valley and high risk of flooding which prevents the establishment of burrows. In the lowest elevation349

areas (0-8m above the bottom of the valley), relative elevation and rattiness were positively associated with an350

increase of 0.04 (95%CI 0.00, 0.07) rattiness units per 1m; when interpreting the magnitude of e↵ect estimates351

note that, by definition, rattiness is defined so as to have variance one. Rattiness then peaked at an elevation352

of 8m before declining with increasing elevation by 0.04 (95%CI -0.09, 0.01) units until an elevation of 22m.353

Rattiness started to increase again above this elevation by 0.06 (95%CI 0.00, 0.10) units per metre. Rattiness354

decreased with increasing distance from large refuse piles, a source of food and harbourage, by 0.07 (95%CI355

-0.13, -0.01) units per 10m distance until a distance of 50m, beyond which there was little e↵ect. Impervious356

land cover (defined as the proportion of the area within a 30m radius around each sampling location classified357

as pavement or building) was negatively associated with rattiness, decreasing by -0.05 (95%CI -0.08, -0.01)358

units for every 10% increase in impervious cover.359

Table 1: Multivariable linear regression analysis of predictors for rattiness (note that rattiness is a unit-variance
random variable when interpreting the magnitude of e↵ect estimates)

Variable Estimate (95%CI)1

Relative elevation (per 1m increase)2

0-8m 0.04 (0.00, 0.07)

8-22m -0.04 (-0.09, 0.01)

>22m 0.06 (0.00, 0.10)

Distance to large refuse piles (per 10m increase)2

0-50m -0.07 (-0.13, -0.01)

>50m 0.02 (-0.05, 0.09)

Impervious land cover (per 10% increase) -0.05 (-0.08, -0.01)

1
CI, Confidence interval;

2
The e↵ects of relative elevation and distance to refuse are modelled as broken

linear models with transitions at 8m and 22m, and 50m, respectively. This

was informed by the relationship described by Generalized Additive Modelling

(Supplementary file 1)

360
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Table 2: Univariable mixed e↵ects logistic regression analysis of human risk factors for leptospiral infection

Variable OR (95%CI)1 aOR (95%CI)1

Demographic and social status

Age (per year)2

0-30 years old 1.08 (1.03, 1.13) 1.09 (1.04, 1.15)

>30 years old 1.02 (0.96, 1.09) 1.02 (0.95, 1.08)

Male gender 2.22 (1.31, 3.85) 2.78 (1.56, 4.96)

Daily per capita household income (US$/day) 1.01 (0.89, 1.11) 0.92 (0.80, 1.05)

Valley

1 REF REF

2 3.35 (1.33, 10.37) 3.52 (1.23, 10.05)

3 2.39 (0.93, 7.38) 2.53 (0.88, 7.27)

Adult illiteracy 1.34 (0.61, 2.79) 0.66 (0.29, 1.49)

Education (per year of education)2

0-5 years 1.05 (0.85, 1.32) 1.14 (0.91, 1.44)

>5 years 0.96 (0.73, 1.27) 0.96 (0.75, 1.26)

Household environment

Impervious land cover (per 10% increase) 0.87 (0.76, 0.99) 0.82 (0.71, 0.95)

Relative elevation (per 1m increase)2

0-20m 0.94 (0.89, 0.99) 0.93 (0.88, 0.99)

>20m 1.12 (0.98, 1.29) 1.12 (0.97, 1.29)

Elevation level

Low (0-6.7m) REF REF

Medium (6.7-15.6m) 0.72 (0.37, 1.39) 0.72 (0.36, 1.44)

High (>15.6m) 0.58 (0.27, 1.20) 0.51 (0.23, 1.11)

Open sewer within 10m 1.60 (0.85, 3.17) 1.69 (0.85, 3.37)

Unprotected from sewer 1.00 (0.55, 1.79) 1.11 (0.61, 2.03)

Live on hillside 0.99 (0.52, 1.86) 0.89 (0.46, 1.71)

Occupational exposures

Work in construction 1.36 (0.51, 3.21) 0.62 (0.23, 1.67)

Work as travelling salesperson 4.81 (1.12, 18.78) 2.97 (0.71, 12.40)

Work in refuse collection 2.95 (1.04, 7.89) 1.57 (0.56, 4.42)

Work involves contact with floodwater 0.89 (0.04, 5.61) 0.52 (0.05, 4.96)

Work involves contact with sewer water 3.61 (0.45, 20.38) 1.92 (0.29, 12.80)

Behavioural exposures

Contact with floodwater in last 6 months

Never/rarely REF REF

Sometimes 0.61 (0.27, 1.25) 0.66 (0.30, 1.47)

Frequently 2.14 (0.91, 4.94) 2.84 (1.18, 6.86)

Contact with sewer water in last 6 months

Never/rarely REF REF

Sometimes 0.55 (0.19, 1.31) 0.67 (0.25, 1.78)

Frequently 1.42 (0.51, 3.50) 1.63 (0.61, 4.41)
1
OR, Odds ratio; aOR, Adjusted odds ratio; CI, Confidence interval; REF, Reference level

2
The e↵ect of age, education and relative elevation are modelled as broken linear models with

transitions at 30 years old, 5 years of education and an elevation of 20m. This was informed

by the relationship described by Generalized Additive Modelling (Supplementary file 1)

In the community cohort data, the univariable analysis identified several risk factors that increased a361

17

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.21.21263884doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.21.21263884
http://creativecommons.org/licenses/by/4.0/


resident’s risk of leptospiral infection (Table 2). Variables with statistically significant associations (at the362

conventional 5% level) with infection risk were identified in two of the four domains: demographic and social363

status and behavioural exposures. Within the demographic and social status domain, risk of infection increased364

with age and was found to be higher for male participants and those living in Valleys 2 and 3. In the behavioural365

exposures domain, participants who had had frequent contact with floodwater in the last six months were366

more likely to be infected. Two individuals were excluded from the multivariable analysis (n=1,399) because367

of missing data for the floodwater exposure survey question.368

In the exploratory results from the multivariable model there was strong evidence of an interaction between369

rattiness and household elevation level on human infection risk (see Supplementary file 3 for all parameter370

estimates for this model). At the high elevation level area, a unit increase in mean predicted rattiness at the371

household location was estimated to increase the odds of infection by 6.92 (95%CI 1.88, 25.47). In contrast,372

in the low and medium elevation areas there was no evidence of a relationship between rattiness and infection373

risk, as shown in Figure 4. Consequently, this interaction e↵ect was also included in the rattiness-infection374

joint model.375

Figure 4: Predicted relationship between rattiness and infection risk from the multivariable mixed e↵ects logistic
regression demonstrating evidence of an interaction with elevation level (low, medium and high). Shown on the log-
odds scale with shaded areas corresponding to 95% confidence intervals.

The explanatory variables selected in the rat and human multivariable analyses were then entered into the376
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full rattiness-infection joint model with the functional forms included in Table 1. To test for residual spatial377

correlation in the human infection data after controlling for explanatory variables and rattiness, we fitted the378

joint model with an additional spatial Gaussian process in the human infection linear predictor. The estimated379

value for the scale of spatial correlation for this Gaussian process was less than 1m and indistinguishable from380

household-level variation. We consequently fitted the joint model specified in Equation (3) which assumes381

that there is no residual spatial correlation in the human infection data.382

3.3 Joint rattiness-infection model383

Human infection risk factors, rattiness predictors and other model parameters estimated using the joint384

rattiness-infection model are shown in Table 3. Infection risk was strongly associated with age, with an385

individual experiencing an increased odds of infection of 1.09 (95%CI 1.04, 1.19) for every year of life up until386

30 years of age, and 1.02 (95%CI 0.92, 1.09) for each additional year thereafter. Male participants were more387

likely to be infected than female participants (OR 2.69 95%CI 1.58, 5.89). Compared with individuals living388

in Valley 1, those living in Valley 2 had a higher estimated odds of infection (OR 2.91 95%CI 1.03, 20.82).389

Individuals living in the medium (OR 0.77 95%CI 0.31, 1.66) and high (OR 0.67 95%CI 0.11, 1.64) elevation390

areas had a lower estimated odds of infection relative to those living in the low elevation area where the open391

sewers are and flooding risk is higher, but these di↵erences were not significant at the conventional 5% level.392

Infection risk was positively associated with rattiness for households situated in all three elevation levels.393

However, while the e↵ect size (per unit increase in rattiness) was similar in the low (OR 1.14 95%CI 1.05, 1.53)394

and medium (OR 1.25 95%CI 1.08, 1.74) elevation areas, in the high elevation area the e↵ect of increasing395

rattiness on infection risk was significantly stronger (OR 3.27 95%CI 1.68, 19.07). This interaction e↵ect396

between rattiness and household elevation level on human infection risk was confirmed with a test for evidence397

against the null hypothesis that ⇠low = ⇠med = ⇠high (p = 0.026, �2 = 7.33, df = 2).398

Parameter estimates for the rattiness variables were very similar to the estimates from the exploratory399

linear regression (Table 1), with a slightly higher e↵ect size for the distance to refuse piles and land cover400

variables. There was evidence of small-scale spatial correlation in rattiness (� = 9.23m 95%CI 3.21, 18.24m)401

corresponding to a spatial correlation range (the distance at which the correlation reduces to 5%) of ap-402

proximately 28m. The estimate for  of about 0.67 (95%CI 0.29, 1.00) indicates that the majority of the403

unexplained variation in rattiness is spatially structured, with the remainder modelled as a nugget e↵ect.404
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Table 3: Parameter estimates for the full joint rattiness-infection model

Parameter Estimate (95%CI)

Human infection risk factors OR

Age (per year)

0-30 years old 1.09 (1.04, 1.19)

>30 years old 1.02 (0.92, 1.09)

Male gender 2.69 (1.58, 5.89)

Daily per capita household income (US$/day) 0.93 (0.74, 1.05)

Valley

1 REF

2 2.91 (1.03, 20.82)

3 2.28 (0.86, 14.00)

Elevation level

Low (0-6.7m) REF

Medium (6.7-15.6m) 0.77 (0.31, 1.66)

High (>15.6m) 0.67 (0.11, 1.64)

Work as travelling salesperson 3.16 (0.38, 20.57)

Contact with floodwater in last 6 months

Never/rarely REF

Sometimes 0.62 (0.18, 1.39)

Frequently 2.47 (0.67, 7.41)

Rattiness (per unit rattiness)

⇠low 1.14 (1.05, 1.53)

⇠med 1.25 (1.08, 1.74)

⇠high 3.27 (1.68, 19.07)

�
2 (variance of household-level random e↵ect) 1.36 (0.23, 5.35)

Rattiness variables

Relative elevation (per 1m increase)2

0-8m 0.05 (-0.01, 0.13)

8-22m -0.06 (-0.16, 0.02)

>22m 0.05 (-0.03, 0.14)

Distance to large refuse piles (per 10m increase)3

0-50m -0.10 (-0.21, 0.02)

>50m 0.03 (-0.11, 0.17)

Impervious land cover (per 10% increase) -0.07 (-0.14, -0.01)

Rattiness parameters

↵traps -2.94 (-3.27, -2.65)

↵plates -2.06 (-2.50, -1.74)

↵burrows -1.41 (-1.67, -1.16)

↵faeces -2.82 (-3.83, -2.32)

↵trails -2.22 (-2.96, -1.76)

�traps 0.72 (0.45, 0.97)

�plates 2.37 (2.05, 2.68)

�burrows 1.28 (1.08, 1.45)

�faeces 2.36 (1.80, 3.34)

�trails 2.43 (1.85, 3.12)

 0.67 (0.29, 1.00)

� 9.23 (3.21, 18.24)
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3.4 Spatial prediction405

There was heterogeneous spatial variation in predicted rattiness. The numerous small regions of high rattiness406

in Figure 5A are indicative of the small-scale spatial correlation in the data. The low elevation areas in the407

central length of each valley (relative elevation is shown in Figure 5E with the contours marking the low,408

medium and high elevation areas) had high mean predicted rattiness. High rattiness was also predicted in409

several high elevation areas, for example the northern tip of Valley 3 and several small hotspots along the410

three valley’s high elevation sides.411

To illustrate the spatial variation in infection risk within the study area, prediction maps are shown in412

Figure 5B for a 30-year-old male participant with a household per capita income of USD$1/day who never or413

rarely had contact with floodwater in the previous six months and did not work as a travelling salesperson.414

Infection risk was low across most of Valley 1 (<2.5%), with marginally higher average values found in the415

central low elevation area (2.5-5%). Risk was consistently higher across most of Valleys 2 and 3 (7.5-15%), with416

the e↵ect of elevation on risk clearly visible. In areas with higher and more spatially heterogeneous predicted417

infection risk, for example in the central region of Valley 2, this was driven by high levels of predicted rattiness.418

The stronger estimated e↵ect of rattiness on infection risk in higher elevation areas was particularly visible in419

Valleys 2 and 3, as seen in the three hotspots with risk reaching 20% and the moderate risk hotspots along420

the sides of both valleys. Prediction intervals were relatively narrow across most of the study area (Figures 5C421

and 5D) with greater uncertainty in the high risk areas.422
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A B

C D
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Figure 5: Joint rattiness-infection model predictions. A) Mean predicted rattiness; B) Mean predicted leptospiral
infection risk for 30-year-old male participants with a household per capita income of USD$1/day who never/rarely
have contact with floodwater and do not work as a travelling salesperson; C) lower 95% prediction interval for predicted
infection risk; D) upper 95% prediction interval for predicted infection risk; E) Elevation (metres) relative to the bottom
of valley (low, medium and high levels are shown with contours)

4 Discussion423

We developed and applied a novel framework for joint spatial modelling of disease reservoir abundance and424

human infection risk to a community-based cohort study and fine-scale rat ecology study. We found that425

higher levels of rattiness, our proxy for rat abundance, at the household location were associated with a higher426
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risk of leptospiral infection for residents across the entire study area. Importantly, we found that a unit427

increase in rattiness in high elevation areas was associated with an almost three times higher odds ratio for428

infection than in low and medium elevation areas. To our knowledge this is the first study to jointly model429

rodent abundance and human infection data for a rodent-borne zoonosis. The findings provide new insights430

into how the dominant mechanisms of Leptospira transmission within complex urban settings may vary over431

small distances, as a result of interactions between rats, the environment, geography, and local epidemiology.432

The finding that rattiness was associated with infection risk indicates that the spatial distribution of rat433

populations was an important driver of transmission close to the household across the entire study area. This is434

consistent with a recent study investigating the predictive power of household rat infestation scores for human435

infection [30]. There was no residual spatial correlation in the infection data after accounting for rattiness436

in our analysis, possibly suggesting that previously unexplained spatial heterogeneity in risk could be driven437

by variation in rattiness [12]. Our model also predicted high average rattiness across the low elevation areas438

where leptospiral transmission is high [10, 12]. This supports the hypothesis that abundant rat populations439

are responsible for high levels of observed environmental contamination across these lower areas [21, 60], and440

consequently increased infection risk.441

The identified interaction between elevation and rattiness on infection risk suggests that relatively small442

changes in environment and topography can modify transmission pathways within an urban community. The443

weaker e↵ect of rattiness on infection risk at low and medium elevation areas relative to high elevation areas444

may be explained by di↵erences in their hydrological profiles. While high rat abundance in low and medium445

areas results in high leptospiral contamination, these areas are prone to high levels of water runo↵ and flooding.446

This disperses the pathogen across low elevation areas. The ability of leptospires to persist in the environment447

for weeks or months means that this process can significantly increase environmental risk in low elevation areas448

for long periods. This process disconnects shedding and infection events in space and time [1] and obscures449

the relationship between infection risk and rattiness in low and medium elevation households.450

In contrast, high elevation areas have lower levels of water runo↵ and flooding due to improved drainage451

and sewage systems, and a smaller upstream catchment area for rainfall. Leptospires are consequently less452

likely to be washed away from the location at which they were shed, and environmental risk remains more453

localised and strongly associated with the spatial distribution of rats. This hypothesised role of hydrology454

in the aggregation and dispersal of leptospires [1] is supported by a recent study in low elevation areas of455

Pau da Lima which found that soil contamination was not associated with local rat activity [20]. However,456

our finding that rattiness was associated with infection in low and medium elevation areas suggests that the457
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spatial distribution of environmental risk in these areas is not entirely determined by water dispersal.458

Interestingly, a previous study of surface waters in Pau da Lima found that the probability of a sample459

being positive for Leptospira was highest in low elevation areas and lowest in medium elevation areas, with460

no significant di↵erence between low and high elevation areas [21]. This is consistent with our findings and461

suggests that there may be a ‘washing out’ of locally deposited leptospires in medium elevation areas but not462

in high elevation areas.463

This has several implications for disease control strategies which aim to reduce environmental risk. Improv-464

ing drainage systems at all elevation levels can reduce the dispersal of leptospires from high to low elevation465

areas. Closure of sewer systems, which generally run through low elevation areas, can protect local residents466

from exposure and reduce the introduction of additional contamination from upstream sewer water. Paving467

over soil surfaces can reduce the surface area over which leptospires can persist [6], reducing environmental468

risk further.469

A reduction in the dispersal and accumulation of bacteria will result in more localised environmental risk,470

as was observed in the high elevation areas in this study. Higher risk will then be found in areas with a471

high abundance of infected rats. This may also reduce environmental exposure for rats, thereby lowering472

shedding rates and acting as a feedback loop into the Leptospira transmission cycle [61]. Given the limited473

and short-term impact of chemical rodenticide campaigns on Norway rat abundance in these settings [62],474

longer-term environment management strategies targeted at rattiness hotspots may also be needed to reduce475

the availability of key predictors of rattiness, such as large refuse piles and vegetation and soil land cover.476

Funding and political will for large-scale infrastructural interventions is often limited in marginalised urban477

settings and small-scale community-based interventions which target these mechanisms should be evaluated.478

Transmission is dynamic in space and time and the alignment of conditions which enable spillover infection479

can vary over time [1]. Our study was designed to explore the spatial variation in rattiness and infection480

risk in Pau da Lima during the driest period of the year, and it may not be representative of transmission481

mechanisms during the rainy season. There is some evidence, however, that this may not necessarily be the482

case, with two recent studies in Pau da Lima reporting low seasonal variation in both rat abundance [63] and483

spatial infection risk patterns [12]. Nonetheless, future studies across di↵erent time periods are needed to484

establish the role of rat abundance in Leptospira transmission.485

In this study we used household location to link rattiness to an individual, under the assumption that the486

majority of their exposure occurs close to home. Given the spatially heterogeneous distribution of rattiness487

and environmental contamination [21] within the community, future epidemiological studies of leptospirosis488

24

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.21.21263884doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.21.21263884
http://creativecommons.org/licenses/by/4.0/


and zoonotic spillover could benefit from trying to pinpoint key sources of infection away from the household489

using GPS mobility data, as has been attempted in a small study previously [64]. The rattiness-infection490

framework could then be extended to model cumulative environmental exposure to the rattiness surface by491

integrating along a person’s trajectory as they move around the community.492

Our framework did not account for disease dynamics within rat populations. Given that 80% of rats are493

estimated to be actively shedding Leptospira in Pau da Lima [27, 28] and prevalence in rats is generally high in494

urban areas globally [22–26], the use of rattiness as a proxy for rat shedding appears reasonable and it may be495

a useful proxy in other epidemiological studies. However, in other zoonotic spillover systems where pathogen496

release does not occur at a high and homogeneous rate across the reservoir host population this may not be497

the case and accounting for spatially heterogeneous or time-varying [65] disease dynamics will be important.498

The rattiness-infection modelling framework is a flexible tool for exploring the spatial association between499

reservoir abundance, the environment and human health outcomes. It provides a statistically principled500

method for joint spatial modelling of infection risk and multiple indices of reservoir abundance, pooling data501

between indices and directly accounting for uncertainty in their measurement in all parameter estimates and502

predictions. The framework’s geostatistical structure includes spatially continuous predictors for abundance503

and accounts for spatial correlation, enabling mapping of both infection risk and rattiness. This can be504

useful for identifying high-risk areas and targeting control. One inherent limitation is its dependence on the505

availability of spatially continuous environmental variables and abundance data, both of which are prone to506

high measurement error. This can result in high uncertainty in the model parameter estimates and predictions,507

as demonstrated by the wider confidence intervals for risk factors in the joint model compared to the standard508

mixed-e↵ects logistic regression analysis. An additional benefit of the geostatistical structure is that abundance509

measurements do not have to be taken at the household location, providing some flexibility in the design of510

eco-epidemiological studies and indices used.511

In conclusion, we have developed a framework that may have broad applications in delineating com-512

plex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public513

health intervention. We demonstrate its potential by applying it to Leptospira in an urban setting, finding514

evidence that the extent to which local rat shedding drives spillover transmission is moderated by elevation,515

most likely a proxy for water runo↵. Future work examining these transmission mechanisms in similar settings516

and across di↵erent time points will be key to establishing how generalisable these results are.517
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Mamun, and Ricardo J. Soares Magalhães. “Spatial epidemiological approaches to inform leptospirosis555

surveillance and control: A systematic review and critical appraisal of methods”. In: Zoonoses and Public556

Health 66.2 (2019), pp. 185–206. issn: 18632378. doi: 10.1111/zph.12549.557
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Supplementary file 1 - Functional form of continuous explanatory
variables

Figure S1: Generalized Additive Model (GAM) partial dependence plots for the unstructured random variation in
rattiness, Ûi, plotted against the continuous explanatory variables considered in the analysis (shaded areas correspond to
95% confidence intervals): A) elevation relative to the bottom of valley, B) distance to large refuse piles, C) impervious
land cover in 20m radius bu↵er around sampling point. Ûi are estimated using a non-spatial model which excludes all
covariates. Panel D) is a variogram computed from Ûi using a non-spatial model that includes all of the covariates;
the dashed lines correspond to 95% confidence intervals under the assumption of spatial independence.
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Figure S2: Generalized Additive Model (GAM) partial dependence plots for human infection risk plotted against the
continuous explanatory variables considered in this analysis (shaded areas correspond to 95% confidence intervals): A)
age, B) household per capita income (in USD), C) years of education, D) household elevation relative to the bottom
of valley, E) impervious land cover in 20m radius bu↵er around household.
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