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18 Abstract
19 Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public
20 health burden, but the processes that promote spillover events are poorly understood in complex urban
21 settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban communities
2 occurs through human exposure to an environment contaminated by bacteria shed in the urine of the rat
23 reservoir. However, it is unclear to what extent transmission is driven by variation in the distribution of
2% rats or by the dispersal of bacteria in rainwater runoff and overflow from open sewer systems.
25 Methods: We conducted an eco-epidemiological study in a high-risk community in Salvador, Brazil, by
26 prospectively following a cohort of 1,401 residents to ascertain serological evidence for leptospiral infections.
27 A concurrent rat ecology study was used to collect information on the fine-scale spatial distribution of
28 ‘rattiness’, our proxy for rat abundance and exposure of interest. We developed and applied a novel
29 geostatistical framework for joint spatial modelling of multiple indices of disease reservoir abundance and
30 human infection risk.
31 Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1,000 follow-up
32 events. Infection risk increased with age until 30 years of age and was associated with male gender.
3 Rattiness was positively associated with infection risk for residents across the entire study area, but this

1

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2021.09.21.21263884
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.21.21263884; this version posted September 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

34 effect was stronger in higher elevation areas (OR 3.27 95%CI 1.68, 19.07) than in lower elevation areas
35 (OR 1.14 95%CI 1.05, 1.53).

36 Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in
37 regions of low elevation, environmental risk in higher elevation areas is more localised and directly driven by
38 the distribution of local rat populations. The modelling framework developed may have broad applications
39 in delineating complex animal-environment-human interactions during zoonotic spillover and identifying
40 opportunities for public health intervention.

a1 Funding: This work was supported by the Oswaldo Cruz Foundation and Secretariat of Health
2 Surveillance, Brazilian Ministry of Health, the National Institutes of Health of the United States (grant
a3 numbers F31 AI114245, R01 AI052473, U01 AI088752, RO1 TW009504 and R25 TW009338); the Well-
4 come Trust (102330/Z/13/Z), and by the Fundacdo de Amparo & Pesquisa do Estado da Bahia (FAPES-
a5 B/JCB0020/2016). M.T.E is supported by an MRC doctorate studentship. F.N.S. participated in this
46 study under a FAPESB doctorate scholarship.
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» 1 Introduction

s Zoonotic spillover, the transmission of pathogens from infected vertebrate animals to humans, is responsible for
2 a significant public health burden globally. Understanding the processes that promote spillover transmission
53 is essential for improving our ability to predict and prevent spillover events, but for many zoonoses, such
s« as Leptospira interrogans, Escherichia coli O157 and Giardia spp., they are poorly understood [1]. This is
s due to the complex nature of the spillover system, in which the probability of transmission is governed by
ss dynamic interactions in space and time between ecological, epidemiological, behavioural and immunological
s factors that determine pathogen pressure, exposure and host susceptibility. Zoonotic spillover research must
ss  explore interactions between the environment, disease reservoirs and local epidemiology, presenting two central
so challenges: i) the need for transdisciplinary studies at the animal-human disease interface (a One Health
o approach) that accurately collect data on multiple components of the spillover process at common temporal
s and spatial scales at which these events take place; ii) the development of integrative approaches to jointly

e analysing these diverse datasets within a spatially and temporally explicit framework [1-3].

63 Leptospirosis, a neglected zoonotic disease caused by pathogenic bacteria from the genus Leptospira, is an

6 important example of zoonotic spillover. Globally, it is estimated to cause more than one million cases and
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s over 58,000 deaths each year [4], with an annual global burden of 2.9 million DALYs [5]. This burden falls
6 heavily on marginalised urban populations in low- and middle-income countries who live in areas characterised
e by high population density, poor quality housing and inadequate provision of healthcare, sanitation, and
e waste management services. In these settings, leptospiral infection occurs through contact with water or soil
s contaminated with leptospires shed in the urine of the principal reservoir, the Norway rat (Rattus norvegicus)
w0 [6]. These areas produce the socio-ecological conditions that allow rodent populations to proliferate and
1 leptospires to persist for long periods in the environment [7]. Residents consequently have frequent, intense
= and largely unavoidable exposure to the contaminated environment, often exacerbated by their geographical
7z vulnerability to flooding events [8]. In response, the World Health Organisation (WHO) has convened the
7 Leptospirosis Burden Epidemiology Reference Group (LERG) which has recommended “Targeted intervention
»»  based on the improved knowledge of disease ecology” [9], highlighting the current knowledge gap for Leptospira

7 transmission mechanisms and target points for effective intervention.

7 Multiple studies have helped to elucidate key aspects of the Leptospira transmission cycle in urban set-
7 tings, identifying socioeconomic vulnerability, household environment and behavioural exposures as important
7 determinants of infection risk [7, 10-19]. However, these variables have been unable to explain fine-scale spa-
s tial variation in risk [10, 12]. This is likely to be driven by the high spatial and temporal heterogeneity in
s environmental risk, observed in recent studies of Leptospira in soil, and surface and sewage waters [6, 20, 21].
& These findings lead to two key questions: i) to what extent does environmental contamination by localised
s rat shedding drive infection risk, rather than exposure to leptospires that have been dispersed by rainwater
s+ runoff and overflowing sewer systems; and ii) how does this change across the geography of a community, for

s example at different elevation levels?

86 Establishing a dynamic link between rats, the environment and Leptospira transmission is complicated
ez by the difficulty of measuring and modelling the rat contamination process. However, urban Norway rats
s have been found to have high Leptospira prevalence and shedding rates worldwide [22-28]. This suggests
s that rat abundance may be predictive of environmental risk, and could be used as a proxy for this shedding
o process. While several studies have identified associations between infection risk and household rat sightings
o and infestation [10, 12, 22, 29-31], their ability to explore fine-scale spatial variation in risk was limited by a
o2 reliance on household infestation surveys or aggregation of incidence and abundance indices to a common coarse
o3 spatial scale. All modelled abundance as a regression covariate, thereby not accounting for uncertainty in its
o measurement. The absence of methods to formally integrate abundance into analyses of spillover mechanisms

s is an issue for rodent-borne zoonoses more widely [3, 32].
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96 There is no gold-standard index of abundance and field teams use a range of imperfect indices, such as
or traps, infestation surveys and track plates. In our previous work, we developed a multivariate generalized
e linear geostatistical model for joint spatial modelling of multiple imperfect abundance indices [33]. We use the
9 term ‘abundance’ loosely here to denote all ecological processes that are associated with animal abundance,
w0 for example animal presence and activity, and that can be used to quantify exposure to a disease of interest.
w1 This methodology was then used to model the spatial distribution of ‘rattiness’, our proxy for rat abundance,
102 at a fine scale within a community in Salvador, Brazil [33]. The spatial distribution of rattiness was highly

103 heterogeneous, suggesting that it could be a driver of micro-heterogeneity in infection risk.

104 To analyse reservoir host abundance and infection data at fine spatial scales, we propose that a framework
s should i) account for spatial correlation in human and reservoir host data; ii) jointly model multiple imperfect
s indices of abundance while accounting for the appropriate sampling distribution of each index; iii) account for
w7 uncertainty in abundance indices, iv) allow for the prediction of abundance and infection risk at all locations
s within the study area, and v) quantify the uncertainty associated with those predictions. Several studies have
s attempted to model spatial associations between disease reservoir or vector abundance and human infection
uo for leptospirosis [34-36], tularemia [37]; Lyme disease [38]; West Nile Virus [39]; dengue fever [40]; and Lassa
w  fever [41]. However, none of the approaches used satisfy all five of the above conditions. The development of
12 new tools for the joint spatial analysis of abundance and human infection may consequently be beneficial for

us  the study of other zoonoses and vector-borne diseases [42].

114 The aim of this study was to develop a flexible modelling framework for zoonotic spillover to explore
us  whether rattiness, acting as a proxy for local leptospiral contamination by Norway rats, can explain spatial
ue heterogeneity in leptospiral transmission in a high-risk urban community in Brazil. We extend the rattiness
w7 framework of Eyre et al. [33] to include human infection risk. We describe findings from a transdisciplinary
s eco-epidemiological study which comprises a prospective community-based cohort study with two serosurveys
e and a fine-scale rat ecology study. The ecology study was used to collect information on the spatial distribution
120 of rat abundance, our exposure of interest, in the period between the two surveys using multiple abundance
121 indices. Then, we explore associations between infection risk, rattiness and a range of measured environmental

122 and individual risk factors.
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» 2 Materials & methods

s 2.1  Study design

s 2.1.1 Study area

126 The study was conducted in Pau da Lima community (13°32’53.47” S; 38°43’51.10” W), a marginalised
w7 informal settlement located in the city of Salvador, Northeast Brazil. The study site has an area of 0.25km?
128 and is characterised by three connected valleys with large elevation gradients, high population density and a
1o heterogeneous environment of vegetation, paved surfaces and exposed soil (Figure 1). There are significant
1o gradients in socioeconomic status and infrastructure quality over small elevation increases - with the most
1w marginalised members of the community living at lower elevations. The community suffers from low quality
132 housing, poor provision of waste management services and inadequate drainage and sanitation systems [12,
3 43]. Residents are consequently often unable to avoid intense exposure with mud and floodwater. These factors
1 result in abundant rat populations [33] and a high estimated annual Leptospira infection rate of 35.4 (95%
s CI, 30.7, 40.6) infections per 1,000 annual follow-up events [12]. For this reason, Pau da Lima has become an

136 exemplar for investigating urban Leptospira transmission in Brazil over the last 15 years.

1w 2.1.2 Serosurveys

138 We conducted a prospective community cohort study with two serosurveys carried out in August-October
139 2014 and January-April 2015. After an initial census of the study site, all ground floor households were visited
1o and inhabitants who met the eligibility criteria of >5 years of age who had slept >3 nights in the previous

m  week in a study household were invited to join the study.

142 During each survey trained phlebotomists collected blood samples from participants and administered a
13 modified version of the standardised questionnaire used previously [12, 29]. Information was collected on
s demographic and socioeconomic indicators, household environmental characteristics and exposures to poten-
us  tial sources of environmental contamination in the previous six months (the average time between the two
us  serosurveys). Study data were collected and managed using REDCap electronic data capture tools [44] and
17 all individual data were anonymised. The locations of sampled households are shown in Figure 1A. If an indi-
s vidual was not found during a sample collection visit their house was revisited at least five times on different

o days of the week.

150 The microscopic agglutination test (MAT) was used to determine titers of agglutinating antibodies against
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11 pathogenic Leptospira in sera obtained from the blood samples collected in each serosurvey. Serological samples
12 were reacted with a panel of two Leptospira reference strains that are dominant in Pau da Lima: Leptospira
153 interrogans serovars Copenhageni (COPL1) and Cynopteri 3522C (C3522C). These two strains have been
15« shown to have the same performance in identifying MAT seroconversion in our prospective studies as the
155 WHO recommended battery of 19 reference serovars. When agglutination was observed at a dilution of 1:50,
16 the sample was titrated in serial two-fold dilutions to determine the highest agglutination titer. The study
157 outcome of leptospiral infection was defined as seroconversion, an MAT titer increase from negative to >1:50,
18 or a four-fold increase in titer for either serovar between paired samples from cohort subjects. All laboratory
10 analyses were performed in the Laboratory Pathology and Molecular Biology at Fiocruz, Salvador. As part
1o of quality control procedures two independent evaluations were conducted by Yale University for all infected

11 subjects and 8% of all samples, with high concordance between results.

Land cover

Exposed soil
Impervious
Vegetation

Serosurvey 1
August - October 2014

Rat ecology study

Data collection

Households
A Plates & Signs October - December 2014
®  Traps & Signs
-+ Signs only Serosurvey 2

January - April 2015

Figure 1: A) Map of the three valleys within the study site in Pau da Lima, with household locations for the serosurveys
marked as orange circles. Locations sampled in the the rat ecology study are shown for each of the rat abundance
indices as follows: Plates & Signs (track plates, burrows, faeces and trails), Traps & Signs (traps, burrows, faeces and
trails) and Signs only (burrows, faeces and trails); B) Land cover classification map (impervious cover is defined as
man-made structures e.g. pavement and buildings); C) Study timeline for the two community serosurveys and rat
ecology study.
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e 2.1.3 Rat ecology study

163 To estimate exposure risk due to local rat contamination between the two serosurveys, a cross-sectional rat
16« ecology study was conducted from October to December 2014. As has been described previously [33], the aim
165 of this study was to collect data on the fine-scale spatial variation in rat reservoir population abundance. Data
s were collected for five indices of rat abundance: live trapping, track plates, number of active burrows present,
w7 presence of faecal droppings and presence of trails. Rat trapping was carried out at 189 locations, randomly
s distributed across the study area (see Panti-May et al. [45]). Two traps were deployed for 4 consecutive 24-hour
1o trapping periods at each location. Trapping success and trap closure without a rat, a common malfunction,
o were recorded after each 24-hour period. Track plates were placed at 415 locations for two consecutive 24-hour
i periods following the standardised protocol for placement and survey developed and validated previously [46],
12 with five plates placed at each location in the shape of a ‘five’ on a die. After each 24-hour period plates were
73 repainted and any lost plates were recorded and replaced. On the first day of trapping or plate placement,
e a survey for signs of rat infestation, adapted from the Centers for Disease Control and Prevention [47] and
s validated in the study area [29], was conducted within an area of 10m radius around each trapping or plate
s location to record the number of active burrows and the presence of faecal droppings and trails. In total,
w7 595 independent locations were sampled for traps, track plates and the three survey indices for signs of rat
s infestation. The spatial distribution of these locations is shown in Figure 1A. At 21 locations, theft and local
w9 gang violence meant that data for track plates and traps was not collected and only the three survey indices

10 for signs of rat infestation were used.

s 2.1.4 Environmental data

12 In addition to the environmental survey conducted at each household location, we also collected information
183 for three spatially continuous environmental variables: elevation relative to the bottom of each valley, distance
e to large public refuse piles and the proportion of land cover classified as impervious (man-made structures)
155 within a 30-metre radius. The land cover variable was created from Digital Globe’s WorldView-2 satellite
18 imagery (8 bands) taken on February 17, 2013 which was classified using a maximum likelihood supervised
17 algorithm and validated with ground truthed data collected from 20 randomly selected sites of size 5m by 5m.

188 The classification map is shown in Figure 1B.
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1w 2.1.5 Ethics

10 Participants were enrolled according to written informed consent procedures approved by the Institutional
11 Review Boards of the Oswaldo Cruz Foundation and Brazilian National Commission for Ethics in Research,
12 Brazilian Ministry of Health (CAAE: 01877912.8.0000.0040) and Yale University School of Public Health (HIC

3 1006006956).

104 For the rat ecology study, the ethics committee for the use of animals from the Oswaldo Cruz Foundation,
s Salvador, Brazil, approved the protocols used (protocol number 003/2012), which adhered to the guidelines
s of the American Society of Mammalogists for the use of wild mammals in research [48] and the guidelines
w7 of the American Veterinary Medical Association for the euthanasia of animals [49]. These protocols were
s also approved by the Yale University’s Institutional Animal Care and Use Committee (IACUC), New Haven,

199 Connecticut (protocol number 2012-11498).

o 2.2 Joint modelling rat abundance and human infection: the rattiness-infection

201 framework

22 The developed geostatistical modelling framework jointly models multiple rat abundance indices as measure-
203 ments of a common latent process, called rattiness. Rattiness at each household location contributes to the
s risk of infection for all inhabitants, in addition to other measured individual or household-level explanatory

205 variables.

206 We model the rat abundance data following a similar structure to that previously outlined [33]. Let
2 R(x) denote a spatially continuous stochastic process, representing rattiness. The rat data then consist of
28 a set of outcomes YV; = (Y, : k = 1,...,5), for ¢ = 1,..., N,, collected at a discrete set of locations
0w X ={z;:i=1,...,N,}. The outcome variables Y} : k = 1,...,5 are the set of five rat abundance indices that
20 provide information about R(z): traps (k = 1), track plates (k = 2), number of burrows (k = 3), presence of

au faecal droppings (k = 4) and presence of trails (k = 5).

212 Human data are collected from Nj, households and consist of an infection outcome Z; ; for individual j
a3 at household location 4, for i = N, + 1,..., N, + Nj, collected at a discrete set of locations X = {z; : i =

ae Np+1,.., N+ Nh}

215 Let “[-]” be a shorthand notation for “the probability distribution of -.” We write Y = (Y1,...,Yn,),

ne L = (ZNT+17 . '7ZNT+Nh) and R = (R(:El), N .,R(xNT_;,_Nh)). We assume that the )/i,k k= 1,...,5 and Zz',j
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ar  are conditionally independent given R(x;), from which it follows that

N,.+Np J;

N, 5
Y, Z|R] = HH YirlR@:)] [ [[%s1R@:) (1)

i=N,+1j5=1

zs where [] is a shorthand notation for “the distribution of” and J; denotes the number of individuals at household

219 4. This model structure is shown schematically in Figure 2.

Health outcome, Z
)
dh ~a/ Risk,
pi(X)

o
\

Explanatory
variables

d. F+(R(x)

o Y, Y5
Rat indices v

Ya |y, | Ya

& J

Figure 2: Directed acyclic graph (DAG) of the rattiness-infection model framework. R(z) is the value of a spatially
continuous stochastic rattiness process at location x. The outcome variables Yz : k = 1,...,5 are the set of five rat
abundance indices that provide information about R(z): traps (k = 1), track plates (k = 2), number of burrows (k = 3),
presence of faecal droppings (k = 4) and presence of trails (k = 5). The outcome variable Z; ; is the observed health
outcome, in this case this represents infection status. The terms d;, and d, represent the sets of spatially continuous
explanatory variables which contribute to spatial variation in infection risk in humans and R(z), respectively. The
terms dp and d, are not mutually exclusive groups of explanatory and the same variables may contribute to both
infection risk and R(z). The term e represents a set of individual- and household-level explanatory variables which
contribute to variation in infection risk. Square objects correspond to observable variables, and circles to latent random
variables.
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»0 2.2.1 Rattiness

We define rattiness at location z as

R(zi) = dl()B, + V4 S(x:) + 14 Ui (2)

a1 The terms on the right-hand side of 2 have the following interpretations: d,.(z;) is a vector of explanatory
2 variables with associated regression coefficients f,; U; is a set of independently and identically distributed
23 zero-mean Gaussian variables with unit variance; S(z;) is a stationary and isotropic spatial Gaussian process;
2¢ 1) € (0, 1) regulates the relative contributions of spatially structured variation, S(z;), and unstructured random

»s  variation, U;, to R(z;).

For the Gaussian process, S(z;), we specify an exponential spatial correlation function:

Corr(S(z),S(z")) = e~ v/?

26 where u = ||z —2'|| is the Euclidean distance between x and 2’, and ¢ regulates how fast the spatial correlation
27 decays to zero with increasing distance u.

228

2 2.2.2 Rat abundance outcomes

The variable Y; 1, conditionally on R(z;), is a binomial variable representing the number of traps, out of n; 1,
in which rats were captured. We assume that the times of rat captures from a trap follow a time-varying
inhomogeneous Poisson process with intensity ¢;u2(x;), where ¢; is the time (in days) for which a trap is

operative and log{pz(x;)} = a1 + o1 R(x;). It follows that the probability of capturing a rat is

1 — exp{—t;pa(x;)}.
20 If a trap is found closed without a rat, we assume that the trap was disturbed and set ¢ = 0.5. In all other
21 cases, t = 1 day.

23 Y; 2, is the number of track-plates, out of n; o, that show presence of rats. We model this as a binomial

2z variable with n; o trials and probability uo(x;) where log{ue(x;)/(1 — pa(x:)} = ag + 02 R(z;).

23 Y; 3, is the number of active rat burrows found at location z;. We model this as a Poisson variable with

10
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2 rate pz(x;) where log{us(x;)} = as + o3 R(x;).

236 The variables Y; 4 and Y; 5 are binary indicators taking value 1, if at least one faecal dropping or trail,
2 respectively, was found at location x; and 0 otherwise. We model the probability of finding a sign of faecal
23 droppings or trails, pg(x;) and ps(z;), using logit-linear regressions log{pa(x;)/(1 — pa(z;))} = aq + o4 R(z;)

ao and log{yis(2:)/(1 — ps(2:))} = a5 + o5 R(2;).

20 2.2.3 Human infection outcome

Conditionally on R(z;), we model the binary human infection outcome Z; ; as a Bernoulli variable with the
probability, p;(x;), that individual j at location ¢ is infected. This is modelled with a logit link function and

the following linear predictor

log { TZAD L — o () + €]+ € R + V. Q
21 where: dp(z;) is a vector of spatially continuous explanatory variables with associated regression coefficients
22 f; e;; is a vector of household-level and individual-level explanatory variables with associated regression
23 coefficients ; V; is a set of independently and identically distributed zero-mean Gaussian variables with
2 variance o2 representing unexplained household-level variation; &(z;) regulates the contribution of rattiness

25 to risk of infection.

us  2.2.4 Parameterising to test for an interaction with elevation

27 To explore variation in the role of local rat populations in transmission within different sections of the study
us area, & was parameterised to test for an interaction between rattiness and household elevation level on human
29 infection risk. This was implemented by dividing the study area into three elevation levels with an equal number
20 of households in each: low (0 — 6.7m from bottom of valley), medium (6.7 — 15.6m) and high (> 15.6m). We
s then define the set of household locations in each low, medium and high elevation level as o, Tmeq and

22 Thigh, respectively. Three values of £ were then estimated such that:

flow at locations x; € xj0
§(z) = Emea  at locations x; € Tyeq (4)

Enigh  at locations x; € Tpign

11
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= 2.3 Variable selection
x4 2.3.1 Predictors of rattiness

s The exploratory analysis for the rattiness model followed the steps developed and described previously [33].
»6  Firstly, we explored the functional form of the relationship between rattiness and three continuous explanatory
»7  variables: relative elevation, distance to large refuse piles and land cover type. To do this, we fitted a simplified
s rattiness model that did not include covariates or account for spatial correlation. Rattiness is consequently
0 modelled purely as unstructured random variation; hence R(x;) = U; [33]. We then computed the predictive
%0 expectation of this simplified rattiness process, Ui, at all locations for which rat index measurements were
w1 observed. A generalized additive model (GAM) [50] was then fitted to the U; with the three explanatory
x%2 variables and the shape of each fitted smooth function was used to assess whether the relationship between
%3 each variable and rattiness was linear. Non-linear relationships were modelled using linear splines based on
s the identified functional form, with knots placed at relative elevations of 8m and 22m, and at a distance from
x5 large refuse piles of 50m (see Supplementary file 1). For variable selection, linear models with all combinations
6 of these variables were fitted and ranked by their Akaike Information Criterion (AIC) value [51]. The model

s with the lowest AIC included all of the variables and their linear splines (Supplementary file 2).

268 Following the methodology outlined previously [33], we fitted the full geostatistical rattiness model using the
x%0  variables selected in Section 2.3.1. We then plugged in the maximum likelihood estimates and made predictions
20 for rattiness at all human household locations; here, the predictive target is T'(x) = d,.(2)T 8, + /4 S(z) rather
o1 than R(x) as defined by (2) because the predicted value of the spatially uncorrelated U(x) at any location z
o where rat abundance indices have not been recorded is zero. The expectation of this predictive distribution
a3 was then computed to provide an estimate of mean predicted rattiness at all household locations. This was

2 then used as an exploratory covariate in the following section.

s 2.3.2 Risk factors for human infection

as All explanatory variables were grouped into the following four domains: social status, household environment,
s occupational exposures and behavioural exposures. A group of a priori confounding variables was then
xs  identified, with age, gender and household per capita income selected based on previous findings [10-12], and
a9 valley also included to account for otherwise unmeasured differences between the three valley regions within

20 the study area.

281 The relationship between continuous explanatory variables and infection risk (on the log-odds scale) was
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2 assessed for linearity by fitting a GAM while controlling for the four confounders. As before, non-linear
23 relationships were modelled using linear splines based on the identified functional form. Age was modelled with
2 a knot at 30 years old, education at 5 years and relative elevation at 20m (Supplementary file 1). A univariable
s analysis was conducted to explore the relationship between each explanatory variable and infection risk while
26 controlling for the four a priori confounding variables. Crude and adjusted odds ratios were estimated using
27 a mixed effects logistic regression with a random effect to account for unexplained variation at the household-

28 level.

289 For the multivariable model, variable selection was conducted within each domain separately. Mixed-effect
20 logistic regression models were fitted for all combinations of the variables in each domain and were ranked
21 by their Akaike Information Criterion (AIC) value (Supplementary file 2). Variables in the model with the
20 minimum AIC value were selected for each domain. Age, gender, household per capita income and valley
203 were controlled for in all models throughout this process. Then, the variables selected from each domain were
24 combined and the mean predicted rattiness estimate (obtained in Section 2.3.1 at each household location)
25 was included with an interaction with elevation level. This set of variables was reduced once more following
26 the same process and all selected variables were included in the final multivariable model (Supplementary file

297 3) .

0 2.4 Model ﬁttil’lg

209 All rat and human variables selected in Section 2.3 were then included in the full joint model defined in
w0  Equations (2) and (3). We fit this model using the Monte Carlo maximum likelihood (MCML) method [52]
sa  as described in Supplementary file 4, and compute 95% confidence intervals by re-fitting the model for 1,000

a2 parametric bootstraps.

w 2.5 Prediction maps

30 The maximum likelihood parameter estimates were then used to make prediction maps for rattiness and

35 infection risk as follows.

306 To map a general predictive target, T(x) say, we first define T* = (T(x}),...,T(z};)), where X* =
sor {7, ..., 2%} is a finely spaced grid of locations to cover the region of interest. We then draw samples from the
s predictive distribution of T, i.e. its conditional distribution given all relevant data. These samples can then

0 be used to compute any desired summary of the predictive distribution. In our analysis, we used as summaries

13
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s the expectation and 95% prediction interval.

m Our first predictive target is rattiness, for which T'(z) = dI(z)3, ++/1S(z). Our second is human infection
sz risk, for which T'(z) = dJ (z)Bh + €Ty + &(z;) R(z) + Vi. In either case, we first sample from [R|W;6,w] using
a3 the same sampling algorithm as for maximizing the likelihood in Section 2.2, with the parameters 6 and w
sa  fixed at their maximum likelihood estimates. After obtaining samples r¢y, b=1,..., B, we then sample from
sis [1™|r@)], which in both cases follows a multivariate Gaussian distribution with mean and covariance matrix
s easily obtained from their joint Gaussian distribution, [R, T*]. The resulting values, ) (z}),h =1,..., H;b =
sz 1,..., B, constitute b samples drawn from [T*|WW] as required. Note that each ¢¢;)(x}),h =1,..., H is a sample
s from the joint predictive distribution of the complete surface of T'(z) over the whole of the region of interest

s and can therefore be used to make inferences about spatially aggregated properties of T'(z) if required.

= 2.6 Data accessibility

s Data and code used in this analysis are publicly available at https://github.com/maxeyre/Rattiness-inf
2 ection-framework and have been published [53]. However, household coordinates and valley ID have been
23 removed from the human data to ensure participant anonymity. The analysis was conducted using R [54] and

2¢  the following packages: tidyverse [55], mgev [56], PrevMap [57], MuMIn [58] and lme4 [59].

» 3 Results

» 3.1 Study overview

37 In Pau da Lima, we identified 3,179 eligible residents using a baseline community census, household visits and
28 through other members of the household. Of these, 2,018 (63.4%) individuals consented to join the study
a0 and provided a blood sample in the first serosurvey (August-October 2014). As a result of loss to follow-up,
a0 only 1,401 (69.4%) of these participants (from 669 households) completed the second serosurvey (January-
sn April 2015). Individuals were lost to follow-up because they could not be found after at least five attempts
s (44.4%), had moved out of the study area (31.1%) or did not wish to provide a second blood sample (19.8%).
33 An overview of participant recruitment is provided in Figure 3. Individuals lost to follow-up were similar in
14 age to those who remained in the study cohort (mean 29.0 and 28.8 years old, respectively, t-value= —0.37,
s df = 1288.5, p = 0.7) but were more likely to be male (49.8% male compared to 42.6%, x? = 8.5, df = 1,

13 p < 0.01). A full description of the study cohort is included in Supplementary file 5.
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Eligible residents

n=3,179

EXCLUDED:
* Declined participation n=1,161

Total recruited
n=2,018

LOST TO FOLLOW-UP:

* Not found after 5 visits n=274
Moved out of the study area n=192
Declined to provide a second sample n=122
Passed away n=4

Completed follow-up
n=1,401

Mean follow-up
period = 6.3 months

INCOMPLETE DATA:

* No response to survey
question about sewer water
contact n=2

Data available for
multivariable analysis

n=1,399

Figure 3: The study participant flow chart in line with the STROBE (Strengthening the Reporting of Observational
Studies in Epidemiology) statement (http://www.strobestatement.org))

337 Between the two serosurveys there was serological evidence of 72 leptospiral infections in the cohort, with
18 an overall infection rate of 51.4 (95%CI 40.4, 64.2) infections per 1,000 follow-up events. Valleys 2 and 3
;0 had high estimated infection rates with 66.4 (95%CI 47.3, 90.2) infections per 1,000 follow-up events and 49.6
a0 (95%CI 33.6, 69.9) infections per 1,000 follow-up events, respectively, compared to 23.2 (95%CI 9.2, 46.9)
s infections per 1,000 follow-up events in Valley 1. In the rat ecology study: a rat was captured in 129 (9.0%)
s out of 1,512 trapping-days; 263 (37.4%) out of 703 track plate days had at least one positive plate; 28.5%,
s 19.7% and 25.9% of the 580 sampled locations found at least one sign of active burrows, faecal droppings and

e trails, respectively.
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3.2 Exploratory analysis and model selection

The results from the exploratory multivariable analysis of rattiness are shown in Table 1. The linear splines
used were informed by the functional forms shown in Supplementary file 1. The relationship between rattiness
and relative elevation demonstrates a trade-off between the high availability of food sources at the bottom
of the valley and high risk of flooding which prevents the establishment of burrows. In the lowest elevation
areas (0-8m above the bottom of the valley), relative elevation and rattiness were positively associated with an
increase of 0.04 (95%CI 0.00, 0.07) rattiness units per 1m; when interpreting the magnitude of effect estimates
note that, by definition, rattiness is defined so as to have variance one. Rattiness then peaked at an elevation
of 8m before declining with increasing elevation by 0.04 (95%CT -0.09, 0.01) units until an elevation of 22m.
Rattiness started to increase again above this elevation by 0.06 (95%CI 0.00, 0.10) units per metre. Rattiness
decreased with increasing distance from large refuse piles, a source of food and harbourage, by 0.07 (95%CI
-0.13, -0.01) units per 10m distance until a distance of 50m, beyond which there was little effect. Impervious
land cover (defined as the proportion of the area within a 30m radius around each sampling location classified
as pavement or building) was negatively associated with rattiness, decreasing by -0.05 (95%CI -0.08, -0.01)

units for every 10% increase in impervious cover.

Table 1: Multivariable linear regression analysis of predictors for rattiness (note that rattiness is a unit-variance

random variable when interpreting the magnitude of effect estimates)

Variable Estimate (95%CI)"

Relative elevation (per 1m increase)?

0-8m 0.04 (0.00, 0.07)

8-22m -0.04 (-0.09, 0.01)

>22m 0.06 (0.00, 0.10)
Distance to large refuse piles (per 10m increase)?

0-50m -0.07 (-0.13, -0.01)

>50m 0.02 (-0.05, 0.09)
Impervious land cover (per 10% increase) -0.05 (-0.08, -0.01)

1 CI, Confidence interval;

2 The effects of relative elevation and distance to refuse are modelled as broken
linear models with transitions at 8m and 22m, and 50m, respectively. This
was informed by the relationship described by Generalized Additive Modelling

(Supplementary file 1)

16


https://doi.org/10.1101/2021.09.21.21263884
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.21.21263884; this version posted September 22, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

Table 2: Univariable mixed effects logistic regression analysis of human risk factors for leptospiral infection

Variable

OR (95%CI)*

aOR (95%CI)"

Demographic and social status
Age (per year)?

0-30 years old

>30 years old
Male gender

Daily per capita household income (US$/day)

Valley
1
2
3
Adult illiteracy
Education (per year of education)?
0-5 years
>5 years

1.08
1.02
2.22
1.01

1.03, 1.13
0.96, 1.09
1.31, 3.85
0.89, 1.11

~ A~ =

)
)
)
)

REF
3.35 (1.33, 10.37)
2.39 (0.93, 7.38)
1.34 (0.61, 2.79)

1.05 (0.85, 1.32)
0.96 (0.73, 1.27)

1.09
1.02
2.78
0.92

1.04, 1.15
0.95, 1.08
1.56, 4.96
0.80, 1.05

o~~~ —

)
)
)
)

REF
3.52 (1.23, 10.05)
2.53 (0.88, 7.27)
0.66 (0.29, 1.49)

1.14 (0.91, 1.44)
0.96 (0.75, 1.26)

Household environment
Impervious land cover (per 10% increase)
Relative elevation (per 1m increase)?
0-20m
>20m
Elevation level
Low (0-6.7m)
Medium (6.7-15.6m)
High (>15.6m)
Open sewer within 10m
Unprotected from sewer
Live on hillside

0.87 (0.76, 0.99)

0.94 (0.89, 0.99)
1.12 (0.98, 1.29)

REF
0.72 (0.37, 1.39)
0.58 (0.27, 1.20)
1.60 (0.85, 3.17)
1.00 (0.55, 1.79)
0.99 (0.52, 1.86)

0.82 (0.71, 0.95)

0.93 (0.88, 0.99)
1.12 (0.97, 1.29)

REF
0.72 (0.36, 1.44)
0.51 (0.23, 1.11)
1.69 (0.85, 3.37)
1.1 (0.61, 2.03)
0.89 (0.46, 1.71)

Occupational exposures

Work in construction

Work as travelling salesperson

Work in refuse collection

Work involves contact with floodwater
Work involves contact with sewer water

1.36 (0.51, 3.21)
4.81 (1.12, 18.78)
2.95 (1.04, 7.89)
0.89 (0.04, 5.61)
3.61 (0.45, 20.38)

0.62 (0.23, 1.67)
2.97 (0.71, 12.40)
1.57 (0.56, 4.42)
0.52 (0.05, 4.96)
1.92 (0.29, 12.80)

Behavioural exposures

Contact with floodwater in last 6 months
Never /rarely
Sometimes
Frequently

Contact with sewer water in last 6 months
Never /rarely
Sometimes
Frequently

REF
0.61 (0.27, 1.25)
2.14 (0.91, 4.94)

REF
0.55 (0.19, 1.31)
1.42 (0.51, 3.50)

REF
0.66 (0.30, 1.47)
2.84 (1.18, 6.86)

REF
0.67 (0.25, 1.78)
1.63 (0.61, 4.41)

1 OR, Odds ratio; aOR, Adjusted odds ratio; CI, Confidence interval; REF, Reference level

2 The effect of age, education and relative elevation are modelled as broken linear models with
transitions at 30 years old, 5 years of education and an elevation of 20m. This was informed
by the relationship described by Generalized Additive Modelling (Supplementary file 1)

361 In the community cohort data, the univariable analysis identified several risk factors that increased a
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w2 resident’s risk of leptospiral infection (Table 2). Variables with statistically significant associations (at the
33 conventional 5% level) with infection risk were identified in two of the four domains: demographic and social
4 status and behavioural exposures. Within the demographic and social status domain, risk of infection increased
s with age and was found to be higher for male participants and those living in Valleys 2 and 3. In the behavioural
w6 exposures domain, participants who had had frequent contact with floodwater in the last six months were
ss7 - more likely to be infected. Two individuals were excluded from the multivariable analysis (n=1,399) because

s of missing data for the floodwater exposure survey question.

360 In the exploratory results from the multivariable model there was strong evidence of an interaction between
s rattiness and household elevation level on human infection risk (see Supplementary file 3 for all parameter
sn estimates for this model). At the high elevation level area, a unit increase in mean predicted rattiness at the
sz household location was estimated to increase the odds of infection by 6.92 (95%CI 1.88, 25.47). In contrast,
33 in the low and medium elevation areas there was no evidence of a relationship between rattiness and infection
s risk, as shown in Figure 4. Consequently, this interaction effect was also included in the rattiness-infection

a5 joint model.

Low (0 - 6.7m) Medium (6.7 - 15.6m) High (>15.6m)

0.0
X -254
9
c
9
k3]
HG_J
1S
» 504
ie]
e)
Q
(@]
(@)
—1

_75 -

-10.0 T ' . v ; . v . .
-1 0 1 -1 0 1 -1 0 1
Rattiness

Figure 4: Predicted relationship between rattiness and infection risk from the multivariable mixed effects logistic
regression demonstrating evidence of an interaction with elevation level (low, medium and high). Shown on the log-
odds scale with shaded areas corresponding to 95% confidence intervals.

376 The explanatory variables selected in the rat and human multivariable analyses were then entered into the
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a7 full rattiness-infection joint model with the functional forms included in Table 1. To test for residual spatial
s correlation in the human infection data after controlling for explanatory variables and rattiness, we fitted the
s joint model with an additional spatial Gaussian process in the human infection linear predictor. The estimated
s value for the scale of spatial correlation for this Gaussian process was less than 1m and indistinguishable from
s household-level variation. We consequently fitted the joint model specified in Equation (3) which assumes

2 that there is no residual spatial correlation in the human infection data.

w2 3.3  Joint rattiness-infection model

s Human infection risk factors, rattiness predictors and other model parameters estimated using the joint
;s rattiness-infection model are shown in Table 3. Infection risk was strongly associated with age, with an
s individual experiencing an increased odds of infection of 1.09 (95%CI 1.04, 1.19) for every year of life up until
s 30 years of age, and 1.02 (95%CI 0.92, 1.09) for each additional year thereafter. Male participants were more
18 likely to be infected than female participants (OR 2.69 95%CI 1.58, 5.89). Compared with individuals living
s in Valley 1, those living in Valley 2 had a higher estimated odds of infection (OR 2.91 95%CI 1.03, 20.82).
s Individuals living in the medium (OR 0.77 95%CI 0.31, 1.66) and high (OR 0.67 95%CI 0.11, 1.64) elevation
31 areas had a lower estimated odds of infection relative to those living in the low elevation area where the open

2 sewers are and flooding risk is higher, but these differences were not significant at the conventional 5% level.

303 Infection risk was positively associated with rattiness for households situated in all three elevation levels.
s« However, while the effect size (per unit increase in rattiness) was similar in the low (OR 1.14 95%CI 1.05, 1.53)
s and medium (OR 1.25 95%CI 1.08, 1.74) elevation areas, in the high elevation area the effect of increasing
w6 rattiness on infection risk was significantly stronger (OR 3.27 95%CI 1.68, 19.07). This interaction effect
s7  between rattiness and household elevation level on human infection risk was confirmed with a test for evidence

xs  against the null hypothesis that &ou = Emed = Enign (p = 0.026, x* = 7.33, df = 2).

399 Parameter estimates for the rattiness variables were very similar to the estimates from the exploratory
w0 linear regression (Table 1), with a slightly higher effect size for the distance to refuse piles and land cover
w1 variables. There was evidence of small-scale spatial correlation in rattiness (¢ = 9.23m 95%CI 3.21, 18.24m)
w2 corresponding to a spatial correlation range (the distance at which the correlation reduces to 5%) of ap-
w3 proximately 28m. The estimate for ¢ of about 0.67 (95%CI 0.29, 1.00) indicates that the majority of the

ws  unexplained variation in rattiness is spatially structured, with the remainder modelled as a nugget effect.
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Table 3: Parameter estimates for the full joint rattiness-infection model

Parameter

Estimate (95%CI)

Human infection risk factors
Age (per year)
0-30 years old
>30 years old
Male gender
Daily per capita household income (US$/day)
Valley
1
2
3
Elevation level
Low (0-6.7m)
Medium (6.7-15.6m)
High (>15.6m)
Work as travelling salesperson
Contact with floodwater in last 6 months
Never /rarely
Sometimes
Frequently
Rattiness (per unit rattiness)
glow
gmed
Ehigh

OR

2.91 (1.03, 20.82)
2.28 (0.86, 14.00)

REF
0.77 (0.31, 1.66)
0.67 (0.11, 1.64)
3.16 (0.38, 20.57)

REF
0.62 (0.18, 1.39)
2.47 (0.67, 7.41)

1.14 (1.05, 1.53)
1.25 (1.08, 1.74)
3.27 (1.68, 19.07)

a2 (variance of household-level random effect)

1.36 (0.23, 5.35)

Rattiness variables
Relative elevation (per 1m increase)?
0-8m
8-22m
>22m
Distance to large refuse piles (per 10m increase)
0-50m
>50m

Impervious land cover (per 10% increase)

3

0.05 (-0.01, 0.13)
-0.06 (-0.16, 0.02)
0.05 (-0.03, 0.14)

-0.10 (-0.21, 0.02)
0.03 (-0.11, 0.17)
-0.07 (-0.14, -0.01)

Rattiness parameters
Qtraps
Qplates
Qburrows
Qfaeces
Qtrails
Ttraps
Oplates
Oburrows
O faeces
Otrails

(4

¢

-2.94 (-3.27, -2.65)
-2.06 (-2.50, -1.74)
-1.41 (-1.67, -1.16)
-2.82 (-3.83, -2.32)
-2.22 (-2.96, -1.76)
0.72 (0.45, 0.97
2.37 (2.05, 2.68
1.28 (1.08, 1.45
2.36 (1.80, 3.34
2.43 (1.85, 3.12
0.67 (0.29, 1.00
9.23 (3.21, 18.24)

)
)
)
)
)
)
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o 3.4 Spatial prediction

ws There was heterogeneous spatial variation in predicted rattiness. The numerous small regions of high rattiness
w7 in Figure 5A are indicative of the small-scale spatial correlation in the data. The low elevation areas in the
ws central length of each valley (relative elevation is shown in Figure 5E with the contours marking the low,
w0 medium and high elevation areas) had high mean predicted rattiness. High rattiness was also predicted in
a0 several high elevation areas, for example the northern tip of Valley 3 and several small hotspots along the

a1 three valley’s high elevation sides.

a2 To illustrate the spatial variation in infection risk within the study area, prediction maps are shown in
a3 Figure 5B for a 30-year-old male participant with a household per capita income of USD$1/day who never or
aa rarely had contact with floodwater in the previous six months and did not work as a travelling salesperson.
a5 Infection risk was low across most of Valley 1 (<2.5%), with marginally higher average values found in the
a6 central low elevation area (2.5-5%). Risk was consistently higher across most of Valleys 2 and 3 (7.5-15%), with
a7 the effect of elevation on risk clearly visible. In areas with higher and more spatially heterogeneous predicted
ais  infection risk, for example in the central region of Valley 2, this was driven by high levels of predicted rattiness.
a0 The stronger estimated effect of rattiness on infection risk in higher elevation areas was particularly visible in
w20 Valleys 2 and 3, as seen in the three hotspots with risk reaching 20% and the moderate risk hotspots along
1 the sides of both valleys. Prediction intervals were relatively narrow across most of the study area (Figures 5C

22 and 5D) with greater uncertainty in the high risk areas.
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Figure 5: Joint rattiness-infection model predictions. A) Mean predicted rattiness; B) Mean predicted leptospiral
infection risk for 30-year-old male participants with a household per capita income of USD$1/day who never/rarely
have contact with floodwater and do not work as a travelling salesperson; C) lower 95% prediction interval for predicted
infection risk; D) upper 95% prediction interval for predicted infection risk; E) Elevation (metres) relative to the bottom
of valley (low, medium and high levels are shown with contours)

« 4 Discussion

24 We developed and applied a novel framework for joint spatial modelling of disease reservoir abundance and
w5 human infection risk to a community-based cohort study and fine-scale rat ecology study. We found that

w6 higher levels of rattiness, our proxy for rat abundance, at the household location were associated with a higher
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w27 risk of leptospiral infection for residents across the entire study area. Importantly, we found that a unit
w8 increase in rattiness in high elevation areas was associated with an almost three times higher odds ratio for
w9 infection than in low and medium elevation areas. To our knowledge this is the first study to jointly model
a0 rodent abundance and human infection data for a rodent-borne zoonosis. The findings provide new insights
a1 into how the dominant mechanisms of Leptospira transmission within complex urban settings may vary over

.2 small distances, as a result of interactions between rats, the environment, geography, and local epidemiology.

233 The finding that rattiness was associated with infection risk indicates that the spatial distribution of rat
s populations was an important driver of transmission close to the household across the entire study area. This is
.5 consistent with a recent study investigating the predictive power of household rat infestation scores for human
s infection [30]. There was no residual spatial correlation in the infection data after accounting for rattiness
a7 in our analysis, possibly suggesting that previously unexplained spatial heterogeneity in risk could be driven
s by variation in rattiness [12]. Our model also predicted high average rattiness across the low elevation areas
s0  where leptospiral transmission is high [10, 12]. This supports the hypothesis that abundant rat populations
w0 are responsible for high levels of observed environmental contamination across these lower areas [21, 60], and

w  consequently increased infection risk.

a2 The identified interaction between elevation and rattiness on infection risk suggests that relatively small
a3 changes in environment and topography can modify transmission pathways within an urban community. The
as  weaker effect of rattiness on infection risk at low and medium elevation areas relative to high elevation areas
s may be explained by differences in their hydrological profiles. While high rat abundance in low and medium
us areas results in high leptospiral contamination, these areas are prone to high levels of water runoff and flooding.
a7 This disperses the pathogen across low elevation areas. The ability of leptospires to persist in the environment
us  for weeks or months means that this process can significantly increase environmental risk in low elevation areas
uo  for long periods. This process disconnects shedding and infection events in space and time [1] and obscures

w0 the relationship between infection risk and rattiness in low and medium elevation households.

251 In contrast, high elevation areas have lower levels of water runoff and flooding due to improved drainage
52 and sewage systems, and a smaller upstream catchment area for rainfall. Leptospires are consequently less
»s3  likely to be washed away from the location at which they were shed, and environmental risk remains more
sa  localised and strongly associated with the spatial distribution of rats. This hypothesised role of hydrology
s in the aggregation and dispersal of leptospires [1] is supported by a recent study in low elevation areas of
»ss  Pau da Lima which found that soil contamination was not associated with local rat activity [20]. However,

»7 our finding that rattiness was associated with infection in low and medium elevation areas suggests that the
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s spatial distribution of environmental risk in these areas is not entirely determined by water dispersal.

459 Interestingly, a previous study of surface waters in Pau da Lima found that the probability of a sample
wo being positive for Leptospira was highest in low elevation areas and lowest in medium elevation areas, with
w1 no significant difference between low and high elevation areas [21]. This is consistent with our findings and
w2 suggests that there may be a ‘washing out’ of locally deposited leptospires in medium elevation areas but not

w3 in high elevation areas.

264 This has several implications for disease control strategies which aim to reduce environmental risk. Improv-
w5 ing drainage systems at all elevation levels can reduce the dispersal of leptospires from high to low elevation
ws areas. Closure of sewer systems, which generally run through low elevation areas, can protect local residents
w7 from exposure and reduce the introduction of additional contamination from upstream sewer water. Paving
w8 over soil surfaces can reduce the surface area over which leptospires can persist [6], reducing environmental

w0 risk further.

470 A reduction in the dispersal and accumulation of bacteria will result in more localised environmental risk,
a1 as was observed in the high elevation areas in this study. Higher risk will then be found in areas with a
a2 high abundance of infected rats. This may also reduce environmental exposure for rats, thereby lowering
ws  shedding rates and acting as a feedback loop into the Leptospira transmission cycle [61]. Given the limited
a and short-term impact of chemical rodenticide campaigns on Norway rat abundance in these settings [62],
a5 longer-term environment management strategies targeted at rattiness hotspots may also be needed to reduce
as  the availability of key predictors of rattiness, such as large refuse piles and vegetation and soil land cover.
a7 Funding and political will for large-scale infrastructural interventions is often limited in marginalised urban

as  settings and small-scale community-based interventions which target these mechanisms should be evaluated.

479 Transmission is dynamic in space and time and the alignment of conditions which enable spillover infection
w0 can vary over time [1]. Our study was designed to explore the spatial variation in rattiness and infection
s risk in Pau da Lima during the driest period of the year, and it may not be representative of transmission
.2 mechanisms during the rainy season. There is some evidence, however, that this may not necessarily be the
w3 case, with two recent studies in Pau da Lima reporting low seasonal variation in both rat abundance [63] and
s spatial infection risk patterns [12]. Nonetheless, future studies across different time periods are needed to

w5 establish the role of rat abundance in Leptospira transmission.

286 In this study we used household location to link rattiness to an individual, under the assumption that the
w7 majority of their exposure occurs close to home. Given the spatially heterogeneous distribution of rattiness

s and environmental contamination [21] within the community, future epidemiological studies of leptospirosis
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w0 and zoonotic spillover could benefit from trying to pinpoint key sources of infection away from the household
w0 using GPS mobility data, as has been attempted in a small study previously [64]. The rattiness-infection
w1 framework could then be extended to model cumulative environmental exposure to the rattiness surface by

w2 integrating along a person’s trajectory as they move around the community.

403 Our framework did not account for disease dynamics within rat populations. Given that 80% of rats are
w0¢  estimated to be actively shedding Leptospira in Pau da Lima [27, 28] and prevalence in rats is generally high in
w5 urban areas globally [22-26], the use of rattiness as a proxy for rat shedding appears reasonable and it may be
w5 a useful proxy in other epidemiological studies. However, in other zoonotic spillover systems where pathogen
w7 release does not occur at a high and homogeneous rate across the reservoir host population this may not be

w8 the case and accounting for spatially heterogeneous or time-varying [65] disease dynamics will be important.

499 The rattiness-infection modelling framework is a flexible tool for exploring the spatial association between
s0 reservoir abundance, the environment and human health outcomes. It provides a statistically principled
s method for joint spatial modelling of infection risk and multiple indices of reservoir abundance, pooling data
s2  between indices and directly accounting for uncertainty in their measurement in all parameter estimates and
s3  predictions. The framework’s geostatistical structure includes spatially continuous predictors for abundance
se and accounts for spatial correlation, enabling mapping of both infection risk and rattiness. This can be
sos useful for identifying high-risk areas and targeting control. One inherent limitation is its dependence on the
sos  availability of spatially continuous environmental variables and abundance data, both of which are prone to
s high measurement error. This can result in high uncertainty in the model parameter estimates and predictions,
ss  as demonstrated by the wider confidence intervals for risk factors in the joint model compared to the standard
so0  mixed-effects logistic regression analysis. An additional benefit of the geostatistical structure is that abundance
s measurements do not have to be taken at the household location, providing some flexibility in the design of

su  eco-epidemiological studies and indices used.

512 In conclusion, we have developed a framework that may have broad applications in delineating com-
si3 plex animal-environment-human interactions during zoonotic spillover and identifying opportunities for public
s health intervention. We demonstrate its potential by applying it to Leptospira in an urban setting, finding
si5  evidence that the extent to which local rat shedding drives spillover transmission is moderated by elevation,
s most likely a proxy for water runoff. Future work examining these transmission mechanisms in similar settings

si7 - and across different time points will be key to establishing how generalisable these results are.
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Figure S1: Generalized Additive Model (GAM) partial dependence plots for the unstructured random variation in
rattiness, U;, plotted against the continuous explanatory variables considered in the analysis (shaded areas correspond to
95% confidence intervals): A) elevation relative to the bottom of valley, B) distance to large refuse piles, C) impervious
land cover in 20m radius buffer around sampling point. U; are estimated using a non-spatial model which excludes all
covariates. Panel D) is a variogram computed from U; using a non-spatial model that includes all of the covariates;
the dashed lines correspond to 95% confidence intervals under the assumption of spatial independence.
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Figure S2: Generalized Additive Model (GAM) partial dependence plots for human infection risk plotted against the
continuous explanatory variables considered in this analysis (shaded areas correspond to 95% confidence intervals): A)
age, B) household per capita income (in USD), C) years of education, D) household elevation relative to the bottom
of valley, E) impervious land cover in 20m radius buffer around household.
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