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ABSTRACT  

INTRODUCTION: Embedding single-omics disease associations into the wider context of multi-level 

molecular changes in Alzheimer’s disease (AD) remains one central challenge in AD research.  

METHODS: Results from numerous AD-specific omics studies from AMP-AD, NIAGADS, and other 

initiatives were integrated into a comprehensive network resource and complemented with 

molecular associations from large-scale population-based studies to provide a global view on AD.  

RESULTS: We present the AD Atlas, an online resource (www.adatlas.org) integrating over 20 large 

studies providing disease-relevant information on 20,353 protein-coding genes, 8,615 proteins, 997 

metabolites and 31 AD-related phenotypes. Multiple showcases demonstrate the utility of this 

resource for contextualization of AD research results and subsequent downstream analyses, such as 

drug repositioning approaches.  

DISCUSSION: By providing a global view on multi-omics results through a user-friendly interface, the 

AD Atlas enables the formulation of molecular hypotheses and retrieval of clinically relevant insights 

that can be validated in follow-up analyses or experiments. 
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1 Introduction 

Late-onset Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, for which there is 

currently no cure or preventive therapy and only modestly effective symptomatic treatments [1]. 

The failures of hundreds of trials of disease-modifying therapeutics, including several phase III trials 

targeting amyloid-beta (Aβ), and availability of only one FDA-approved anti-amyloid compound [2] 

highlight our incomplete understanding of both the cause of AD and the mechanisms of cognitive 

failure [3]. AD is a multifactorial disease with a long prodromal period as well as substantial 

heterogeneity in both risk profiles and clinical/pathological presentation. It is linked to all molecular 

layers from genetic and epigenetic variation through transcriptional changes to altered abundances 

of proteins and metabolites, which interact in complex networks [4]. Hence, AD is best viewed as a 

complex alteration in many molecular readouts, which can be seen as a shift of a multi-molecular 

network from a “normal” to a perturbed state. 

Despite significant advances in the study of AD and related dementias, there are many challenges 

remaining as recently highlighted in the 2021 National Institutes of Health (NIH) AD research 

summit. One of the most prominent missing pieces are robust and reliable biomarkers for both 

diagnosis and therapeutic intervention that are embedded in the context of multi-level molecular 

changes observed in AD and are evaluated in an open, rigorous and reproducible manner. NIH’s 

Accelerating Medicines Partnership in AD (AMP-AD; https://www.nia.nih.gov/research/amp-ad; [5]) 

program is working towards this goal through generation and examination of diverse data including 

multi-omics profiling of different modalities and across relevant tissues, where all data generated 

through the AMP-AD initiative is rapidly shared through the AD Knowledge Portal 

(https://adknowledgeportal.org; [6]). 

The AD Knowledge Portal’s Agora Platform (https://agora.ampadportal.org) provides interactive 

visualizations designed to support the evaluation of data from RNA-seq, proteomics, and 

metabolomics studies on the single target level. However, a user-friendly analytical tool that 
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incorporates single biological entities into their multi-omics context has so far been missing. To this 

end, networks offer an intuitive framework to integrate and store densely connected biomedical 

data, making them an attractive data structure for multi-omics integration efforts [7]. 

Heterogeneous networks, which consist of multiple types of nodes (e.g. metabolites, genes and 

phenotypes) and edges (e.g. partial correlation of metabolites, gene co-expression), have been 

particularly useful to describe the complex interplay within and between biological domains [8]. 

Such network-based multi-omics approaches have the potential to ultimately construct 

comprehensive and largely bias-free models of AD that can guide the identification and prioritization 

of potential therapeutic targets and drug repositioning candidates [9,10] as well as inform novel 

hypotheses that can be tested in follow-up experiments.  

We here present the AD Atlas, a network-based data integration resource for investigating AD, its 

biomarkers, and associated (endo-)phenotypes in a multi-omics context. Using an extended QTL-

based integration strategy combined with a composite network approach [11], the AD Atlas 

integrates data from more than 20 studies. Based on data from knowledge bases and healthy 

cohorts, we constructed a generalized, disease-independent high-quality framework of intra- (e.g. 

gene-gene) and inter-omics (e.g. metabolite-gene) relationships. Using large-scale association data 

of AD – including data from AMP-AD, NIAGADS, and other large studies and consortium efforts – this 

framework was then transformed into an integrated multi-omics knowledgebase for markers of AD. 

The resulting comprehensive catalogue of multi-omics relationships, stored using the graph-based 

database Neo4j, provides disease-relevant information on over 20,000 protein-coding genes, 8,000 

proteins and nearly 1,000 metabolites as well as associated genetic variants. Lastly, we have 

developed a publicly available network- and web-based user interface featuring several data analysis 

tools (www.adatlas.org) to enable access to these complex data independent of in-house 

bioinformatics capacities. The AD Atlas allows users to construct, expand and explore context- and 

tissue-specific molecular subnetworks surrounding either individual or multiple entities of interest. 
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We demonstrate the utility of this resource to generate disease-relevant insights using a variety of 

showcases ranging from hypothesis-driven to hypothesis-generating analyses. 

2 Methods 

Core methods used to build the AD Atlas and user interface are briefly described in the following. For 

full details, including a comprehensive list of integrated data sets, please refer to the Supplementary 

Material.  

2.1 Data integration and storage 

The AD Atlas was built using step-wise data integration in which different omics datasets, such as 

transcriptomics, proteomics and metabolomics, are analysed separately or in specific combinations 

before integration (Figure 1A). In contrast to synchronous integration, where all data is used in one 

analysis step, step-wise approaches allow the integration of data across many different sources and 

do not require the data to come from the same set of individuals/samples. We used an extended 

QTL-based integration strategy paired with a composite network approach, described in detail in our 

recent review [11]. Briefly, relationships between biological entities (e.g. genetic variants, genes, 

metabolites) are either taken from public knowledge databases or inferred through statistical 

analysis (e.g. genome-wide association studies (GWAS) or correlation-based analysis). These 

individual networks are subsequently merged into a large heterogeneous network by using the 

overlap of common entities, and links between metabolites and genes are established via 

overlapping quantitative trait loci (QTLs). The resulting heterogeneous network consist of multiple 

node types (biological entities) that are connected by different types of edges (inferred associations 

between entities). To enable efficient data storage and analysis we utilized the native graph 

database management system Neo4j (https://neo4j.com/). 
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2.2 Data collection and preprocessing 

Biological relationships between omics layers were downloaded from public databases, such as 

gene-transcript-protein mappings from Ensembl [12] and mappings between single nucleotide 

polymorphisms (SNPs) and genes from SNiPA [13]. SNPs, genes, transcripts and proteins were stored 

in the database as individual nodes and relationships were added as edges between them. 

Furthermore, metabolites (and their corresponding meta-information) measured by metabolomics 

platforms were also collected and stored as nodes in the database. Large-scale quantitative data 

from population-based studies were then used to establish data-driven relationships within (e.g. 

tissue-specific gene co-expression) and across omics (e.g. expression QTLs, protein QTLs, or 

metabolite QTLs) layers. To identify entities within this network that are relevant to AD, we used 

large-scale association data for AD yielded in case-control and AD biomarker GWASs, metabolome-

wide association studies (MWASs), data on differentially expressed genes and differentially 

abundant proteins, and brain region-specific gene and protein co-expression. A summary of data 

types and their respective sources is listed in Table 1. Summary statistics of these analyses were 

either downloaded from publicly available data repositories, supplementary data or calculated in an 

additional analysis step (see the Supplementary Material for more details). Each biological entity 

(e.g. gene, protein, metabolite) was mapped to a unique identifier, either using the mapping 

provided in the data source or through manual curation. The unique identifier for SNPs is defined as 

their rsID, while genes, transcripts and proteins are identified by their respective Ensembl IDs and 

measured metabolites are identified by their platform-specific ID. Additional identifiers, including 

biochemical metabolite names, gene symbols and UniProt identifiers, have also been annotated but 

are not required to be unique. AD-specific (endo-)phenotypes from different studies (GWAS, MWAS) 

were harmonized through manual curation and are listed in Supplementary Table 3.   
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2.3 Abstraction layer - node mapping and edge filtering 

SNPs, transcripts and encoded proteins were projected onto genes using information on genomic 

location, regulatory elements and quantitative trait loci as provided by Ensembl [12], GTEx [14] and 

SNiPA [13]. Metabolites that were measured on more than one platform were consolidated using 

manual mappings between platform specific IDs and information on identified unknown 

metabolites. Statistical associations between biological entities (edges) were summarized and pre-

filtered using study specific significance thresholds, with the exception of genetic associations with 

AD traits (traitQTLs) and metabolites (mQTLs), where either a genome-wide (p-value ≤ 5x10-8) or 

gene-wise cutoff can be applied through our web interface. The gene-wise cutoff is defined as p-

value ≤ 0.05/#SNPsgeneA, where #SNPsgeneA is the number of SNPs that have been annotated to geneA. 

A comprehensive list of study-specific significance thresholds and a more detailed description of the 

summary and abstraction process is provided in the Supplementary Material and Supplementary 

Table 2. 

 

2.4 Implementation 

The integrated multi-omics data is stored as a heterogeneous graph using the graph database 

management system Neo4j (community v4.2.1). To enable easy access to the data, we implemented 

a network- and web-based user interface to the AD Atlas. This frontend was built as a ShinyApp 

using R v3.6.2 and is deployed using ShinyProxy (v2.3.1_amd64.deb). Communication between 

Neo4j and R is established through the official Neo4j python driver neo4j 

(https://github.com/neo4j/neo4j-python-driver) and the R-to-python interface package reticulate 

(v1.18). Interactive networks are visualized using VisNetwork (v2.0.9). Enrichment analysis of the 

generated subnetworks can be performed using the R package enrichR (v3.0) [15], which enables the 

analysis of a variety of different gene sets, including drug perturbation signatures and biochemical 

pathways, via the Enrichr webservice (https://maayanlab.cloud/Enrichr/) or the R package gprofiler2 

(v0.2.0) [16], which provides an interface to the gene list functional profiling toolset, g:Profiler 
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(https://biit.cs.ut.ee/gprofiler/gost). Classical GO term enrichment analysis is provided via the R 

package topGO (v2.38.1) [17]. Metabolic pathway enrichment analysis for the metabolites in the 

constructed subnetworks is performed using platform-specific annotations of metabolites into 

classes and super-/sub-pathways where this information is available. Contingency tables are 

calculated and then tested using Fisher’s exact test (function fisher.test with alternative = 'greater' 

from R package stats). Multiple testing correction is performed using p.adjust (method = 'fdr'). For a 

full list of tools and packages that are used in this project please refer to the Supplementary 

Material. The user interface is reachable via www.adatlas.org.   

3 Results 

3.1 Overview of the Alzheimer’s disease (AD) Atlas 

The AD Atlas is a comprehensive, network-based catalogue of results from large omics studies that is 

accessible via an interactive, network-based user interface (www.adatlas.org). It was built by 

inferring relationships between biological entities (e.g. metabolites, SNPs, genes) from large-scale 

studies, resulting in a highly complex collection of data stored in network format (Figure 1A). To 

increase data accessibility and downstream interpretability, the data was summarized and extracted 

into a simplified data view (Section 2.3). This summarized network representation is accessible 

through the user interface and consists of four node types; (I) metabolites, mapped across available 

platforms where possible, (II) genes, including information on associated transcripts, SNPs and 

proteins (Supplementary Material), (III) traits, which describe AD (endo-)phenotypes and 

biomarkers, and (IV) meta-traits, which are collections of traits loosely following the A-T-(N)-(C) 

classification [18]. Various different relationship types interconnect these entities (Supplementary 

Figure 1B and Supplementary Table 1). Integrating over 20 different studies and analyses, the AD 

Atlas includes information on 20,353 protein-coding genes, 8,615 proteins, 997 metabolites and 31 

unique AD-related traits. Traits include cerebrospinal fluid (CSF) and imaging biomarkers, partially 

with different covariate settings (adjustment for APOE genotype), stratifications or stagings for 
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neuropathologies, amounting to 59 traits in total (Supplementary Table 3). Biological entities and 

traits are linked by over 1.5 million relationships, representing statistical associations inferred from 

large-scale quantitative data from population-based cohorts and AD case-control studies. A more 

detailed summary of the data compiled in the AD Atlas can be seen in Table 1. 

 

Table 1. Data compiled in the AD Atlas (simplified data view). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To enable access to the AD Atlas, we implemented a network- and web-based user interface (Figure 

2) which allows users to dynamically generate, explore and analyze, context-specific molecular 

subnetworks surrounding entities of interest i.e. genes, metabolites or AD-related  

(endo-)phenotypes (Figure 1B). These networks provide a rich multi-omics context, integrating 

multiple layers of information, including eQTLs, pQTLs, mQTLs, gene co-expression and protein co-

  Nentities References 

Nodes    

 AD-related meta-phenotypes 10 - 

 AD-related phenotypes  59 (31 unique) - 

 Genes (protein-coding) 20,353  

         with differential gene expression data 14,731 [19] 

         with differential protein abundance data 3,249 [20] 

 Metabolites  997 - 

Relationships    

 Genetic associations with AD phenotypes - traitQTLs  10,742 this study, [21–25] 

 Genetic associations with metabolic traits - mQTLs 121,528 this study, [26–30] 

 Metabolic associations with AD phenotypes - mWAS 66 [31–33] 

 Gene co-expression data  465,032 [19] 

         Number of brain regions 7 - 

 Genetic coregulation - eQTL  967,534 [14,34] 

         Number of tissues 49 - 

 Protein co-abundance data - partial correlation-based 13,171 [20,35] 

 Metabolic pathways - partial correlation-based 1,252  this study, [36] 
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abundance, metabolic network reconstructions (based on partial correlations), as well as genetic and 

differential abundance associations with AD and associated biomarker profiles (schematically seen in 

Figure 2D). They are built using user specified parameters, allowing users to tailor the network to 

their research question at hand i.e., focusing on a specific brain region or pathway.   

 

Figure 1B showcases the steps of a typical analysis and highlights the core-functionalities of the AD 

Atlas website. Users first construct a network of interest in a trait-, gene- or metabolite-centric 

manner via the network settings panel in the network browser (Figure 2B + C). The different entry 

points are defined as follows: 

 

i. Trait- or meta-trait-centric subnetworks 

User specifies trait or collection of traits as input. Genes and metabolites directly associated 

with the traits of interest are extracted. Furthermore, these entities are annotated with 

associated genes (genetic association), metabolites (genetic association) and traits (genetic / 

metabolic association). All relationships between these entities are included in the resulting 

network. A meta-trait is a collection of traits (see Supplementary Table 3). 

ii. Gene-centric subnetworks  

User provides gene or set of genes as input. Metabolites and traits that are directly 

associated with the genes of interest (provided as gene symbol or Ensembl ID) are extracted. 

Furthermore, all relationships between these entities are included in the resulting network. 

iii. Metabolite-centric subnetworks 

User provides metabolite or set of metabolites as input. Traits and genes that are associated 

with the metabolite of interest (provided as biochemical name) are extracted. Furthermore, 

all relationships between these entities are included in the resulting network. 
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Figure 1. Overview. The AD Atlas is a multi-omics resource that enables the integration and analysis of heterogeneous omics 
datasets in the context of Alzheimer’s disease. A. Step-wise multi-omics integration approach underlying the AD Atlas. Using 
statistical analysis, such as association analysis and partial correlation, omics data collected in large population-based studies 
is used to infer biological relationships between (inter-omics) and within (intra-omics) omics layers. Links to AD  
(endo-)phenotypes from large-scale case/control or biomarker studies enable multi-omics exploration in the context of AD.  
B. Users can generate context-specific molecular subnetworks surrounding entities (traits, genes, metabolites) of interest and 
analyze these networks using tools, such as enrichment analysis, via our interactive user interface (www.adatlas.org; Figure 
2). DEG: differentially expressed gene; DEP: differentially expressed protein. 
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Additionally, these molecular subnetworks can be contextualized by applying edge filters (e.g. by 

tissue or brain region) or adjusting the significance threshold for genetic associations (Section 2.3). 

To gain further insights into the functional neighborhood of metabolites or genes, users can expand 

input entities before annotation to include the 1-step or 2-step neighbors using co-regulation 

(eQTL), transcript co-expression or protein co-abundance data for genes, or partial correlation data 

for metabolites. Once built, the networks can be visually inspected using the network browser 

(Figure 2C) and can be subjected to a number of downstream analyses within the AD Atlas. 

Information on differentially expressed genes (DEG) and proteins (DEP) can be overlaid onto the 

networks to investigate the extent and direction of dysregulation in AD using the visualization 

options (Figure 2B). Here, users can choose the underlying association model (sex-specific or pooled 

analysis) and brain region. Furthermore, the entities in the generated network can be functionally 

characterized using gene set and pathway enrichment analysis. 

 

In the following two sections, we will showcase how the AD Atlas can be utilized to generate multi-

omics subnetworks and provide AD relevant insights for different types of research questions. We 

focus on two distinct applications; hypothesis-driven drug repositioning, i.e. using established AD 

pathways to find promising drug candidates, and exploratory analysis, i.e. generating testable 

hypothesis regarding underlying molecular mechanisms in AD. For this, we built context-specific 

networks using either genes, clinical diagnosis, or metabolites as input and then assessed the 

resulting networks with regard to network structure, involvement in AD pathology (association with 

AD-related phenotypes or evidence of dysregulation at the metabolite, gene or protein level) and 

gene set enrichment analysis. The subnetworks were constructed by filtering co-regulation edges for 

the tissue “Brain cortex” and applying a genome-wide significance cutoff, if not stated otherwise. To 

overlay differential analysis data, we used the setting “AD Diagnosis (males and females)” and tissue 

“TCX” (temporal cortex) for DEGs and “Control vs. AD” for DEPs. All showcases can be interactively 

explored under www.adatlas.org/?showcases. 
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Figure 2. User interface. Users can generate context-specific molecular subnetworks and apply analytical tools via our 
interactive user interface (www.adatlas.org). A. AD Atlas landing page.  B. In the network browser, users can use the right 
panel to specify parameters to generate context-specific molecular subnetworks (left). By clicking the paintbrush icon at 
the top of the panel, additional information, such as differential gene expression in disease, can be overlayed using the 
visualization options (right). C. Network browser showcasing the multi-omics subnetwork surrounding the input genes 
APOE, APOC1, C4A and CLU. D. Schematic representation of the molecular subnetwork seen in C, showcasing the 
different node and edge types. For simplicity, not all nodes and edges are included. GWAS: genome-wide association 
study; mGWAS: GWAS with metabolic traits; MWAS: metabolome-wide association study; protein abundance: partial 
correlation between proteins; eQTL: expression quantitative trait locus; DEG: differentially expressed gene; DEP: 
differentially expressed protein. 
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3.2 Hypothesis-driven applications for drug repositioning approaches   

Little progress has been made in regards to effective and disease modifying therapies for 

Alzheimer’s disease [37]. Therefore, to accelerate the path to effective intervention strategies, drug 

repositioning – the application of available and approved compounds in a novel disease context – 

has gained increasing attention as a promising alternative to de novo drug development [38]. In the 

following we will highlight the potential of the AD Atlas to advance computational repositioning 

efforts in AD by integrative analysis of comprehensive multi-omics data. All showcases can be 

interactively explored at adatlas.org/?showcases.  

 

3.2.1 Molecular subnetwork of lipid metabolism and transport identifies known repositioning 

candidates 

In recent years, multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) have been 

identified through GWAS [10]. The earliest was the discovery of the genetic risk exerted by the ε4 

allele of apolipoprotein E (APOE) [39], which was followed by the identification of several risk 

variants in clusterin (CLU, also referred to as APOJ) [40,41]. Both proteins are involved in lipid 

metabolism and transport and we hypothesized that these mechanisms could potentially be 

targeted by available repositioning candidates. We therefore queried the AD Atlas using the two 

genes as input and expanded to the 1-step functional neighborhood defined by gene co-expression, 

co-regulation data and protein co-abundance data (Supplementary Material). The resulting network 

provides the molecular context around these AD-associated genes by integrating multiple layers of 

multi-omics information (Figure 3A). As expected, APOE displays multiple direct associations with a 

large number of AD-related phenotypes ranging from disease status (control vs. AD) to CSF and 

imaging biomarkers. CLU is strongly associated with disease status, AD-by-proxy [24] and age of 

disease onset. The subnetwork contains 218 protein-coding genes in total, which are associated with 

81 metabolites. 48 genes harbor SNPs showing a significant association to AD  

(endo-)phenotypes. Next, we overlaid differential gene expression and protein abundance data from 
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large-scale case-control studies of results from AMP-AD [19,20]. This was done using the 

visualization options of the AD Atlas network browser (accessible in the right panel by clicking the 

paintbrush icon; Figure 2B) to further characterize the direction of dysregulation in disease (Figure 

3A). This revealed an up-regulation on the transcript levels of both APOE and CLU as well as their 

functional neighborhood in individuals with AD compared to healthy individuals (133/218 up-

regulated (red), 14/218 down-regulated (blue), 60/218 not differentially expressed, 11/218 no data). 

Protein abundance data showed very similar patterns (33/218 more abundant in AD patients (red 

border), 6/218 less abundant (blue border), 44/218 no difference in abundance, 135/218 no data).  

 

In order to utilize the potential of such networks towards identification of drug repositioning 

candidates, we subsequently performed gene set enrichment analysis on all the genes in this 

subnetwork using molecular drug signatures from the EnrichR database [42] (left hand panel under 

“Enrichment analysis – Gene set enrichment – enrichR”). Although this is a rather simplistic 

approach that ignores effect direction or strength, we were able to identify multiple candidate drugs 

that have been previously proposed and tested in clinical trials among the top hits, i.e. their 

associated lists of genes affected in drug screens overlapped most significantly with the APOE/CLU 

context network. The obtained list of drugs includes Valproate, a drug with antiepileptic properties, 

the anti-diabetic drug Rosiglitazone, and Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) 

(upper table in Figure 3B). Unfortunately, clinical trials have failed to show a significant effect on 

cognition or function for both Rosiglitazone [43,44] and Valproate [45], with the latter also 

displaying severe toxic effects. SSRIs, especially fluoxetine, showed promising effects on AD 

pathology in animal models and improved cognition in meta-analysis of short-term human trials of 

dementia patients with depression [46,47]. However, further large-scale trials are needed to verify if 

fluoxetine offers benefits in AD patients without depression. 
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Figure 3. APOE/CLU subnetwork identifies repositioning candidates. A. Multi-omics subnetwork surrounding APOE and CLU 
as contained in the AD Atlas. B. Gene set enrichment analysis for drug-associated gene expression changes using EnrichR 
reveals previously proposed candidates Valproate, Fluoxetine and Rosiglitazone among the drugs most significantly affecting 
the subnetwork (upper table). When focusing on signatures which are opposed to the overall change in AD, we identify 
Levetiracetam and Candesartan as most promising (lower table).  
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With the exception of Rosiglitazone, these drugs up-regulate genes in the network. However, the 

subnetwork surrounding APOE and CLU displays an up-regulation signature in disease and we 

hypothesize that drugs that perturb these genes in an opposing manner may be the most promising 

candidates to exert AD-relevant therapeutic effects [38]. This may also provide a partial explanation 

for severe side-effects; if the drug and disease perturb gene expression in the same direction this 

could lead to aggravated symptoms or accelerated disease progression, given that the observed 

transcriptional changes are not a compensatory mechanism. To test this hypothesis, we repeated 

the enrichment analysis using a library comprised of only down-regulation signatures (EnrichR, Drug 

Perturbations from GEO down). The results of this analysis can be seen in the lower table of  

Figure 3B.  

 

Interestingly, the top hits include Levetiracetam, a medication that is used to treat epilepsy and is 

currently being studied to determine whether or not it is able to improve synaptic function and 

reduce amyloid-induced neuronal hyperactivity as a disease-modifying therapy [48].  With 

Levetiracetam being investigated in multiple phase II trials (NCT02002819, NCT03489044, 

NCT03875638) and a low-dose formulation (AGB101) currently being tested in phase II 

(NCT03461861) and phase III trials (NCT03486938), Levetiracetam is one of the most represented 

agents among ongoing clinical trials (as of February, 2020) [49]. We further investigated the genes in 

this subnetwork surrounding APOE and CLU that are affected by Levetiracetam. To this end, we 

queried the AD Atlas using the genes listed in Figure 3B (via URL query parameters; Supplementary 

Figure 4A). This analysis revealed that of the 20 genes, 15 show a dysregulation at the mRNA level 

with 14 in opposing direction to the drug (up-regulated in AD) and only one showing down-

regulation.  

 

Another interesting candidate that was identified by this analysis is Candesartan, an angiotensin 

receptor blocker typically used for the treatment of hypertension. Of the 21 genes that are affected 
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by the drug in the subnetwork, more than half also display a perturbed transcriptional signature in 

AD (13 up-regulated and one down-regulated in the TCX of AD patients; Supplementary Figure 4B). 

Candesartan has recently been studied in a phase II trial (NCT02646982) to investigate its effect on 

individuals with mild cognitive impairment that are positive for AD biomarkers. Although, no results 

have been published for this trial, previous clinical trials suggest beneficial neurocognitive effects 

following Candesartan treatment in older individuals with hypertension and mild cognitive 

impairment [50,51]. Of note, investigation of the network structure in the AD Atlas revealed that 

genes down-regulated by Levetiracetam and Candesartan lie within distinct genetic loci and are 

connected at the mRNA and protein level (Supplementary Figure 4). Furthermore, both affect the 

AD-risk genes APOE and CLU, which were provided as input, as well as APP. 

 

In summary, we were able to show that the AD Atlas is able to identify plausible repositioning 

candidates using a simple enrichment approach and requiring minimal analysis steps. The top hits 

were enriched with candidates that are either being tested or have been tested in clinical trials. 

After additional analysis using the AD Atlas, we propose Levetiracetam and Candesartan as most 

promising candidates as their associated list of genes affected in drug screens overlaps significantly 

with the molecular context network surrounding APOE and CLU and they affect disease-perturbed 

genes in an opposing manner.  

 

3.2.2 Disease-associated molecular subnetwork provides global view on AD  

The previous analysis uses a user-defined set of genes as starting-point for the repurposing analysis, 

allowing an in-depth and focused view on specific aspects (lipid metabolism) of the disease. To move 

beyond that, the AD Atlas also provides a trait-specific entry-point which enables the generation of 

global, data-driven views on AD and its associated (endo-)phenotypes, enabling more 

comprehensive analyses. Here, entities (genes and metabolites) associated with a specific (set of) 

AD-related trait(s) identified in large-scale GWAS and MWAS, are embedded into their multi-omics 
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context that is annotated with metabolic and genetic associations as well as intra-omics links. Using 

this entry-point, we repeated the analysis steps outlined in the previous example. We selected the 

results of large-scale AD case-control studies from IGAP [23,25] and ADNI (trait “CN vs. AD”) as input 

to build a global molecular subnetwork of genetic risk for AD. The network can be seen in Figure 4A 

and consists of 380 genes and 91 metabolites. The network shows multiple tightly connected 

clusters of genes, which are indicative of the underlying genetic architecture (genetic loci are tightly 

connected through co-regulation edges). To investigate the degree and direction of perturbation at 

the mRNA and protein level, we used the AD Atlas visualization options to overlay results of 

differential gene and protein analysis. This revealed both up-regulation (70 transcript-level, 10 

protein-level) and down-regulation (52 transcript-level, 10 protein-level) of the AD-related 

subnetwork.  

 

Utilizing the previously described concept of gene set enrichment to identify repositioning 

candidates, we perform the analysis using the drug perturbations library from GEO via EnrichR. The 

only two drugs that display a significant overlap of genes with the trait-centric network after 

multiple testing correction are Letrozole and Rosiglitazone (upper table in Figure 4B). Unfortunately, 

both of these agents do not seem to be promising candidates. Letrozole is an aromatase inhibitor 

used to treat estrogen receptor–positive breast cancer in post-menopausal women and aromatase 

inhibitors have been associated with adverse effects including negative effects on cognition and 

potential long-term neural effects [52]. Furthermore, Rosiglitazone, as discussed previously, has 

failed to show significant effects on cognition in clinical trials [43,44]. Therefore, we focused the 

enrichment analysis again on drug induced signatures of down-regulated gene expression (gene set 

Drug Perturbations from GEO down from EnrichR).  
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Figure 4. Alzheimer’s disease case-control subnetwork identifies potential repositioning candidates. A. Multi-omics 
contextualization of large-scale AD case-control GWAS and MWAS studies. The network was built using the trait “CN vs. AD” 
as input for trait-centric subnetwork generation. B. Gene set enrichment analysis for drug-associated gene expression 
changes in drug perturbation gene sets from GEO via EnrichR reveals Letrozole and Rosiglitazone as the only drugs 
significantly affecting the subnetwork. By focusing on down-regulation signatures, we obtain more significant hits, among 
which Etanercept and Citalopram seem to be the most promising candidates. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.14.21263565doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263565
http://creativecommons.org/licenses/by-nc-nd/4.0/


This analysis yielded multiple significant hits (lower table in Figure 4B), including Citalopram, a 

selective serotonin reuptake inhibitor used in the treatment of depression. Using the AD Atlas, we 

further investigated whether the genes perturbed by this agent are also perturbed in AD and if its 

effects on transcript levels are in opposing direction. Citalopram affects a total of 16 genes in the 

trait-centric subnetwork and more than half are differentially expressed in AD (nine up- and one 

down-regulated). Furthermore, Escitalopram, the (S)-stereoisomer of Citalopram, is currently being 

studied as a treatment for agitation in AD patients in a phase III trial (NCT03108846) and has also 

entered a phase I trial as a cognitive enhancer (NCT03274817).  

 

Another interesting finding was Etanercept, a tumor necrosis factor α (TNFα) inhibitor that is used to 

treat autoimmune diseases (lower table in Figure 4B). Elevated levels of TNFα, an inflammatory 

cytokine, in the brain have been linked to AD and proposed as a potential therapeutic target [53]. 

Repeating the analysis steps outlined for Citalopram, we find that the Etanercept gene set has 14 

overlapping genes of which five show up-regulation in AD. It is interesting to note that the 

subnetwork also shows a significant overlap with genes that are up-regulated by Etarnecept, 

indicating that the drug may target both compensatory and disease mechanisms. Furthermore, 

there is some minor overlap between up- and down-perturbation gene sets which may point to a 

degree of variability within the response. Safety and tolerability of Etarnecept in AD has been 

established in a small randomized, placebo-controlled, double-blind phase II trial (NCT01068353) 

[54] but the drug has not been studied in a phase III trial, despite multiple large observational 

studies indicating a reduced risk of AD among patients treated with Etarnecept [55]. Further 

supporting evidence is provided by a second generation TNFα inhibitor, selective for the soluble 

form of TNFα, that has also shown promising results in preclinical studies [56,57] and was recently 

investigated in a Phase I trial (NCT03943264). Both Etarnecept and Citalopram seem to affect the 

immunoregulatory human leukocyte antigen (HLA) complex, which has been implicated in 

neurodegenerative diseases, including AD [23,58].  
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In conclusion, the AD Atlas enables the generation of global, disease-related molecular networks 

without the need to perform complex data analysis. These networks can be used in downstream 

analysis within the web-based user interface, for instance to identify plausible repositioning 

candidates using gene set enrichment. In addition, the networks and lists of contained entities can 

be directly downloaded for offline follow-up analyses. Despite coming from diverse sources and 

cohorts, the totality of data collected in the AD Atlas can provide valuable insights into the 

underlying mechanisms of disease, as we demonstrate with the identification of Etarnecept and 

Citalopram as promising repositioning candidates through potential modulation of 

neuroinflammatory pathways.  

 

3.2.3 Statin target ITGAL links to neuroinflammation through TREM2 signaling  

Statins are a class of lipid-lowering drugs that are used to reduce the risk of cardiovascular diseases, 

such as atherosclerosis and peripheral artery disease.  Statins exert their primary therapeutic effect 

by inhibiting the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), 

in the cholesterol producing mevalonate pathway. In addition statins have been associated with a 

wide range of secondary effects [59,60]. Observational studies have reported a possible association 

between statin use and reduced risk of Alzheimer’s disease [61–63], although the evidence has been 

inconsistent with reported differences between patient subpopulations as well as individual statin 

drugs [64–66]. To investigate this potential link to AD pathophysiology we used the drug targets of 

statins, as annotated in DrugBank [67] (Figure 5E) and constructed and annotated their molecular 

context network in the AD Atlas (Figure 5A). To this end, we used HMGCR, ITGAL, HDAC2, DPP4, AHR 

and NR1I3 genes as input, added their 1-step co-expression, co-regulation and protein co-abundance 

neighbors by network expansion and colored genes according to their differential expression in AD 

patients using the visualization options of the AD Atlas. Of the 310 genes in the resulting network, 24 

genes harbor SNPs showing a significant association to AD (endo-)phenotypes and over one third 

(n=120) show differential expression at the transcript level in the temporal cortex of AD patients.  
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Figure 5. Subnetwork of statin targets link to TYROBP 
signaling. A. Multi-omics subnetwork surrounding 
the statin targets annotated in DrugBank; HMGCR, 
ITGAL, HDAC2, DPP4, AHR and NR1I3, as well as a co-
expression and co-abundance subnetwork only 
surrounding (B) ITGAL and (C) HMGCR. D. Gene set 
enrichment analysis using EnrichR (WikiPathway 
gene set). E. Statins taken from DrugBank and their 
annotated targets. 
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Visual inspection of the network indicates two tightly connected clusters surrounding ITGAL, one 

driven by co-regulated genes (dark green edges) and one driven by co-expressed genes (light green 

edges). The latter is predominantly up-regulated in disease, with an exception of POU2F2 which is 

down-regulated. Another co-regulation cluster is formed by co-regulated genes surrounding NR1I3, 

some genes of which (ARHGAP30, FCGR2A, FCGR3A, FCER1G) are tightly linked with the ITGAL co- 

expression module. Both co-regulation clusters contain multiple genes that are dysregulated in AD. 

All target genes either show a dysregulation at the transcript or protein level in AD through direct 

evidence or via their associated neighborhood. For example, the primary statin target HMGCR 

(Figure 5C) does not show any evidence of differential regulation or association to AD phenotypes. 

However, of its 41 co-expressed genes and co-abundant proteins in the temporal cortex, 19 protein-

coding genes show either up- or down-regulation at the transcript level and nine at the protein level, 

suggesting a functional involvement of this pathway in AD.  

 

Next, we used the gene set enrichment analysis within the AD Atlas to functionally characterize the 

pathways targeted by statins. Here, we found a significant enrichment for the TYROBP causal 

network (EnrichR, WikiPathways, PFDR = 7.89e-15), an immune- and microglia-specific module that 

has been implicated in late-onset Alzheimer’s disease (LOAD) [68]. This enrichment is driven by the 

co-expression network surrounding ITGAL (Figure 5B), also known as CD11a, a subunit of the 

integrin leukocyte function associated antigen-1 (LFA-1) which is involved in a variety of immune-

related functions [69]. Interestingly, only a subset of statins (Rosuvastatin, Lovastatin, Simvastatin, 

Pitavastatin) target ITGAL which may explain the heterogenous results reported in studies. 

Furthermore, the co-expression neighborhood of ITGAL shows substantial dysregulation in disease 

with 50 of 103 genes differentially expressed in AD (49 up-regulated, one down-regulated) and 11 

genes harboring disease associated SNPs. TYROBP (Dap12) is an adaptor molecule involved in the 

transduction pathway of TREM2 as well as CD33, a known AD risk gene [70,71], and CR3 (ITGAM and 
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ITGB2). Both TREM2 and ITGB2 are up-regulated in disease and contained in the network shown in 

Figure 5B.  

 

Our analysis showcases how the AD Atlas can be utilized to investigate candidate drugs in an AD 

context. The identified functional link to TYROBP signaling indicates that statins targeting ITGAL may 

exert potential protective effects [72,73] through modulation of neuroinflammatory pathways [74].  

 

3.3 Application examples for exploratory analysis 

High failure rates of AD drugs in clinical trials have emphasized our incomplete understanding of 

crucial biological aspects of this complex disease [37]. Basic research investigating the underlying 

molecular disease mechanisms and mapping the trajectory of biochemical changes in AD, will 

therefore be crucial to identify novel therapeutic targets and guide future drug development efforts. 

In the following examples we showcase how the AD Atlas can be used to investigate and formulate 

new AD-related hypothesis. We focus on the contextualization of metabolic and immune-related AD 

findings, although there are many more areas of application. 

 

3.3.1 Contextualization of links between the sphingomyelin pathway and AD pathology 

In a previous study, we identified sphingomyelin species (SMs) of differing lengths to be implicated 

in early vs. late stages of AD [75]. More precisely, we found SM C16:0 to be associated with  

CSF Aβ1-42 pathology, while SMs with longer fatty acid chains (≥C20) were correlated with brain 

atrophy and cognitive decline. This study identified three SMs associated with AD, labeled as SM 

(OH) C14:1, SM C16:0, SM C20:2 (of note, these vendor-specific labels will be updated to better 

reflect the currently accepted notations for SMs in future releases). We generated a metabolite-

centric subnetwork via the AD Atlas user interface to contextualize these findings and gain a better 

understanding of their potential functional role in AD. 
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The generated subnetwork is shown in Figure 6A. All SMs are associated with at least two genes at a 

genome-wide significance level. Interestingly, these particular SMs are not directly linked to each 

other through partial correlations. Also, while the associated genes are partially interlinked by co- 

regulation edges pointing to the same genetic loci, the individual “SM-gene-clusters” are not 

Figure 6. Contextualization of metabolomics-guided insights points to SM de novo biosynthesis. A. Multi-omics subnetwork 
surrounding three sphingomyelin (SM) species (SM (OH) C14:1, SM C16:0, SM C20:2) that are altered in biomarker defined 
stages of AD [75]. B. Gene set enrichment analysis using the Reactome gene set accessible via EnrichR identifies three genes 
(CERS4, SPTLC3 and SGPP1) involved in SM de novo biosynthesis.  
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interlinked. These aspects may point to their involvement in distinct pathways or pathway steps. 

Furthermore, 35 of the 36 AD-related traits are associated to SM C16:0 related genes, which include 

AD risk genes APOE and APOC1. The SM (OH) C14:1 component shows no direct or indirect trait 

associations, while SM C20:2 is directly associated with the clinical dementia rating - sum of boxes 

score. Overlay of differential gene and protein expression data using the visualization options 

provided by the AD Atlas reveals an up-regulation at the mRNA level of 5 of 22 genes (APOE locus 

(APOE, APOC1), SPTLC3, SYNE2 and CERS4) and down-regulation of one gene (MTHFD1), which 

displays an opposing effect at the protein level (up-regulation).  

 

To further characterize the potential functional involvement of these SM-associated genes in AD, we 

performed an enrichment analysis using the Reactome 2016 library via EnrichR. This identifies three 

genes (CERS4, SPTLC3 and SGPP1) involved in SM de novo biosynthesis (PFDR = 2.53e-04, Figure 6B). 

Interestingly, these genes have previously been identified in a study that involved multiple, time-

intensive manual mapping steps [76]. Here, the genes were categorized into two functional 

categories: global sphingomyelin synthesis (SPTLC3, CERS4) and synthesis and degradation of 

sphingosine-1-phosphate (SGPP1), highlighting a possible role for sphingosine-1-phosphate and its 

receptors in AD pathogenesis. AD mouse models indicate a potential benefit of Fingolimod, an FDA-

approved S1P analog used for the treatment of multiple sclerosis [77–79]. Furthermore, long-term 

Fingolimod treatment in multiple sclerosis patients has showed positive effects on cognition [80].  

Therefore, Baloni et al. applied a drug repositioning approach by treating APP/PS1 mice with 

Fingolimod, finding that prolonged S1P pathway modulation can rescue both the proposed cellular 

mechanism of hippocampus-related memory and cognitive deficits in these mice, further supporting 

this pathway as a high priority target for AD [76].   

 

In conclusion, this analysis highlights the ability of the AD Atlas to contextualize hypotheses or 

findings from previous studies and to thereby point to novel, AD-related insights without the need 
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for bioinformatics resources or time-intensive manual analyses. Here, we used three sphingomyelin 

species that have previously been associated with AD endophenotypes [75], to further investigate 

their involvement in mechanisms of disease. We find a link to the sphingosine-1-phosphate pathway, 

replicating results of a recent study [76]. 

 

3.3.2 Subnetworks surrounding marker genes for homeostatic microglia and disease-associated 

microglia suggests possible involvement of blood androgens  

Genomic analyses in AD and animal models of the disease identified a specific activation program 

which drives the transition from homeostatic microglia to disease-associated microglia [81].  

However, the molecular mechanisms underlying this transition remain incompletely understood and 

the extent to which this process involves AD susceptibility genes has not been assessed in an 

integrated fashion. We used the AD Atlas to identify gene modules defining homeostatic vs. disease-

associated microglia and to evaluate their respective links with large-scale genetics, proteomics and 

metabolomics data.  Two canonical gene markers of homeostatic vs disease-associated microglia, 

namely TMEM119 [82,83] for homeostatic microglia and TREM2 [84] for disease-associated 

microglia, were entered as single query genes. We further analyzed the corresponding co-expression 

networks identified in brain tissue using the AD Atlas with regard to: i) identity and number of genes 

harboring SNPs previously associated with AD susceptibility and/or AD-related traits in GWAS 

studies, ii) identity and number of genes exhibiting increased levels in AD brains at the transcript 

and/or protein levels, iii) identity and number of genes harboring SNPs previously associated with 

metabolite concentrations in healthy individuals. An overview of the analysis steps can be seen in 

Figure 7A. 

 

We identified a total of 55 genes being co-expressed with TMEM119 but not TREM2 in AD tissue, of 

which five genes are linked to AD-associated SNPs: ARPC1B, TMEM106A, INPP5D, HLA-DMA, 

ARHGAP45 (Supplementary Table 4). Out of these five genes, two (ARPC1B, INPP5D) harbor mQTL 
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associations with bilirubin, biliverdin, 1-archidonoyl-GPA (20:4), unknown metabolites and multiple 

androgenic steroids, including epiandrosterone sulfate, androsterone sulfate and 

dehydroisoandrosterone sulfate (DHEA-S) (Supplementary Table 5). Additionally, both genes show 

higher gene expression levels in AD (temporal cortex, AD vs. Control). The overlapping genetic 

associations with AD and levels of metabolites from the androgen pathway in the ARPC1B locus is of 

particular interest. Androgens are a class of sex steroid hormones that are responsible for the 

development of male sex characteristics [85] and also play important roles in female reproductive 

function [86]. Females have a higher susceptibility to AD [87] and studies have linked age-related 

depletion of the androgen testosterone to an increased risk of AD in men [88,89]. Since ARPC1B has 

been linked to the branching and motility of microglial ramifications [90], this might suggest a 

potential molecular relationship between androgen levels, ageing and the ability of microglia to 

extend ramifications in the context of AD.  

We also identified 64 genes co-expressed with TREM2 but not TMEM119 in brain tissue, of which 

nine genes map to AD-associated loci: APOC1, ITGAX, LST1, HLA-DPB1, GAL3ST4, ITGAM, SPI1, AIF1, 

HLA-DRB1 (Supplementary Table 6). In comparison to the TMEM119 module, the TREM2 module 

contains a larger number of genes with overlapping AD associations, including the known genetic 

risk factor APOC1 which harbors multiple SNPs showing strong associations to a multitude of AD 

phenotypes (36 in total). Furthermore, while both TMEM119- and TREM2-specific networks show an 

overall up-regulation at the transcript level (temporal cortex), the TMEM119 network only contains 

one gene where this up-regulation translates to the protein level (CNPY3). The TREM2 subnetwork in 

contrast contains four such genes (GPX1, CAPG, COTL1, NPC2), possibly indicating a higher 

dysregulation at the functional level. Taken together, this supports a major role for TREM2 in the 

engagement of microglia toward a disease-associated phenotype. From the nine genes genetically 

associated with AD, five (A1F1, APOC1, GAL3ST4, HLA-DRB1, LST1) also harbor mQTL associations 

with cholesterol, multiple SMs, unknown metabolites and multiple androgenic steroids 

(Supplementary Table 7) and two (APOC1, HLA-DRB1) show higher gene expression in the temporal 
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Figure 7. Investigating the transition between homeostatic microglia and disease-associated microglia (DAM). A. Overview of the 
analysis. First, gene co-expression networks were built around marker genes for homeostatic (TMEM119) and DAM (TREM2). Then 
gene modules containing genes co-expressed exclusively with one of these genes were constructed and analyzed. B. Schematic 
representation of the marker-specific subnetworks. Genes that show co-expression in the brain with TMEM119 but not TREM2 and 
harbor AD-related SNPs are shown on the left (green background). Those that also contain mQTLs are highlighted (orange). Genes 
that are significantly upregulated are highlighted in red. Genes that show co-expression in the brain with TREM2 but not TMEM119 
and harbor AD-related SNPs are shown on the right (red background). Those that also contain mQTLs are highlighted (orange). 
Androgen steroids associated with both ARPC1B and GAL3ST4 are depicted to highlight this overlap. It is important to note that only 
selected relationships are shown. For a detailed version of these networks please refer to our website (www.adatlas.org/?showcases).  
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cortex in AD. As observed in the TMEM119 module, one gene of the TREM2 module, namely 

GAL3ST4, is associated with androgen metabolites. Although few data are available regarding the 

role of GAL3ST4 in microglia, the gene was reported to be part of a TYROBP brain-expressed gene 

module crucially involved in the development of LOAD [68]. Interestingly, a metabolite-centric 

search for the direct subnetwork surrounding the androgen steroids associated with both ARPC1B 

and GAL3ST4 (overlap of metabolites is seen in Figure 7B) revealed an association of these 

metabolites with another AD-specific risk locus; ZCWPW1/NYAP1/PILRA (7q22.1) [23,25,91], which 

has been linked to myeloid enhancer activity, microglia function and neuroinflammation [91,92].  

 

Lastly, to see if these networks can again point to drug compounds targeting the activation of 

microglia, we repeated the gene set enrichment analysis described previously using the 1-step co-

expression network surrounding both TMEM119 and TREM2. This identified Fasudil (PFDR = 7.02e-16, 

EnrichR, Drug Perturbations from GEO down) among the top significant hits. Fasudil is an inhibitor of 

Rho-kinase (ROCK) and approved for the treatment of cerebral vasospasm in Japan. Post mortem 

data suggests that ROCK protein levels are elevated in AD brains [93] and preclinical data from in 

vitro and in vivo studies, including animal models of AD, indicate that Fasudil may be able to reduce 

the burden of tau protein [94] and promote an anti-inflammatory microglial phenotype [95,96]. 

Currently, two ongoing clinical phase II trials are investigating the use of Fasudil in tauopathies 

(NCT04734379) and the effectiveness of an oral formulation of Fasudil in patients with dementia 

(NCT04793659). Interestingly, a previous study reported experimental evidence linking androgen 

levels through androgen receptor signaling to the levels of miRNA-135a which targets ROCK, 

providing a potential mechanistic model integrating the different omics entities contained in the AD 

Atlas-derived subnetwork [97].  

 

Overall, our analyses point to a potential involvement of blood androgens in the transition from 

homeostatic to disease-associated microglia during the course of AD. Using gene set enrichment we 
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were able to identify Fasudil, an inhibitor of ROCK, as a promising drug repositioning candidate. We  

hypothesize that age-related decreases of androgen levels may result in an upregulation of ROCK via 

androgen-mediated pathways, leading to microglial activation and neuroinflammation [98,99]. This 

exploratory analysis highlights how the AD Atlas can inform testable hypothesis, such as the 

potential link between androgen signaling, ROCK activity and microglial activation in AD, that can be 

investigated in follow-up experiments. 

4 Discussion 

We here present the AD Atlas, a network-based resource that consolidates experimental data from 

large cohort studies, building a global molecular view of AD. Integrating data in a largely hypothesis-

free and data-driven manner, the AD Atlas enables researchers to explore the disease in a multi-

omics context starting from any genes, metabolites or phenotypes of interest.  Through a browser-

based interface to the AD Atlas network, we provide researchers of varying backgrounds and 

interests an easy-to-use resource for AD knowledge discovery.  

 

The molecular network underlying the AD Atlas is derived using large-scale population-based data 

and genomic annotation databases and provides a generalized framework to study multi-omics 

relationships globally. Using association data from large-scale studies on diverse aspects of AD, 

including hundreds to hundreds of thousands of individuals, this framework is then transformed into 

an integrated multi-omics knowledgebase for markers of AD. These data include recent large genetic 

association (meta-)analyses of AD and AD biomarkers from NIAGADS and other large efforts, as well 

as differences in transcriptomics, proteomics, and metabolomics markers observed in AD or in 

relation to AD endophenotypes. The latter are predominantly based on data generated on 

thousands of human blood and brain tissue samples from multiple brain regions using state-of-the-

art technologies and analyzed using standardized processing pipelines through the AMP-AD program 

and partnering initiatives. By integrating multiple independent datasets of the same analysis type 
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(e.g. GWAS on the same traits conducted in different cohorts), we build additional data confidence 

by independent replication and make this data available to the user.  

Through its network-based user interface, available at www.adatlas.org, the AD Atlas enables users 

to conduct flexible and context specific analyses tailored to the research question at hand, without 

the necessity of local bioinformatics capacities. We provide multiple-entry points, allowing 

researchers to dynamically generate multi-omics subnetworks surrounding a gene, metabolite or 

trait of interest. Thereby, the analysis is not limited to the immediate multi-omics context of an 

individual entity.  Multiple entities can be analyzed together, potentially revealing non-trivial 

connections and these networks can be expanded to explore their functional neighborhood (for 

genes defined by co-expression, protein co-abundance or co-regulation networks and for 

metabolites by partial correlation networks). By providing additional filtering options, such as 

restricting co-expression links to specific brain regions or applying different significance cutoffs, 

users can create and explore highly context-specific networks that integrate results from various 

sources. Besides dynamic generation and interactive exploration of networks, we additionally 

interlink entities to external databases and provide downstream analysis tools, including the overlay 

of experimental data on differently expressed genes and differentially abundant proteins, as well as 

gene set and pathway enrichment analysis.  

 

Building upon and extending previous efforts that have provided multi-omics integration solutions 

for multi-disease drug repositioning [100,101], genome-guided computational analysis of AD [102] 

and multi-omics annotation of individual targets [103], the AD Atlas provides users with an easy-to-

use and fully network-based research platform. We have demonstrated the utility and flexibility of 

this resource to answer a wide array of research questions, from drug repositioning efforts to 

explorative analysis and contextualization of AD findings. For example, by investigating AD-

associated genes, as well as those targeted by drug repositioning candidates proposed in the 

literature, we highlight the potential of the AD Atlas to guide computational drug repositioning 
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efforts. Using two established AD risk genes, APOE and CLU, we were able to identify multiple 

proposed repositioning candidates and show that, even without adding pathway information, 

extensive data on drug effects, or detailed information on effect directions, the AD Atlas is able to 

capture disease-relevant information and guide drug prioritization. Information on differentially 

expressed entities (DEG/DEP) can additionally be overlaid to explore the extent of dysregulation and 

prioritize drug repositioning candidates that are known to induce transcriptional effects opposing 

the observed direction in disease [38].  

 

In addition to this hypothesis-driven approach to drug repositioning, we showed that the AD Atlas 

also allows the generation of data-driven disease networks that allow a more global and unbiased 

view on the disease.  Furthermore, we explored the proposed benefits of statins for AD therapy and 

identified a link to neuroinflammation for a subset of compounds targeting ITGAL. Beyond 

applications related to drug discovery, the AD Atlas also provides a valuable platform to 

contextualize prior analysis results and hypotheses, by enabling researchers to easily validate and 

complement their findings with information from multiple heterogeneous resources and 

publications within the scope of one resource. For example, we extended the findings of a previous 

analysis that implicated three sphingomyelins in AD by adding additional layers of multi-omics data 

to gain further insights into the involvement of these metabolites in AD. In another analysis, we 

showcased how the AD Atlas can be used to inform novel hypotheses. We generated subnetworks 

surrounding marker genes for homeostatic microglia and disease-associated microglia to investigate 

the underlying molecular mechanisms of this transition and identify possible drug repositioning 

candidates. By focusing on genes that harbor disease-related as well as metabolite-associated SNPs 

and additionally are specific to the respective marker-gene networks, we found a potential link to 

blood androgens, suggesting a role of these metabolites in the transition of microglia to a disease-

associated state in AD. Additional gene set enrichment analysis of the molecular network 

surrounding both marker genes was able to identify a promising drug repositioning candidate and 
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provided further insights into the underlying molecular mechanisms, suggesting a potential interplay 

between androgen signaling and Rho kinase activity in AD. 

In summary, by providing an integrated global view on multi-omics results and by enabling tailored 

analyses through a user-friendly interface, the AD Atlas is a valuable resource for the validation and 

formulation of hypothesis, providing actionable insights that can be validated in follow-up analysis or 

experiments.  

5 Limitations and outlook 

The AD Atlas in its current form provides extended access to large-scale multi-omics data generated 

by the AMP-AD initiative, where single biological entities are embedded into their molecular multi-

level context. As such, in its current version the resource has several limitations. 

 

First, the underlying molecular framework is derived primarily in a data-driven way, which leads to a 

largely bias-free network representation of molecular data. Although the confidence in these data-

driven representations will increase through inclusion of additional omics-studies, we neglect a large 

body of curated knowledge from experts and public databases on, for example, biochemical 

pathways or drug-targets. As we continue to extend the AD Atlas, integrating such data will be a 

valuable addition and provide a further layer of evidence.  

 

Second, in the web interface we have so far only applied simplistic, minimal edge filtering criteria, 

i.e. using genome-wide, gene-wise or study-specific significance thresholds. While the underlying 

database contains potentially relevant evidence at even finer granularity (up to a raw p-value ≤ 

0.05), this data is currently not accessible. Similarly, additional information, such as study sample 

size or number and consistency of effects reported in different studies are currently not compared 

or meta-analyzed. To this end, we aim to develop more sophisticated, context-dependent edge 

weighting and filtering criteria, as well as more comprehensive analysis reports.  
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Third, based on the currently limited availability of research data obtained in diverse 

populations/ethnicities, the data used to generate the AD Atlas are also not representative of these 

populations, which reduces the generalizability and transferability of the integrated molecular 

observations. However, the AMP-AD 2.0 program has the particular mission to expand research 

efforts to Latino and African American communities, and we will put a particular emphasis on 

integration of resulting findings from these diverse populations in the AD Atlas resource.  

 

Lastly, we have so far focused on the development of tools for the exploration of hypothesis-guided 

local subnetworks, neglecting the potential of the network underlying the AD Atlas to identify 

disease modules globally in a more hypothesis-free manner. To this end, we are currently working 

on the implementation of established network analysis tools and machine learning technologies to 

extend and make available a more powerful analysis toolbox provided through the AD Atlas web 

interface in future releases.   
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DATA AVAILIBILITY 

The AD Atlas is accessible via the user interface at adatlas.org. A comprehensive listing of the exact 

data sources that were integrated in the AD Atlas is given in the Supplementary Material. The 

results published here are in whole or in part based on data obtained from the AD Knowledge Portal 

(https://adknowledgeportal.org). Data used in the preparation of this article were further obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). 
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