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MEG analysis: Beamformer reconstruction 

Source reconstruction was performed for each participant band using a linearly-constrained 

minimum variance (LCMV) beamformer implemented in FieldTrip (version 20161011, 

www.fieldtriptoolbox.org (48)). Beamforming was performed in each of six distinct frequency 

bands using conventional definitions: delta (1-4 Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-

30Hz), low gamma (40-60Hz) and high gamma (60-90Hz). The source-model used for 

reconstruction was a 6mm isotropic grid, which was initially defined in MNI template space 

before being matched to each individual’s MRI using Fieldtrip’s ft_prepare_sourcemodel 

function. The head conductivity model used was the localspheres option in FieldTrip, which 

approximates the local curvature of the head underneath each channel 

(www.fieldtriptoolbox.org).  

 

Beamformer weights were estimated for each location on the grid, via estimation of the 

covariance matrix over the entire resting-state recording period. After weights normalization, 

these weights were used to derive an estimated activity timeseries at each grid voxel and for 

each trial. These trial timeseries were concatenated to form a single timeseries for each grid 

voxel. After cleaning of any spike discontinuities using a temporal median filter, these 

timeseries were then taken forward for both activity and connectivity analyses. 

 

MEG analysis: Activity estimation    

For each of the reconstructed grid positions, a measure of activity was derived in each 

frequency band. This was done by first deriving the amplitude-envelope of the virtual-sensor 

timeseries using the absolute value of the analytic function transform of the raw timeseries 



(using Matlab’s hilbert function). The resulting timeseries was downsampled to a 1Hz, in order 

to match the connectivity analysis described below, and then converted to a single activity 

measure that summarizes how variable this envelope is over the entire resting-state run. To 

do this we calculated the coefficient-of-variation of the envelope, namely the temporal 

standard-deviation divided by the temporal mean. This normalized measure has the 

advantage of correcting for the known biases, introduced by the sensitivity of beamformer 

weights to variations in the signal to noise ratio (SNR) of the data (47,48). The end result is a 

6mm isotropic activity map, for each participant and each frequency band. 

 

MEG analysis: Connectivity estimation 

Functional connectivity was computed using the amplitude-envelope correlation (AEC) 

metric. This metric has previously been shown to be both robust and repeatable (49). The 

analysis pipeline has previously been described (47). First, spatial down-sampling to the 90 

regions of the Automated Anatomical Labelling (AAL90) atlas was performed (50). One grid 

source (virtual sensor) was chosen to represent each AAL90 region, based on the voxel having 

the largest temporal standard deviation across the resting-state experiment. The temporal 

activity of each of these 90 sources was then orthogonalised with respect to each other region 

in order to suppress any zero-time-lag correlation due to signal leakage (51). Next, the 

amplitude (Hilbert) envelopes of each AAL90 region were extracted using the absolute of the 

(complex) analytical signal derived by the hilbert function in MATLAB. These amplitude 

envelopes were then down-sampled to a temporal resolution of 1s in order to study 

connectivity mediated by slow amplitude envelope changes (52). A median spike removal 

filter was applied to smooth large deflections in the data before further analysis. 

 



To obtain connectivity matrices, pairwise correlations were calculated between the 90 Hilbert 

envelopes, yielding 4005 unique correlations for each frequency band for each participant. 

Each of these correlation coefficients was then transformed to a variance-normalised Fisher 

z-statistic, using a procedure that estimates the temporal variance of the time series’ null 

distribution for each region, using surrogates generated by randomisation. This made the 

correlations suitable for further statistical analysis and corrected for the varying length of the 

final time series for each participant. 

 

MEG analysis: Activity and connectivity component estimation 

At the end of the above analysis procedures, each participant had 6 activity maps (one for 

each frequency) and 6 connectivity matrices. Each activity map had 5061 voxels and each 

connectivity map has 4005 unique connection values. In order to reduce the dimensionality 

of these features before statistical analyses, we used a data-driven analysis of the principal 

components using non-negative matrix factorisation (Matlab:nnmf). This specific algorithm 

was chosen because the activity measure we have used is positive-only and the slow static 

amplitude-connectivity measure we have used is dominated by positive correlations. For 

interpretability, we also preferred each participant’s loading on to each component to be a 

positive measure only. Recently, non-negative matrix factorisation has been successfully used 

to show cohort differences in a MEG study of schizophrenia (53) and in comparing structural 

and functional connectivity components in healthy individuals (54). One non-trivial issue in 

using NNMF is that it is difficult to decide how many components to reconstruct. Traditional 

stopping criteria, such as percentage variance explained, do not work well as the NNMF 

algorithm is able to significantly improve reconstruction accuracy by adding components that 

load on to small numbers of participants. We chose a heuristic approach in which we 



iteratively increased the number of components and tested what proportion of our cohort 

had non-zero values for each component. We required each component to be represented in 

at least 50% of our participants and, across all components, for the mean number of 

participants represented to be at least 70%. If, when we increased the number of 

components, either of these criteria was not met, we went back to the previous step. For each 

measure, we typically find that 5-15 components are identified to be the maximum number 

that meet these criteria. For each of the final components identified, we projected each 

individual’s data on to these networks to get a single component ‘strength’ for each person. 

For each of the 12 metrics we have in each person (6 activity and 6 connectivity), we 

performed NNMF separately. As shown in figures 1,2 and 7, each participant’s combined 

activity and connectivity profile, across all 6 bands, was effectively summarised by just 79 

values. It is these values that were taken forward for statistical analysis. 

 

Statistical analyses of NNMF derived component scores 

Each of the component weightings described above was used in an analysis to determine 

whether their magnitude was predicted by a set of exploratory variables consisting of group-

status (22q11DS or control), IQ and neurodevelopmental symptoms, using SCQ scores and 

CAPA-derived ADHD symptom counts to index the severity of ASD and ADHD symptoms 

respectively. Due to the differing IQ distributions in the two groups, associations with IQ were 

explored in each group separately. This analysis was done by a set of univariate robust general 

linear modelling tests, using Matlab’s fitlm function. In each linear-model fit age, sex and 

number of included MEG trials were included in the models as covariates. For linear models 

exploring the associations with ASD and ADHD symptoms, IQ was included as an additional 

covariate. In each test, we assessed the significance of the principal variable (Group, ASD in 



22q11DS, ADHD in 22q11DS, IQ in controls, IQ in 22q11DS) in explaining variance in the 

residuals after controlling for age and sex. With our relatively small participant numbers, 

outliers can have a strong effect on the quality of the model fit. We therefore used a form of 

robust fitting, using an iterative procedure, in which, after an initial fit, the residuals were 

assessed for outliers using Cooks’ distance. We used a common combination of rules for 

outlier identification: i.e. if a participant’s Cook’s distance was greater than 3 times the cohort 

mean, or had an absolute value of greater than 0.5, the participant was excluded and the 

linear model was re-fit. This procedure was then repeated once more to generate the final 

model fit. Effect-sizes for the principal variable of interest were calculated using standardised-

beta parameters and assessed for significance using p-values and 95% confidence intervals. 

Bonferroni correction was applied for the number of components tested within each type 

(activity/connectivity) and frequency-band i.e. correction was not applied across type and 

frequency band. 

 


