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Supplementary Methods

In this section, we first describe the data used in the paper. These include the ones used to infer
model parameters, BASEPARAM and MDLPARAM, and the ones used for comparison and validation.
We then describe the epidemiological model used in the paper in detail. Then, we move on to our
Minimum Description Length optimization formulation and the two-step algorithm, both of which
we briefly described in the main paper. Finally, we present the results which were omitted from the
main paper.

Data
New York Times reported infections dataset

The New York Times reported infections, NYT-Rinf, dataset [I] consists of the time sequence of
reported infections Dyeported and reported mortality Dportality in €ach county across the U.S. since
the beginning of the COVID-19 pandemic (January 21, 2020). For each county, the NYT-Rinf
dataset provides the date, FIPS code, and the cumulative values of reported infections and mortality.
Here, we use the averaged counts over 14 days to eliminate noise.

Serological studies

The serological studies [3], [6] consists of the point estimate and 95% confidence interval of the
prevalence of antibodies to SARS-CoV-2. Using the prevalence of the antibodies and the population,
we can compute the estimated total infections and 95% confidence interval in the location. For Santa
Clara, CA, the estimated prevalence of antibodies is 2.8% (95% confidence interval: 1.3%-4.7%).
Therefore, the estimated total infections is 54000 (95% confidence interval: 25000-91000) [3]. For
Bucks, PA, and Western Washington the estimated prevalence of antibodies are 3.2% and 1.1%
respectively (95% confidence interval: 1.7%-5.2% and 0.7%-1.9% respectively). The population of
Bucks county is 628270 and the population of Western Washington is 4273500. These imply that
the total infections for Bucks, PA and Western Washington are 20100 (95% confidence interval:
10680-32670) and 47000 (95% confidence interval: 29900-81200) [6] respectively.

Symptomatic surveillance data

The symptomatic surveillance data comes from Facebook’s symptomatic survey [2]. The survey
started on April 6, 2020. As of January 28, 2021, there were a total of 16,398,000 participants, with
the average daily participants number of 55,000. The survey asks a series of questions designed to
help researchers understand the spread of COVID-19 and its effect on people in the United States.
For the signal, they estimate the percentage of self-reported COVID-19 symptoms defined as fever
along with either cough, shortness of breath, or difficulty breathing [2]. The data also includes
weighted version which accounts for the differences between Facebook users and the United States
population. In some experiments, we contrast the symptomatic rate inferred by our approach
against the weighted data from the survey.

Epidemiological Model
Base Epidemiological Model

The epidemiological model described in [4] serves as the base epidemiological model Op in our
experiments. The compartmental diagram of Op is shown in Fig. As seen in the figure, it
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consists of the following 10 states.
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2

3.
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. S: Susceptible

. E: Exposed

Ip: Pre-symptomatic

. Ig: Symptomatic, severe

. Ipr: Symptomatic, mild

. T4: Asymptomatic

Hp: Hospitalized, eventual death
. Hp: Hospitalized, eventual recover
. R: Recovered

. D: Dead

Og, as described in [4], has of 21 different parameters, which are listed below. Note that only
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16.

e parameters are calibrated, while the rest are fixed.

C4: Relative infectiousness of asymptomatic (fixed)

Cp: Relative infectiousness of presymptomatic (fixed)

. Cur: Relative infectiousness of mild symptomatic (fixed)

. Cg: Relative infectiousness of severe symptomatic (fixed)

. y: Preinfectious period (fixed)

. Ap: Presymptomatic duration (fixed)

A4: Infectious period for asymptomatic infections (fixed)

. Ag: Time from symptom onset to hospitalizations (severe) (fixed)
. Apyr: Time from symptom onset to recovery (mild) (fixed)

pr: Time from hospitalization to recovery (fixed)

pp: Time from hospitalization to death (fixed)

N: Population (fixed)

Start date: Start date of the epidemic (fixed)

Work From Home start date: Work from home start date (fixed)
owrm: Work from home proportion of contacts remaining (fixed)

Ep: Number of initial infections that began the epidemic (calibrated)
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17. C4: Relative infectiousness of asymptomatic infections (fixed)

18. «: Proportion of infections that are asymptomatic (fixed)

19. 1 — p: Proportion of symptomatic infections that require hospitalization (fixed)
20. Bo: Transmission rate in the absence of interventions (calibrated)

21. o: The proportional reduction on 5y under shelter-in-place (calibrated)

Next we describe the calibration process described in [4] in detail. Before doing so, we define
Iew sympt @s the time sequence of daily new symptomatic infections, Dyeyw as the day level time
sequence of mortality, and Hyew as the time sequence of newly hospitalized infections everyday.
These can be calculated from the states of Op as follows:

1. Thew sympt = dipls + dIply;.
2. Dyew =dHpD.

3. Hpew = dlgHp + dIgHp.

The calibration process in [4] minimizes the LOGLIKELIHOOD between the observed Dportality and
Dyew as predicted by Og.

LOGLIKELIHOOD = dpois(Dmortality s Dnew) (1)

where

dpois(a,b) = log(P(X = a|X ~ Poisson(\A =b))) (2)

The process infers a set of parameters including the transmission rate Sy (the transmission rate
in the absence of interventions), o (the proportional reduction on 5y under shelter-in-place), and
Ep (number of initial infections that began the epidemic). The optimization problem that the
calibration vies to solve can be written as follows:

[/807 g, EO] = arg ﬁmin {deiS(Dmortahtya Dnew)} (3>

0,0,E0

Extended Epidemiological Model

Note that the calibration process defined above depends only on Dyortality- In this work, we expect
the epidemiological model to calibrate on reported infections D;eported and candidate unreported in-
fections Dynreported- Hence we extend Og to a slightly different epidemiological model Oy. However,
to ensure that the epidemiological model structure of Oy is similar to that of Op, we just add two
additional term on top of parameters and states defined by Op, without removing anything. These
new terms include: new reported infections everyday Dyew reported; @and new unreported infections
everyday Dhpew unreported- These are defined as follows, which is similar to [7]:

1. Dnew reported = Q1 X (dIPIS + dIPIM)

Ihew sympt = dIpls + dIplys represents the number of new symptomatic infections everyday
in Oy1. Here, we assume oy proportion of new symptomatic infections everyday will be that
day’s new reported infections.
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2. New unreported infections Dyew unreported = (1 — a1) x (dIpls + dIiply) + dE1 4:

Then, the 1 — o proportion of new symptomatic infections everyday and new asymptomatic
infections everyday will be that day’s new unreported infections.

Note that the parameter «p above is different than the parameter «, which represents the
proportion of infections that are asymptomatic. In our calibration process, we make both o and oy
(proportion of new symptomatic infections that are reported) learnable. Therefore, the extended
epidemiological model Oy now calibrates by minimizing the LOGLIKELIHOOD between Dy to

Dmortality; Dnew reported to Dreportedv and Dnew unreported to Dunreported

LOGLIKELIHOOD = Wiortality X dp0ois(Dmortality; Pnew)
+ wreported X dPOiS(Dreported7 Dnew reported) (4>

+ Wunreported X dpozs(Dunreportedv Dnew unreported)

The calibration process infers values of a set of parameters including By, o, Ep, «, and a;. The
calibration process can be written as follows:

[/807 o, Fp,a, 041] = arg min {wmortality X deiS(DmOI‘talitya Dnew)
Bo,o,Eo,,01

+ Wreported X dPOiS(Dreportedu Dnew reported) (5)

+ wunreported X dPOiS(Dunreportem Dnew unreported)}

With the calibration of the epidemiological model Oy introduced, next we will define baseline
parameterization BASEPARAM and MDLINFER parameterization MDLPARAM.

Baseline Parameterization (BASEPARAM)

By calibrating Oy on Dyeported and Diportality, We get the baseline paramterization p:
p= CALIBRATE(OM7 Dreporteda Dmortality) (6)
by minimizing

LOGLIKELIHOOD = Wmortality X dpo’is(Dmortalitya Dnew) + Wreported X dPOiS(Dreporteda Dnew reported)
(7)
We write this procedure as follows:

p= [P[ﬂo], p[a], p[Eo], p[a]7 P[Oél]] = arg min {wmortality X dPOiS(Dmortalitya Dnew)

Bo,o,Eo,,a1

+ Wreported X dPOiS(Dreporteda Dnew reported)}
(8)
From p, we can generate the Oy reported infections Dyeported (P), unreported infections Dynreported (P):
and total infections D(p) = Dieported (P) + Dunreported (P). We can also calculate the reported rate
P[Creported]| as follows:

p[a ] _ Zt Dreported(p) _ p[al] X Zt(dIPIS + deIM)
reported ZtD(p) Zt(dIPIS+dIPIM+dEIA)

(9)
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MDLINFER Parameterization (MDLPARAM)

By calibrating Oy on Dynreporteds Dreported, and Dmortality, We get the MDLINFER paramterization
)

P
p, = CALIBRATE<OM7 Dunreporteda Dreported; Dmortality) (10)
by minimizing
LOGLIKELIHOOD = Wiortality X dp0ois(Dmortality; Pnew)

+ Wreported X deis(Dreporteda Dyew reported) (1 1)

+ Wynreported X deZS(D unreported Diew unreported)

We write this procedure as follows:

p, = [P’[ﬁo], p’[(ﬂ, p,[EOL p,[a]a p,[al]] = arg min {wmortality X dPOiS(Dmortalitya Dnew)

Bo,0,Eo,0,01
~+ Wreported X de'LS(Dreporteda Diew reported)

+ wunreported X dPOiS(Dunreported’ Dnew unreported)}
(12)
Similarly, from p’, we can similarly generate the Oy reported infections Dieported(P’), unreported
infections Dynreported (P’), and total infections D(p’) = Dreported(P’) + Dunreported (P’) by just sim-
ulating the On. We can also calculate the reported rate p’{ogeported) as follows:

p,[a ] _ Zt Dreported(p,) _ p,[aﬂ X Zt<dIPIS + dIPIM)
reported S, D(p) Y (dIpls+ diply + dETL4)

(13)
With the calibration process, p, and p’ defined, we can next formalize the MDL cost.

Methodology
Sender-receiver Framework

Here, we use the two-part sender-receiver framework based on the Minimum Description Length
(MDL) principle. The goal of the framework is to transmit the DATA in possession of the Sender S
to the receiver R using a MODEL. We do this by identifying the MODEL that describes the DATA
such that the total number of bits needed to encode both the MODEL and the DATA is minimized.
The number of bits required to encode both the MODEL and the DATA is given by the cost function
L, which has two components:

1. Model Cost L(MODEL): The cost of encoding the MODEL.

2. Data Cost L(DATA|MODEL): The cost of encoding DATA given the MODEL.

Model Space

In this work, the DATA is Dicported- Therefore, one of the most natural MODEL would have been
MODEL = (p), as one can directly compute Dieported(P) and use it to encode Dieported- This can

be written as follows:
L(MobEL) = CosT(p) (14)

and
L(MoDEL) = COST(Dreported|P) (15)
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However, this model space suffers from the frangibility that slightly different values of p could lead
to vastly different costs. To account for this, we define the MODEL as MODEL = (D, p’, p), which
consists of three components. The intuition here is that we use D to reparameterize the p’, use p
to send the p’, and finally use p’[@reported] X D to encode Dieported-

Model Cost

With the model space MODEL = (D, p’, p) above, the sender S will send the MODEL to the receiver
R in three parts:

1. First send p.
2. Next send p’ given p.
3. Then send D given p’ and p.

Therefore, the MDL Model Cost L(D, p’,p) will also have three components
L(D,p’,p) = Cost(p) + CosT(p’|p) + CosT(D|p’, p) (16)

Here, we will send the first component, p, directly, send the second component, p’ given p, via
sending p’ — p, and send the third component, D given p’ and p, via sending p’[ogeported] X D —
Direported (P). We further write the MDL Model Cost in Eq. |16| as below:

L(D,p’,p) = Cost(p) + CosT(p’ — p|p) + COST(P’[areported] X D — Dreported (P)|P’,P)  (17)

Data Cost

Give the MODEL = (D, p’, p) and MDL Model Cost above, next we will send the DATA in terms of
the MODEL. Here, the DATA is D,eported, and the MDL Data Cost will have only one component:

L(Dreported‘Dy P’a p) = COST(Dreported‘D7 p’a p) (18)

Here, we will send it via D= Dreported D(p’), and we further write the MDL Data Cost in Eq.

1-p’ [O‘reported]
as below:

D — Dr ted
L(D D,p’,p) = Cost ot
( reported| P’ p) (1 — p’[areported]

- D(p’)|D,p’,p) (19)

Total MDL Cost
The Total MDL Cost is the sum of MDL Model Cost L(D, p’, p) and MDL Data Cost L(Dxeported| D, P’, P):

L(Dreporteda D,p’, p) = L(D7 p’, p) + L<Dreported‘D7 p’, p)
= Cos1(p) + Cost(p’[p) + CosT(D[p’, p) + COST(Dreportea| D, P’, P)
= COST(p) + COST(p’ - P|p) + COST(p’[areported] X D — Dreported(p)‘p’a p)

D — Diopor
+ CosT( eorted _ p(p*)|D,p’, p)

1-—- p’ [areported]

(20)
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Cost Derivation

Next, we derive the cost for each component and give our encoding method explicitly:

1. CosT(p): We represent p as a vector of real numbers (we describe our encoding later below).
2. CosT(p’ — p|p): We will encode the difference of two vectors as a vector of real numbers.

3. CoST(P’[areported) X D — Dieported(P)|P’, P): Here, we encode the difference between the two
time sequences: P’[reported] X D given Dreported (P)-

4. COST(% — D(p’)|D,p’,p): Again, we encode it as a difference between the two

unreported
1-p’[a ]
P’ |Qreported

time sequences: given D(p’).

Next, we describe the encoding cost of real numbers, vectors, and the difference between two time
sequences.
Encoding Integers

To encode a positive integer n, we need to encode both the binary representation of integer n as
well as the length of the representation logs n [8]. Hence the cost of encoding a single integer n is
as follows:

CosT(n) = logy ¢o + log™(n). (21)

where ¢p =~ 2.865 and log*(n) is
log*(n) = logy n + logy logy n + ... (22)

Additionally, if we want to transmit an integer that can be either positive or negative, we can add
another sign bit and therefore the cost (encoding length in bits) for integers will be

CosTt(n) = Cost(|n|) + 1. (23)

Encoding Real Numbers

Note that most real numbers (e.g., 7 or e) need infinite number of bits to encode. Hence, we need
to introduce a precision threshold §. With threshold §, we approximate a real number x with s
which satisfies |z — 25| < d, and we encode x5 instead. To encode x5, we need to encode both the
integer part |x] as well as the fractional part x5 — |z|. Hence the cost of encoding a real number
x is as follows:

1
Cost(z) = CosT(|z]) + log, 5 (24)
where |z] is the floor of x and therefore is a integer, whose encoding cost is
CosT(|]) = logy co + log"(|]) (25)

Additionally, if we want to transmit a real number that can be either positive or negative, we can
add another sign bit and therefore the cost (encoding length in bits) for real numbers will be

CosT(x) = CosT(|z]) + 1 (26)
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Encoding Vectors

To encode a vector p, we need to encode every components one by one as real numbers. Hence the
cost of encoding a vector p is as follows:

CosT(p) = CosT(pa]) + CosT(p[s]) + ... (27)

Encoding The Difference between Two Time Sequences

To encode the difference A — B = [Ay, — By, Ay, — Biy, ...y Ay, — By,] between two time sequence
A=[A4, Ay, ..., As,] and B = [By,, By,, ..., By, ], we need to encode every components one by one
as real numbers. Hence the cost of encoding the difference is as follows:

CosT(A — B) = Cost(Ay, — Byy) + CosT(As, — By,) + ... (28)

Problem Statement

Now we have derived every cost involved in our problem, and we can finally state our problem as
one of searching for the best total infections D* as follows:
Given the time sequence Dy eported, €pidemiological model Oy, find the best D* that minimizes the
MDL total cost:

D* = arg Hgn L(Dreported7 D,p’, p) (29)

We will give the algorithm to find such D* as follows:

Algorithms

Before presenting our algorithm to find D*, we will first address the problem of searching D* directly.
Note that D* is a time sequence of total infections, naively searching D* directly in large search
space is intractable. Hence, we turn to use an alternate method: First, we can find quickly a good

. . D
reported rate o 4 since we can constrain D = —f*d to reduce the search space. Then we
reporte Qreported

can search for the optimal D* with Xeported from step 1 as constraints. Here, we write down our
two-step search algorithm to find the D* as follows:

*

*

1. Step 1: We do a linear search to find a good reported rate « which serves as an

reported’
initialization in the second step.
2. Step 2: Given the aj,,,.q found in step 1, we use the Nelder-Mead [5] optimization to find

the D* that minimizes L(Dieported, D, P’, P) With Qeported COnStraints.

Step 1: Find the o

reported
In step 1, we search on oqeportea to find the O‘;keported as follows:
* .
Qreported — Arg MmN L(Dreporteda D, p,a p) (30)
Qreported

To be more specific, in the first step of our algorithm, we do a linear search on different ceported =
[0.01,0.02,0.03,...] and calibrate the Oy on D = M, which means

Qreported

Dy
ported
p, = CALIBRATE(OMa - - Dreporteda Dreporteda Dmortality) (31)

Qreported
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Then we pick the o* 4 that corresponds to the lowest MDL Total Cost L(Dreported; D, P’ P) as

reporte
ES
the areporte

q- Specifically, we will use D(p’) instead of % as D when measuring the MDL Total

reported

Cost L(Dieported; D, P’ P). The reason behind it is that Dreported magnifies the noise of reported

Qreported
1

infections by times. Hence smaller ayeported tends to magnify the noise larger and leads to

Qreported

a bias towards higher MDL Total Cost. To cancel this bias introduced by the noise and get stable
and robust areported; We use the more smooth D(p’) as D in step 1.

Step 2: Find the D* given o, 1cq

With a;“eported inferred in step 1, we will next find the D* that minimizes the MDL Total Cost.

D* = arg Il'gl’l L(Dreported7 -D7 p,) p) (32)

Since we have already found afeported in step 1, we will only search the D* that satisfies

‘Dre orte
ZD* — Zt* ported (33)
t

areported

To search for the optimal D*, we leverage the popular Nelder-Mead search algorithm [5].

Experimental Setup

Here we describe our experimental setup in more detail and present results on additional testbeds.

Total Infections

The Results section in the main paper refers to BASEPARAMTi,¢, which represents the reported
infections derived from the baseline parameterization BASEPARAM. It is computed as follows:

BASEPARAMTiys = Z D(p) (34)
t

Similarly, MDLPARAMTjn¢, which represents the reported infections derived from MDLPARAM,
is computed as follows:

MDLPARAMTipf = Z D(p’) (35)
t

In Fig.[S6 we show additional results comparing the performance MDLPARAM and BASEPARAM
in estimating total infections. In Philadelphia, PA, New York City, and South Florida, the total
infections MDLPARAMTjn¢ estimated by MDLPARAM is within the confidence interval given by
serological studies, while BASEPARAMTi¢ is not. As for Hennepin, MN, although both MDLPARAM
and BASEPARAM are within the confidence interval, BASEPARAM is still susceptible to under-
estimate the total infections.

Symptomatic Rate

The baseline parameterization and MDLINFER also estimate the number of symptomatic rate
BASEPARAMgymp and MDLPARAMgym, respectively. We compare these against the Facebook symp-
tomatic surveillance data RATEgymp.
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We calculate BASEPARAMgym, from BASEPARAM p as follows:

Is(p) + Im(p)

N (36)

BASEPARAMgymp =
where Ig(p) is the number of infections in severe symptomatic state and Ip;(p) represents the same
in mild symptomatic state and IV is the total population in this area.

Similarly MDLPARAMgynp is computed as follows:

Is(p’) + Iu(P)
N

MDLPARAMgymp = (37)

Next we define psymp as a metric to compare BASEPARAMgym, and MDLPARAMgy;, based on
how well they approximate RATEgymp. It is defined as follows.

RMSE(BASEPARAMSymp, RATEgymp)
RMSE(MDLPARAMgymp, RATESymp)

PSymp = (38)

Here, the values of psymp larger than 1 indicates that MDLPARAMgym,, is closer to the RATEgymp
than BASEPARAMgymp, and the values of pgymp smaller than 1 indicates that MDLPARAMgy;, is
further to the RATEgy;,p than BASEPARAMSyyp.

In Fig. we present additional results comparing the accuracy MDLPARAM against BASEPARAM
in estimating symptomatic rate. In Hennepin, MN, Philadelphia, PA, and South Florida, MDLPARAMSgymp,
fits the symptomatic surveillance data better than BASEPARAMgyy,,. However for New York City,
both MDLPARAMgy,p and BASEPARAMgym;, diverge from RATEgy,p. For New York City, we doubt
whether the New York City symptomatic surveillance data itself is of high quality (Note that New
York City was one of the major COVID “hotspot” in April 2020, the 2% COVID-19 related symp-
tomatic rate may be suspicious [9]).

Reported Infections

The baseline parameterization and MDLINFER also estimate the number of reported infections
BASEPARAMR; s and MDLPARAMR;,s respectively. We compare these against the New York Times
reported infections NYT-Rinf.

Next we define prins as a metric to compare BASEPARAMR;s and MDLPARAMR;j,s based on how
well they approximate NYT-Rinf. It is defined as follows:

RMSE(BASEPARAMRine, NYT-Rinf)
RMSE(MDLPARAMR;jnt, NY T-Rinf)

PRinf = (39)
Here, the values of print larger than 1 indicates that MDLPARAMR;y¢ is closer to the NYT-Rinf than
BASEPARAMR;y,f, and the values of priys smaller than 1 indicates that MDLPARAMR;ys is further to
the NYT-Rinf than BASEPARAMRjut.

In Fig. we present additional results comparing the accuracy MDLPARAM against BASEPARAM
in estimating reported infections. In Philadelphia, PA, New York City, South Florida, and Western
Washington (Fall), MDLPARAMR;y¢ fits the NYT-Rinf reported infections better than BASEPARAMRjp-
However for Western Washington (Spring), MDLPARAMRg;jy¢ slightly fail to fit the NYT-Rinf re-
ported infections better than BASEPARAMR;,¢ for the observed period. This could be explained by
the fact that the reported infections during the observed period for Western Washington (Spring)
is too small and therefore sensitive to small fluctuations.
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Reported Rate

We also calculate the dynamic reported rate from both baseline parameterization and MDLINFER.
We calculate BASEPARAMRate from BASEPARAM p as follows:

>+ NYT-Rinf
BASEPARAMRyte = e (40)
> D(p)
Similarly we calculate MDLPARAMRate from MDLPARAM p’ as follows:
NYT-Rinf
BASEPARAMR e = Zt—m (41)

2. D(P’)

In Fig. [S9, we present additional results comparing the MDLPARAM against BASEPARAM in
estimating temporal reported rate. In Bucks, PA, Western Washington, Philadelphia, PA, New
York City, and South Florida, the reported rate estimated by MDLPARAM is within the confidence
interval provided by serological studies while the reported rate estimated by BASEPARAM is outside
or barely fits the interval.

Non-pharmaceutical Interventions Simulation

We also use the both baseline parameterization and MDLINFER to perform non-pharmaceutical
interventions simulation. Here, both the baseline parameteriztion p and MDLINFER inferred p’ are
estimated on the observed period, then on the future period, we will consider the following five
scenarios of isolation:

1. Isolate reported infections: We isolate the «aq fraction of severe symptomatic infections Ig and
mild symptomatic infections ;.

2. Isolate both reported infections and symptomatic infections: Note that some reported infec-
tions are included in the symptomatic infections. Here, we isolate all severe symptomatic
infections Is and mild symptomatic infections Iy.

3. Isolate 25% presymptomatic and asymptomatic infections: We isolate 25% of presymptomatic
infections Ip, asymptomatic infections I 4, and all severe symptomatic infections Ig and mild
symptomatic infections Ip;.

4. Tsolate 50% presymptomatic and asymptomatic infections: We isolate 50% of presymptomatic
infections Ip, asymptomatic infections I 4, and all severe symptomatic infections Ig and mild
symptomatic infections I;.

5. Isolate 75% presymptomatic and asymptomatic infections: We isolate 75% of presymptomatic
infections Ip, asymptomatic infections I 4, and all severe symptomatic infections Ig and mild
symptomatic infections Ip;.

The infectiousness of the noes in isolated is reduces by 50%. Fig. shows additional results on non-
pharmaceutical interventions described above. We can still see the same results that MDLPARAM
leads to more realistic non-pharmaceutical intervention simulations than BASEPARAM and non-

pharmaceutical interventions on asymptomatic and presymptomatic infections are essential to con-
trol the COVID-19 epidemic.
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Sensitive Analysis

We also perform sensitivity experiments to inspect the robustness of our non-pharmaceutical in-
terventions simulations in Fig. Here, we reduce the infectiousness of the isolated infections
to 3 different values, and repeat simulations in each of the scenarios. Our results show that only
isolating reported or symptomatic infections is not be enough to reduce the future reported in-
fections. However, isolating both symptomatic infections and some fraction of asymptomatic and
presymptomataic infections leads to reduction in reported infections in most settings.
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Figure S5: Compartmental diagram of epidemiological model Og [4].

Cui. et al - 14



%10* Hennepin, MN %107 Philadelphia, PA Performance priy in different region
7

8 - 3 10
—+— BASEPARAMTj,¢ } } .
—=— MDLPARAMqyj,¢ !
6 = SEROSTUDY iyt ! 8
i
| 2
E : Se
£ i g 4
3 ! 1 &
2
0 i 0 - 0
Mar 1 Apr 1 May 1 Mar 1 Apr 1 HP PL NY FL
(@) (b) (e)
3 x 108 New York City 4 x10° South Florida
- I

Cumulative values
o

[

Mar 1 Apr 1 Mar 1 Apr1
(c) (d)

Figure S6: MDLPARAM estimates total infections more accurately than BASEPARAM. (a)-(d) The
grey dash line divides the observed period (used to train BASEPARAM as well as MDLPARAM) and
the future period (which was not accessible to the model while training). Blue curve and green
curve represent the total infections estimated by baseline parameterization, BASEPARAMTi, ¢, and
the total infections estimated by MDLINFER parameterization, MDLPARAMTj,¢ respectively. The
red point estimate SEROSTUDYins and confidence interval represent the total infections estimated
by serological studies [3], [6]. Note that each plot corresponds to a different geographic region,
and the scales are different. (e) The performance metric, pri,, comparing MDLPARAM against
BASEPARAM in estimating total infections are shown for the regions in (a)-(d). Here the values
of prins are 0.82, 6.87, 9.69, and 78.04, implying that MDLPARAM generally performs better in
estimating total infections than BASEPARAM.
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Figure S7: MDLPARAM estimates more accurate symptomatic rate than BASEPARAM.
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(d) Blue curve and green curve represent the symptomatic rate estimated by baseline parame-
terization, BASEPARAMgy,p, and symptomatic rate estimated by MDLINFER parameterization,
MDLPARAMgymp. The red point estimate RATEsyy,, and confidence interval represent the COVID-
related symptomatic rate from Facebook’s symptomatic surveillance data [2]. Each plot corresponds
to a different geographic region, and the scales are different. (e) The performance metric, psymp,
comparing MDLPARAM against BASEPARAM in estimating symptomatic rate are shown for the re-
gions in (a)-(d). Here the values of psymp are 1.07, 1.25, 0.77, and 1.12, implying that MDLPARAM
generally performs better in estimating symptomatic rate than BASEPARAM.
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Figure S8: MDLPARAM leads to better fit and projection than BASEPARAM. (a)-(e) The grey
dash line divides the observed period and future period. Black plus symbols, blue curve, and
green curve represent the reported infections NYT-Rinf, reported infections estimated by baseline
parameterization, BASEPARAMRiy¢, and reported infections estimated by MDLINFER parameteriza-
tion, MDLPARAMRj, ¢ respectively. Note that each plot corresponds to a different geographic region.
As seen in the figure, MDLPARAMR;ns aligns much closer with NYT-Rinf than BASEPARAMR;n.
Besides, MDLPARAMgR;jy¢ projects the future trends better than BASEPARAMR;pt. (f)-(g) The perfor-
mance metric, prinf, comparing MDLPARAM against BASEPARAM in estimating reported infections
are shown for the regions for both observed period (f), and future period (g). In both observed
and future period, MDLINFER estimates reported infections better than BASEPARAM, and priuf in
future period is even larger than pri,¢ in observed period.
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Figure S9: MDLPARAM estimates reported rate more accurately than BASEPARAM. The grey dash
line divides the observed period and future period. Blue curve and green curve represent the reported
rate estimated by baseline parameterization, BASEPARAMRate, and reported rate estimated by
MDLINFER parameterization, MDLPARAMR,te respectively. The red point estimate SEROSTUDYRate
and confidence interval represent the reported rate estimated by serological studies [3],[6]. Note that
each plot corresponds to a different geographic region. As seen in the figure, the reported rate
estimated by MDLPARAM is within the confidence interval provided by serological studies while the
reported rate estimated by BASEPARAM is outside or barely in the interval.
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Figure S10: MDLPARAM leads to more realistic non-pharmaceutical intervention simulations than
BASEPARAM. (a)&(c) Accuracy of non-pharmaceutical intervention simulations relies on the good
inference of unreported infections. The grey dash line divides the observed period and future pe-
riod. The blue curve represents the reported infections estimated by BASEPARAM. The other five
curves represent the simulated reported infections for 5 scenarios: Isolate the reported infections,
symptomatic infections, symptomatic infections and 25%, 50%, 75% asymptomatic and presymp-
tomatic infections, where we reduce the infectiousness of these isolated infections to half in future
period. (b)&(d) Non-pharmaceutical interventions on asymptomatic and presymptomatic infections
are essential to control the COVID-19 epidemic. The green curve represents the reported infections
estimated by MDLPARAM.
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Figure S11: Our non-pharmaceutical interventions simulation results are robust. In (a) to (c),
the grey dash line divides the observed period and future period. The blue curve represents the re-
ported infections estimated by BASEPARAM. The other five curves represent the simulated reported
infections for 5 scenarios: Isolate the reported infections, symptomatic infections, symptomatic in-
fections and 25%, 50%, 75% asymptomatic and presymptomatic infections, where we reduce the
infectiousness of these isolated infections to 30% in (a), 40% in (b), and 50% in (c) in future period.
In (d) to (f), the grey dash line divides the observed period and future period. The green curve
represents the reported infections estimated by MDLPARAM. The other five curves represent the
simulated reported infections for 5 scenarios: Isolate the reported infections, symptomatic infec-
tions, symptomatic infections and 25%, 50%, 75% asymptomatic and presymptomatic infections,
where we reduce the infectiousness of these isolated infections to 30% in (d), 40% in (e), and 50%
in (f) in future period.
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