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a The global response to the SARS-Cov-2 pandemic has consisted of two main
5 strategies both involving non-pharmaceutical interventions to control spread:
6 mitigation, ultimately relying on herd immunity from vaccination, and elimi-
7 nation of infections locally. While simple theory for controlling an epidemic
8 through herd immunity exist, there is no corresponding simple theory for the
9 strategy of elimination with non-pharmaceutical interventions. Here we quantify
10 an important aspect of the elimination strategy: the time to extinction without
11 herd immunity, based solely on non-pharmaceutical interventions. Using a sim-
12 ple well-mixed stochastic SIR model, we find two new results: 1) using random
13 walk theory we calculate a simple approximation of the mean extinction time
14 and 2) using branching process theory the full distribution of times to extinction,
15 which we show is given by the extreme value Gumbel distribution. We compare
16 these results against complex spatially-resolved stochastic simulations to show
17 very good quantitative agreement, demonstrating the validity of this simple ap-
18 proach. Overall, for SARS-Cov-2 our results predict rapid extinction — of order
19 months — of an epidemic or pandemic if the reproductive number is kept to
20 R. < 0.5; in a counterfactual scenario with global adoption of an elimination
21 strategy in June 2020, SARS-Cov-2 could have been eliminated world-wide by
2 early January 2021.
1
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»  Introduction

2« The SIR model has remained a popular paradigm to understand the dynamics of epidemics (I,
s 2), despite its simplifications compared to real world epidemics, which have spatial structure (3,
26 4), heterogeneity (5, 6) in connection between regions and heterogeneity in contact rates between
27 individuals, often giving rise to super-spreading events (7). The SIR model makes a simple prediction
2s for a closed population (2): in the absence of any interventions and assuming individuals recovered
20 from infection have permanent immunity, infections increase, eventually leading to the population
30 developing herd immunity, at which point infections decline and after some time the epidemic goes
31 extinct.

3 However, for infectious diseases, such as SARS-Cov-2 , we have seen such strategies, which carry
33 a high burden of hospitalisation and mortality may not be socially and politically acceptable. This
3¢ led to much of the globe adopting mitigation strategies, particularly in the West, which broadly,
35 allowed infections to increase within the allowed capacity of health infrastructure, adopting non-
ss  pharmaceutical interventions (NPIs) when necessary, while a number of countries in the Asia-Pacific
57 region adopted an elimination strategy that aimed to eliminate infections though NPIs (8, 9). Al-
33 though, the latter strategy does not explicitly aim at eradication — since in the absence of concerted
30 global cooperation, it is clear in a global pandemic an infectious disease cannot be eradicated, until
40 it has been essentially eradicated everywhere — it does aim at a local eradication or elimination,
a1 such that infections are not routinely circulating in the population. Although, there has been some
22 specific modelling regarding elimination, for example, in New Zealand (9), there is in general a basic
43 lack of fundamental and simple theoretical results for this second scenario, which this paper addresses
s through calculation of the timescales of eradication/exctinction both at a national and global level.
45 In practice, the mitigation strategy is a stop-gap measure until population immunity can be
46 achieved by vaccination and if the population is vaccinated to a sufficient fraction to achieve herd
47 immunity, then the epidemic will decline. A key assumption that negates in practice the ultimate
48 prediction of extinction of epidemics, is the lack of long-term immunity, particularly amongst the
49 family of coronaviridae, which SARS-Cov-2 is a member, as well as the evolution of new escape
so variants. Currently, for SARS-Cov-2 the question of long-term immunity is not completely known,
51 whether by natural immunity or vaccine induced; although there is evidence of waning antibody
52 immunity on the timescale of a few months (10), the overall immunological response maybe more
53 robust over the timescale of roughly a year (11, 12). Importantly, although vaccines may have high
s¢ efficacy for reducing serious disease, the picture regarding a significant reduction in transmission is
ss  still not clear (13-16). In addition, as the recent emergence of new variants (17, 18) have shown,
ss there is the possibility that vaccine escape mutants could evolve (19), reducing the efficacy or
57 rendering redundant vaccines based on previously circulating antigen sequences. Although, much is
ss  still unknown, in a worst case scenario where immunity is short-lived and infections are endemic (20),
so there will be a continuing risk of vaccine escape, and so alternative strategies may be required,;
60 ultimately, even for those countries pursuing mitigation, elimination may be the only option available,
61 other than naturally acquired immunity.

62 This paper examines the SIR model, but fully accounting for the discreteness of individuals that
63 leads to stochasticity in the progress of an epidemic. This is critical to examine the question of
64 extinction, since the continuous (deterministic) SIR model is unrealistic when only a few individuals
65 are infected and gives the erroneous prediction that extinction only arises asymptotically at very long
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66 times. There has been considerable work done on understanding stochastic aspects of epidemics
e7 (21,22) from the role of critical community sizes in diseases such as measles (23, 24), stochastic
¢ phases in the establishment of epidemics (25), to stochastic extinction. With regard stochastic
60 extinction most results have been focussed on understanding the time to extinction either through the
70 whole course of an epidemic (26, 27) or assuming a quasi-equilibrium has been reached through herd
71 immunity in the population (28). However, the situation faced by many countries at the beginning
72 stages of the SARS-Cov-2 pandemic and before vaccination, has not been strongly considered in
73 previous modelling, that is where significant herd-immunity has not been achieved in the population,
74 and there is the potential that NPIs alone can be used to reduce the reproductive number to less
75 than 1, the critical threshold for growth and give rise to extinction of an epidemic.

76 It is with this scenario in mind, where a population still has many more susceptible (& recovered),
77 compared to infected, where our main simple result is focussed, and we find the stochastic dynamics
78 tractable within a simple birth-death branching process framework. Our main theoretical result is the
79 distribution of the times to extinction of an epidemic, which surprisingly, we find is a Gumbel-type
so extreme value distribution. Although the extinction time distribution has been previously studied (29),
81 a closed form solution for a Poisson offspring distribution was not obtained. Key to this result is
& a new threshold IT = 1/(1 — R,), below which stochastic changes dominate and which we show
83 arises from simple random walk theory. However, we then also extend the calculation using heuristic
s« considerations that cover the whole range of 0 < R. < 1, accounting for the dynamics of R., when
s Re <1, where by necessity population immunity must play a role in the dynamics of the epidemic.
8 As this result ignores spatial structure and heterogeneity of an epidemic, we then compare to simple
87 and more complex spatial epidemic simulations, and find our theory captures the extinction time
ss distribution very well, as long as R, is appropriately rescaled to account for migration. We then use
g0 this theory to make broad predictions of extinction times within the UK, and globally to serve as a
o0 guide to more complex and detailed models. Our key message is that for an infectious disease like
o1 SARS-Cov-2 , where infection durations are of order a week, reproductive numbers R. > 0.6 give
92 extinctions times which are long and of order many years — on the other hand, extinction can be
o3 rapid with times much less than a year, or a few months, if restricted to R, < 0.5.

« Susceptible—Infected—Recovered (SIR) model of epidemiology

os  The SIR model divides the population of N individuals in a region into 3 classes of individuals:
o susceptible S (not infected and not immune to virus), | infected and R recovered (and immune,
o7 S0 cannot be re-infected). If we assume a rate 5 of an infected individual infecting a susceptible
o¢ individual (S+ 1 — 2l), and a rate 7 that an infected person recovers from illness (S — R), the
90 ordinary differential equations describing the dynamics of this process are:

ds
100 a —BI(S/N) (1)
101 % = PBI(S/N)—~I (2)
dR
102 i ~I. (3)
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103 A key aspect of this model is that it allows a simple characterisation of when number of infections
104 will grow or decline: whatever the previous history of the epidemic, for growth we need % > (0 and
105 this happens for the following condition on RHS of the 2nd equation above: 3S(t)/N —~ > 0,
106 or equivalently, R, = M > 1, where we have defined the dimensionless number R, (also
17 commonly called R;) as the combination shown, and will in general be time-dependent, as the
18 number of susceptible individuals in a population change. R, represents the average number of
19 individuals an infected person infects through the duration of the infection 7 = 1/. It is important
110 to understand that this interpretation of R, is within the context of a well-mixed model. In reality,
1 locally there may be deviations from the global density of susceptible individuals (S(¢)/N) and also
12 differences in connectivity between different regions causing differing rates of infection locally.

113 It is worthwhile to briefly revisit how extinction arises through herd immunity in the standard SIR
14 model, in contrast to the main mechanism we discuss in this paper, where there is extinction without
115 herd-immunity and only using NPIs. Initially, it is assumed the whole population is susceptible, as
16 the number of infected is 1 or very small, so S(t = 0) ~ N and the reproductive number in this case
u7 is Ry = /. The above SIR equations lead to a growing number of infected I(t), and a decreasing
us susceptible pool S(t), which leads to a decreasing R.. The epidemic continues to grow until R, = 1
1o (i.e. when the fraction of susceptibles has become sufficiently small), at which point dI /d¢ = 0 — this
120 defines the classic herd-immunity threshold of the number of immune/recovered 1—1/R,. The classic
121 herd immunity threshold only defines the point when the effective reproductive number is exactly 1,
122 and in fact the number of susceptibles continues to decline beyond this point, causing R, < 1, until
123 it reaches a plateau S (2). The plateau corresponds to when infections have become sufficiently
122 small that additional infections cause only a negligible change to the susceptible pool; once this
15 plateau is reached we have a constant “ultimate” reproductive number R® = —W (—R.e %) < 1,
126 where W(z) is Lambert's W-function, which is defined by the solution to the transcendental equation
127 we” = z. In this limit, as discussed below, the number of infected then declines exponentially until
128 extinction.

2o Assumption of constant 1, with small fraction of infected individuals
s in SIR model

131 As just discussed, in an idealised SIR epidemic, if 5 does not change due to behaviourial changes,
132 the reproductive number is in general a constantly decreasing number, due to the susceptible pool
133 of individuals diminishing — this eventually leads to herd immunity as the decreasing susceptible
134 fraction brings R. < 1. However, changes in social behaviour (non-pharmaceutical interventions or
135 NPIs) can also bring R. < 1 by controlling 3, before any significant herd immunity is established,
136 which was generally still the case in many countries with SARS-Cov-2 (before February 2021), when
137 vaccination coverage was low. In this case, if we assume that the fraction of the population that are
138 currently infected is small, compared to the number of susceptibles, we can assume that the effects
130 of herd immunity are negligible; analogously to the description with herd immunity, this is manifested
1o by an approximately unchanging susceptible pool and constant effective reproductive number R,.

141 Using the United Kingdom as an example, just after the first lockdown, the UK Office for National
142 Statistics (30) estimates from serological testing in England that 6.8% of the population had been
13 infected to June 12th 2020 (= 4.6 x 10% extrapolated to the UK population) and from random PCR
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s testing a current incidence of 0.055% (= 3.7 x 10* were actively infected in UK) — in which case,
15 extrapolating to a UK population size of ~ 67 x 10°, the total number of susceptibles (= 62 x 10)
16 IS much greater than the number currently infected. More recently, with the emergence of more
147 transmissible variants and varied application of NPIs, infections peaked at of order a million, and
s roughly 18.5% of the population estimated to have antibodies in February 2021 (31); this leads to a
149 susceptible pool of approximately 55 million, which is still much greater than the number currently
150 infected.

151 In this case, as long as R, isn't very close to 1, it is reasonable to assume that the population of
152 susceptible individuals S(t) = Sy is roughly constant and the reproductive number unchanging R, =
153 ( N BSQ/N; although each time an individual is infected, we loose exactly one susceptible the

154 relatlve change of the susceptible pool is negligible, since the total number of susceptible individuals
155 is very large. As we show in Supplementary Materials, this approximation is good as long as R, < R},
155 where RF = —W (—e~Fo(1=R(0)/N)) "which corresponds to an initial value of R,, such that the decline
157 is sufficiently rapid that the error due to ignoring the change in the susceptible pool is negligible.
15s Calculating R} within the United Kingdom, last summer infections were small Iy ~ 3 x 10* and
159 assuming roughly 10% had recovered (R(0) = 0.1N), we find the constant R, assumption to be
10 good for R, < 0.98, i.e. for all but R, very close to 1, however, using numbers from January 2021,
161 Ip ~ 10°, and 15% recovered this requires R, < 0.82. Assuming that Iy < Sg and R, < R, this
12 model of constant R, should also be very reasonable, when there is no immunity (SIS model), or in
163 the presence of waning immunity, where immunity only lasts a finite time (SIRS), since increasing the
164 susceptible pool again should have negligible effect, since we assume the total number of susceptibles
165 is very large in comparison.

166 This means for the case where only a small fraction of the population are ever currently infected,
17 the SIR dynamics results in a single differential equation for I(t):

df

= (B5/N I *)
18 The last differential equation involving R can be ignored as it is really only there for book-keeping,
160 as there is no direct effect of R on the dynamics of S and I. The solution to this is of course an
170 exponential function:

I(t) = ]Oe(BSo/N—W)t = JyePet,

i1 where p. = 7(R. — 1) is the effective growth rate for R, > 1, and decay rate when R, < 1, and
12 Ip = I(0) the initial number of infected individuals. Note that R, is not a rate, it does not in
173 absolute terms tell you anything about the time scales of change; however, p. is a rate, and if it
172 could be measured empirically, it would give information in the speed of spread of the infection, as
175 well as having the same sign information for the direction of change (p. > 0 the epidemic spreads,
176 while p. < 0 means the epidemic cannot spread). As we will see p. more directly determines the
177 dynamics of the extinction process than R, or « separately, and is in fact an easier quantity to
17 determine (Supplementary Materials).

179 We are interested in understanding extinction of an epidemic and so from here on we define the
10 rate p. = v(1 — R.) to be a positive quantity, making the assumption that R, < 1. In this case we
181 can make a simple deterministic prediction for the time to extinction, by calculating the time for the
12 infected population to reach I(t) = 1:
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th = LR (Io), (5)

Pe

183 Of course, we want to know the time to complete elimination I(t) = 0, but we cannot answer this
18¢ question with a deterministic continuous approximation, since the answer would be oco; the time it
185 takes to go from 1 infected individual to O cannot be handled in a deterministic approach, since
186 it ignores the discreteness of individuals and the stochasticity that lies therein. In fact, without
157 understanding the stochasticity of the extinction process, it is difficult a priori to say anything about
188 the goodness of this deterministic calculation, since in general we would expect stochasticity to be
180 important far before there remains only a single infected individual. We answer below, using heuristic
10 arguments, the minimum number of infected individuals needed to overcome stochastic effects and
101 confirm that this threshold also arises as a key determinant in the extinction time distribution in an
192 exact branching process calculation.

s Stochastic extinction of an epidemic

104 The above analysis assumes deterministic dynamics with no discreteness — it ignores any randomness
105 in the events that lead to changes in number of infected individuals; an infected person might typically
196 take the tube to work, potentially infecting many people, whilst on another day decide to walk or
107 take the car, reducing the chances of infecting others. When the epidemic is in full flow with large
198 numbers of individuals infected, all the randomness of individual actions, effectively average out to
190 give smooth almost deterministic behaviour. However, at the beginning of the epidemic, or towards
200 the end, there are very small numbers of individuals infected, so these random events can have a
201 large relative effect in how the virus spreads and need a stochastic treatment to analyse. We are
202 interested in analysing the stochasticity of how the number of infected decreases when R, < 1 and
203 eventually gives rise to extinction, i.e. when there is exactly I = 0 individuals; in particular, we are
204 primarily interested in calculating the distribution of the times to extinction.

205 We can initially confirm that the assumptions of a constant R. due to a negligibly changing
206 susceptible population of the previous section are accurate, by running multiple replicate stochastic
207 continuous time simulations with Poisson distributed events (Gillespie or kinetic Monte Carlo sim-
208 ulations) (32) of the SIR model with R, = 0.7, v = 1/7 days™!, Iy = 3.7 x 10* and an initial
200 recovered population of R(0) = 6 x 109, which for simplicity we take as 10% of population infected
210 and recovered. Fig.1 plots the decline in number of infected over time I(t). Each of the trajectories
aun from the Gillespie simulations is a grey curve, whilst the deterministic prediction (Eqn.5) is shown
212 as the solid black line. We see that for I(¢) > 1 the stochastic trajectories are bisected by the
213 deterministic prediction, indicating that the assumption of a constant R, is a good one.

24 Simple random walk analysis

215 We can see from Fig.1 that as I(t) approaches extinction, as expected the trajectories become more
216 and more varied as the number of infected becomes small. A simple heuristic treatment inspired
217 from population genetics (35) would define a stochastic threshold IT, below which stochastic forces
218 are more important than deterministic, as indicated by the dashed black line in Fig.1; the time to
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Figure 1: Simulation trajectories on log-linear scale (inset: linear-linear scale) for a decay rate of
pe = 0.043/day, corresponding to R, = 0.7, 1/ = 7 days, Iy = 3.7 x 10* and an initial recovered
population of R(0) = 6 x 105 The solid black line is the deterministic prediction from Eqn.5,
grey trajectories are 100 replicate Gillespie simulations of a standard SIR model, whilst the yellow
trajectories are from 50 replicates using the spatial epidemic simulator GleamViz (33, 34) restricted
to the United Kingdom with a gravity model between heterogeneous sub-populations as shown in
the inset map of the UK. The dashed black line is the threshold number of infected individuals I,
below which changes in infected number of individuals is mostly stochastic.

210 extinction is then approximately the sum of the time it takes to go deterministically from Iy to I
220 (pieln(Ig/IT)) and the time it takes to go from IT to I = 0 by random chance.

21 Assuming such a threshold IT exists, this latter stochastic time can be approximated as follows: if
22 there are n < IT infected individuals and changes are mainly random, then we are randomly drawing
223 individuals from a pool of n infected individuals and N — n non-infected individuals — a binomial
24 random walk — which when n < N has standard deviation ~ /n per random draw, which means
»s we need k = n random draws, such that the standard deviation over those k draws is vkn ~ n; a
226 single random draw corresponds to one infection cycle of the virus, which is 7 = 1/~ days, so the
227 time to extinction starting with n individuals is approximately n/~.

228 How do we estimate IT? It is given by the threshold size at which random stochastic changes,
29 change the number of infected by the same amount as the deterministic decline. In one cycle
23 or generation of infection, if there was no stochasticity, the number of infected would decline by
21~ p.I /7, so equating this to the expected standard deviation of purely random changes, VT, we


https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.10.20171454; this version posted September 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

2 find IT = 1/(1 — R,), which is shown in Fig.1 for R, = 0.7. Note that this threshold is closely
233 related to Williams' threshold theorem (36), where the probability of establishment of an epidemic
24 from a single infected individual is p* = 1 — 1/R,, in the case that R, > 1, which then gives a
235 critical number of infected I* ~ 1/p* = R./(Re — 1), below which infections changes as a random
236 walk.

237 As discussed below, and in more detail in the Supplementary Materials, a more exact calculation
2 of these considerations, using branching process theory, gives exactly the same expression for I.
230 This means the typical stochastic phase lasts IT/y = i days and so adding the deterministic and

240 stochastic phases, the mean time to extinction =~ p—le(l + In(Io/I')) (see Eqn.8 below for a more
241 exact expression of the mean).

22 Exact branching process analysis

223 The branching process framework used to calculate the distribution of extinction times is standard,
2sa  but detailed, and so we will sketch the derivation here and leave details for the Supplementary
25 Materials. The first step is to recognise that there are two independent stochastic events that give
26 rise to the net change in the numbers of infected individuals, as depicted in Eqn. 4 for the continuum
247 deterministic limit: 1) a susceptible individual is infected by an interaction with a infected individual,
28 such that I — I+ 1 and 2) an infected individual recovers spontaneously such that I — I —1. This
29 is a simple birth death branching process for which it possible to write down differential equations
20 (dpr(t)/dt) for how the probability of I infected individuals changes with time in terms of the birth
251 and death events just defined. It is possible to find after some calculation the probability generating
252 function G(z,t) of the birth-death process, from which the probability of having exactly I = 0
253 individuals as a function of time is given by:

1 —e—pet \ 10
H=Gz=0,t) = ——— | . 6
R O ey ©)
24 |f pl(t) is the distribution of times to extinction (i.e. the probability of an extinction occuring between
25 time ¢ and ¢ + dt is pf(t)dt), then clearly the integral of this distribution, between time 0 and ¢ is
256 exactly Eqn.6, and hence the distribution of times to extinction is simply the derivative of py(t) with
257 respect to time. Doing this and also taking the limit that Iy > I, we find:

_dpo(?)
P ==

255 where 77 = iln([o/ﬁ), which is the time it takes for number infected to change from the initial

~ pee P77 exp(—ere(=TY) (7)

250 number I to the critical infection size, which this calculation shows is given by I = ﬁ; pleasingly,
260 this is the same result as arrived by the simple heuristic analysis above. Fig.2 shows a histogram
261 (grey bars) from Gillespie simulations of the SIR model with 5000 replicates of the number of infected
22 individuals for R, = 0.7, v = 1/7 days, with initial number infected I = 3.7 x 10% and an initial
23 recovered population of R(0) = 6 x 10%, corresponding to the situation in the UK in 12" June
264 2020. The corresponding prediction from Eqn.7 is given by the solid black line — we see that
265 there is an excellent correspondence. In addition, Fig.5, we see that for the range of R. < R} the
266 mean extinction time from simulation fits this prediction perfectly. Surprisingly, the extinction time
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Figure 2: Probability density of extinction times for the same parameters as in Fig.1. Grey bars are
a histogram of 5000 replicate simulations of Gillespie simulations normalised to give an estimate of
the probability density, and the black curve is the prediction of the analytical calculation given in
Eqn.7, which we see matches the simulations extremely well. The yellow bars are histograms from
the GleamViz spatial epidemic simulator with 50 replicates, which we see gives similar results to the
predictions of the stochastic SIR model.

27 distribution is a Gumbel-type extreme value distribution (37, 38); it is surprising as an extreme value
268 distribution normally arises from the distribution of the maximum (or minimum) of some quantity,
260 although here it is not clear how this relates to the extinction time.

270 There are number of standard results for the Gumbel distribution Eqn.7, so we can write down
onn (or directly calculate) the mean and standard deviation of the extinction time:

W = /)1 <T +n G‘;)) (8)

273 <<t2>> = ﬂ-/\/é, (9)

Pe

214 where YT & 0.577 is the Euler-Mascheroni constant (conventionally assigned the symbol v, but here
275 7y is the recovery rate). We see that the heuristic calculation overpredicts the stochastic part of the
276 extinction time by a factor of &~ 2. Note that the standard deviation or dispersion of the distribution
277 only depends on the inverse of the rate of decline p. and as expected not on the initial number of
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278 infected individuals Ij; hence as p. decreases (R, gets closer to 1), we see that the distribution of
279 extinction times broadens (as we see below in Fig.6).

280 We can also calculate the cumulative distribution function
K t
PI(t) = [ p(¢)ar = exp(-e ), (10)
0
21 from which the inverse cumulative distribution function Tt = (PT)~! can be calculated:
i 1
Tp) = 7' =~ In(=In(p)), (11)
€

232 which enables direct generation of random numbers drawn from the extinction time distribution, by
23 drawing uniform random w on the unit interval and calculating T'(u). It also allows calculation of
24 arbitrary confidence intervals, for example, the 95% confidence intervals, by calculating 77(0.025)
2 and T7(0.975), as well as the median 77(1/2) = 71 — p% In (In (2)).

286 Finally, it is important to stress that the distribution of extinction times Eqn.7 and the following
27 results all assume that Iy > I, so that there is a clear separation of the deterministic and stochastic
288 phases of the decline in infections. A more general and exact result for the distribution of extinction
280 times is given in the Supplementary Materials.

»0 Extinction time distribution with spatial structure and heterogeneity

21 National level (United Kingdom)

202 A potentially valid criticism is that real populations have spatial structure and heterogeneity of
203 contacts between regions. To make comparison to our simple predictions, we used a complex epidemic
204 simulator GleamViz (v7.0) (33, 34), which includes a gravity model of migration, where rates of
205 migrations between sub-populations are proportional to their population sizes (see Fig.1 inset map
206 of UK), and each sub-population based on accurate census data within a grid of 25 km. We ran
207 b0 replicate simulations for an SIR epidemic within the United Kingdom and with zero air travel
208 to other countries, with the same parameters as the stochastic SIR simulations in the previous
0 section (corresponding to 12! June 2020: R. = 0.7, v = 1/7 days, initial recovered population
30 R(0) = 6 x 105 — in addition, each definable sub-population in the UK was given a current infection
301 incidence of 0.06% giving a total Iy ~ 3.7 x 10%). We see the trajectories (Fig.1 — yellow lines) and
02 histogram of extinction times (Fig.2 — yellow bars) compare very favourably to the predictions of the
303 stochastic SIR model (black solid line and grey histogram bars); the mean and standard deviation
s04 including the gravity migration model is 211416 days, which is slightly smaller than the prediction of
s0s  the stochastic SIR model which has no migration or spatial structure (231 + 30 days). This suggests
306 that heterogeneity and migration might together have the net effect of reducing extinction times, as
307  below we see increasing migration uniformly, has the opposite effect; nonetheless within the UK it
308 would seem the overall effect of heterogeneity and migration is of second order to predictions of a
300 well mixed model. Overall, at a national level, we find the results of our simple model are accurate
310 to within the width of the distributions of the extinction times.
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Figure 3: Probability density of extinction times for the same parameters as in Fig.1, but including
migration and sub-division into equal sized populations. Each histogram comprises 1000 replicates
for n = 5 regions connected by uniform migration with probability ¢. Grey bars are ¢ = 0 (complete
isolation), blue correspond to ¢ = 0.05 and ¢ = 0.1 are the red bars. For ¢ = 0 the solid line grey
line is exactly the solid black line in Fig.2, showing that the extinction time distribution of identical
to the single global well-mixed population of same aggregate size. The solid blue and red lines are
fits to the histogram using Eqn.7 with a single free parameter R, (with v and I constrained to the
values used to run the simulations).

s Global

312 It was not possible to repeat these simulations on a global scale as GleamViz does not record individual
s13 level changes in infections and deaths in its global output. Here instead we first consider the total
si4 extinction time distribution for a number of isolated regions (countries) with no migration between,
315 but each with the same R.. As we show in the Supplementary Materials, in fact, the extinction
s16  time distribution of the whole region (i.e. the distribution of the maximum time of all the groups) is
317 exactly the same distribution as assuming a single unstructured /undivided population for the region.
sis. We verify this by Gillespie simulation of a simple birth-death model with growth rate YR, and death
319 rate v for n isolated populations; the grey histogram in Fig.3 is the estimate of the extinction time
s20 distribution for isolated sub-populations and this matches the grey solid line, which is exactly the
321 solid black line in Fig.2.

322 We now look at the effect of migration, where we examine the same Gillespie simulations of birth
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323 and death, but with a probability of global migration per individual of ¢. As we increase ¢ we see that
324 the extinction time distribution shifts to longer times, yet still maintains the same form as given by
25 Eqn.7 — fitting to this equation using only R, as a free parameter, we find for ¢ = {0.01,0.05,0.1},
2 Re = {0.70940.001,0.73240.001,0.7600.001}, respectively (minimum R-sqd statistic of 0.975).
327 These fits are shown as the blue and red solid lines in Fig.3 for ¢ = 0.05 and ¢ = 0.1, respectively,
228 and we see that the fits follow the data very closely (the histogram and fits for ¢ = 0.01 are not shown
20 in Fig.3 for clarity, as they overlap closely with ¢ = 0). We see that we can predict these estimated
50 reproductive numbers R, by simply rescaling the base R, to R, — (1+ ¢)R, = {0.707,0.735,0.77}
s for ¢ = {0.01,0.05,0.1}, respectively. This finding is closely related to the literature on the group
322 level reproductive number R, (3-5), except here we are studying the decline and extinction of an
333 epidemic/pandemic as opposed to its establishment, which has not been previously studied in this
334 context. Overall, these results suggest that under the assumption that each national region has the
335 same R, that the extinction time distribution is given by the stochastic SIR model (Eqn.7) but with
336 a rescaled R, to account for air traffic or migration between regions/countries.

= Modification to theory for k. > R

-3
a) b) 4 ¢x10 ‘
10° 16¢ A
14+
10° Z 12"
e 2
3 3
5] = 1
S 107 S 08
=z a
0.6
10"} 0.4 |
0.2+
100 ‘ . i  UiY FiAiA ‘ 0 A
0 500 1000 1500 2000 2500 3000 3500 0 1000 2000 3000 4000 5000
Time (days) Extinction Time (days)

Figure 4: a) Trajectories of numbers infected I(t) for simulations with R, = 0.99 > R for Iy =
3 x 10*, N = 67 x 10% and assuming 10% of population recovered at time ¢t = 0, which gives
R} ~ 0.97; the solid line is the mean of the simulations, while the dashed line shows the decline of
infections if R, = RZ° from t = 0, where we see the slope is the same as the mean at longer times.
b) Histogram of extinction time distributions of the same simulations with prediction given by Eqn7,
but with R, — R and 71 — 71 4+ 1/p%°, as detailed in the text.
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338 When R, is close to 1, we can no longer assume that changes in the number of susceptibles
330  has a negligible effect on R, itself. In this case the decline of infections is initially non-exponential,
a0 since R. decreases over time, as we see in the trajectories of Fig.4a, but at later times becomes
a1 exponential again, once R, is sufficiently small that again changes in S become relatively negligible.
32 As we detail in the Supplementary Materials, there is a critical value of R, above which the constant
a3 R, assumption is no longer an accurate approximation, which is given by

R = —W(—e Ro(=RO)/N)y, (12)

s For R, > R}, we take a semi-heuristic approach and calculate the steady state value of number of

a5 susceptible S°°, by integrating the SIR equations and then calculate

R® = RyS™®/N = —W (—Ree fo1-RO)), (13)

346 as the steady-state value of the reproductive number once infections have become sufficiently small.
ur  In Fig.4a, we plot how infection would decline with R, = RZ°, which we see has the same slope on
us  a log-linear plot as the asymptotic mean of the simulation trajectories at later times (solid line).

349 To calculate the extinction time distribution for R, > R}, we substitute for R° for R, in Eqn.7
350 and in addition, make the substitution 71 — 71 4 1/p2°, where p>® = (1 — R%) to account for
351 the time it takes to reach this steady state. We see in Fig.4b, that this prediction for the extinction
352 time distribution matches the histogram of times obtained by simulation very well. In addition, we
353 see in Fig.5 that the mean extinction time of simulations fits the predictions very well for R, > R}.
s« Finally, we can simply “stitch” the solutions for R. < R} and R. > R}, if needed, using a standard
355 tanh switching function for 71, as detailed in the Supplementary Materials, and shown as the dashed
36 line in Fig.5.

357 It is interesting to note that for R, > R}, the extinction times are significantly lower for a higher
sss - number of initial infected because RZ° is much lower; in essence the higher infection levels lead to a
350 significant relative reduction in the susceptible pool causing R, to drop more dramatically.

x Extinction time predictions for SARS-Cov-2

51 United Kingdom

362 We first consider what this model predicts for the extinction of the SARS-Cov-2 epidemic within the
363 United Kingdom, given an estimate of number infected of Iy ~ 3.7 x 10 with approximately 10%
364 of the population immune for June 2020, when the epidemic was near it's lowest incidence, and for
365 the current number of infected Iy = 7 x 10°, assuming roughly 70% of the population are immune
6 through a combination of infection and vaccination (39). In Fig.6a we have plotted the estimates
37 of mean (solid line) together with 95% confidence intervals (shaded region), given an initial number
368 of infected Iy for various reproductive numbers R, between 0 < R. < 1. In all these estimates we
360 assume a typical duration of 1/ = 7 days for infections (40).

370 We see three broad trends: 1) for R >~ 0.6 the extinction times are very long of order years,
s whilst at the same time the 95% confidence intervals becomes increasingly broad (of order years
sz themselves) meaning increasing unpredictability; 2) also for R, >~ 0.6, the deterministic prediction
s713  increasingly and significantly overestimates the mean extinction time; 3) for R, < 0.5 the extinction
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Figure 5: Mean extinction times for Iy = 3 x 10* (red) and Iy = 105 (blue) for N = 67 x 10°
and assuming 10% of population has recovered. The simple theory (Eqn.8) that assumes a constant
unchanging R, are shown by solid lines, while the theory modified for values of R, > R} are shown
as dashed lines. The values of R} are indicated by the vertical dashed lines, which for Iy = 3 x 10% is
R} =~ 0.97 and for Iy = 105 is R ~ 0.83. The filled squares are the mean extinction times obtained
using simulations for same sets of parameters.

374 times plateau with diminishing returns for further decreases in the reproductive number. Regarding
55 point 3), we see that there is minimum time to extinction, given by R. = 0; from Eqn.8 in the
w6 limit that R, — 0, the mean time to extinction (t) — 1/v(In(Iy) + Y), which shows the extinction
377 process is ultimately limited by the rate of recovery «, imposing a maximum speed limit on the rate
sis of decline of infections.

379 In the case corresponding to summer 2020, we see that the simple stochastic SIR model predicted
ss0  that extinction or elimination of the epidemic could have occurred within the United Kingdom within
ss1 4 to 5 months, which would be October/November 2020, if R, can be kept to below about 0.5, and
382 assuming no immigration of cases. More precisely, if R. = 0.4, the mean time is 123 + 15 days with
333 95% confidence intervals:(87,145) days. On the other hand for R. > 0.6 we see extinction times
ss4 increase very rapidly and are of order years. However, it should be noted that should 1/ = 7 days be
385 an underestimate of the infectious period then we would expect extinction times to be approximately
s6  scaled upwards in proportion. On the other hand, taking the more recent situation (mid-August
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Figure 6: Prediction of the extinction times from analytical theory of the epidemic within the United
Kingdom (a) and the pandemic globally (b) as a function of R.. a) For the United Kingdom we use
an initial infected population of Iy = 3.7 x 10* with 10% of the population recovered and immune
(purple) and Iy = 7 x 10° with 70% of the population immune (green), both with 1/ = 7 days.
b) For the global prediction, we use an initial infected of Iy = 3.5 x 10% and 1/y = 7 days. Solid
lines are the predictions of the mean (Eqn.8), whilst each shaded region corresponds to the 95%
confidence interval (Eqn.11) and the deterministic prediction (Eqn.5) are the dashed lines.

ss7 2021) where Iy ~ 7 X 10°, we see extinction can occur within about 6 months if R, < 0.5, or
sss  roughly by February 2022; more precisely the mean extinction time is predicted to be 157 4= 15 days
0 (120,177) if R. = 0.4.

;0 Global extinction time predictions

301 We can also use our calculation to make approximate predictions of global extinction times of SARS-
32 Cov-2 , with all the same broad caveats, given the simplifications of the model. However, as
303 argued above at a global level, we can have confidence that the predictions of the extinction time
s04 distribution Eqn.7 can be quantitatively correct, when the R, value is effectively rescaled to account
05 for migration/air-traffic between nations. We choose to examine the time to extinction from the
a6 period of summer 2020, as a hypothetical counterfactual scenario, where nations decided globally
307 to adopt an elimination strategy. In June 2020, the global death rate was very approximately 5,000
w8 deaths per day, and so with an approximate infection fatality rate n ~ 0.01, (41, 42) the rate of
309 change of deaths would be roughly d(deaths)/dt = nyI(t); inverting this gives a crude estimate
wo of the current number of actively infected globally as Iy = 3.5 x 10, or roughly 3.5 million. More
a01 precise estimates would require understanding the age structure of the infection fatality rate, which is
a2 highly biased to older populations, as well as accounting for more recent improvements in treatments
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w03 of severe cases, but as extinction times are only logarithmically dependent on initial size (Eqn.8),
204 these improvements would not significantly change these estimates. Given a global population of
a5 7.8 billion this corresponds to a global incidence of &~ 0.09%. We further assume that as in the UK
w6 at the time very roughly 10% of the population had acquired immunity naturally. In Fig.6b we plot
a7 how the predicted extinction time changes with effective reproductive numbers between 0 < R, < 1
ws for 1/ = 7 days. As would be expected, the results mirror the predictions for within the United
a9 Kingdom, except the plateau as R, — 1 occurs at much longer times; for sufficiently small values
a0 of R (Re < 0.5), the theory predicts global extinction on a timescale of slightly greater than 200
a1 days or 7 to 8 months, whilst R, > 0.6 lead to very long extinction times (~years). More precisely,
sz for R = 0.4 and assuming 1/ = 7 days, we find a mean extinction time of 177 &+ 15 days (95%
a3 Cl: (140,199) days). In this counterfactual scenario, global extinction of SARS-Cov-2 could have
414 occurred by the beginning of January 2021.

s Discussion & Conclusions

a6 We have presented a new analysis of extinction in the stochastic SIR model in the context of
417 populations with very little herd immunity and yet a significant number of infected individuals.
a8 Using simple random walk theory, we calculate the mean time to extinction and show that there is
a0 a critical threshold IT = 1/(1 — R,), below which random stochastic changes are more important,
a0 which suggests that for R, < 1, but approaching 1, a simple deterministic prediction will be poor.
421 With a more exact branching process analysis, we then calculate in closed form the extinction time
a2 distribution of an epidemic, which surprisingly, is an extreme value distribution of the Gumbel type,
223 and is mainly dependent on the rate of decline of the epidemic p. = v(1—R,), with a weak logarithmic
a4 dependence on R, explicitly. A key advantage of a closed form solution for the distribution is that
425 we can discern broad trends very quickly without doing a large number of complex simulations over
426 a large parameter space. Given the simplicity of SIR well-mixed model, we compared our results to
227 a complex spatial epidemic simulator, GleamViz (33, 34) with explicit heterogeneity in connections
28 between sub-populations, as well as simulations of uniform migration between sub-populations and
a0 find good overall agreement for the distribution of extinction times with our simple predictions. We
430 have also extended the theory of extinction to the whole range of 0 < R, < 1, where for R, close to
431 unity, herd or population immunity must play a role in the dynamics of the epidemic.

432 We use these results to produce predictions of extinction times within the UK and globally of
33 the SARS-Cov-2 epidemic/pandemic under various scenarios, as a function of R, as a guide to the
434 expected trends in more complex models. The results suggest that if the reproductive number was
a5 constrained to R. = 0.4 (assuming 1/ = 7 days), within the UK from mid-June 2020, extinction
a3 would have occurred with 97.5% probability by the end of October 2020 (145 days). Alternatively, if
437 the UK were to enact the same measures now with the help of immunity afforded by vaccination, the
a3s  theory predicts that extinction would occur with 97.5% probability by the middle of February 2022
a0 (177 days); note that in this scenario to achieve R, = 0.4 with NPIs is on one hand much easier
440 with vaccination, but also more difficult due to the higher transmissibility of the d-variant. Globally,
a1 under a counterfactual scenario where all nations decided to adopt an elimination strategy in summer
a2 2020 with R, = 0.4, the theory predicts extinction would have occurred with 97.5% probability by
a3 the beginning of January 2021 (199 days).
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444 However, unless R, is strongly controlled, extinction times increase to times of order years for
a5 Re > 0.6, as shown in Figs.6a&b and become increasingly unpredictable, which is an indication that
a6 the stochastic, random walk phase of the extinction process is dominant. On the other hand the
a7 same figures show that decreasing R. much below R, = 0.4 produces diminishing gains in reductions
ws  of extinction times; hence, given social consequences of lockdown measures this suggests an optimal
a0 Re ~ 0.4 — 0.5, which in the United Kingdom was achieved just after lockdown in regions such as
w0 London (43).

451 The basic calculation in this paper ignores spatial structure (3, 4) and heterogeneity of contacts
s> between individuals (5). To assess the realism of our simple model, we performed simulations using a
ss3  realistic spatial epidemic simulator, GleamViz, (33, 34) which gave a distribution of extinction times
asa  matching reasonably closely the Gumbel distribution in Eqn.7, with a slightly smaller mean time. On
a5 one hand we might expect spatial structure to give local deviations of the fraction of susceptibles
a6 from the global average, allowing herd immunity to arise locally in regions overall speeding up the
ss7 - decline of the epidemic, but on the other hand, migration between regions (as we see with the global
58 migration simulations) act to slow down the decline. These results might suggest the well mixed
a9 model does reasonably well because of a cancellation of these two competing effects.

460 The simple SIR model also ignores age structure, as well as heterogeneity or individual variation in
a1 contact/spreading rates, which could give rise to super-spreading events. Although age structure has
462 been shown to have a significant quantitative effect on the critical fraction of the population required
a3 to reach herd immunity (44, 45), here we expect for R, < R} (Eqn.12) as the calculation assumes
a4 negligible herd immunity, we do not expect that different age transmission matrices will affect our
465 results for the same mean rate of transmission 3. On the other hand the role of superspreaders and
a6 a very leptokurtic off-spring distribution could have a significant quantitative effect, although we
467 expect the qualitative behaviour to remain unchanged; analysis of contact patterns for the spreading
s of SARS-Cov-2 estimate a dispersion parameter k in the range of 0.1 to 0.6 (46—48), which suggests a
a0 small number of individuals cause a majority of infections. As previous work has shown strong super-
a0 spreading tends to enhance the probability of extinction, when starting from a single individual (7).
an If few individuals carry the majority of infections, this might suggest that the number of infected is
a2 effectively smaller giving rise to a shorter time to extinction, than for smaller individual variation; this
413 however, may be a relatively weak logarithmic effect, as suggested by the mean time to extinction
ara expression calculated in this paper (Eqn.8).

475 We have also shown how to calculate accurate extinction time distributions for the case when R,
476 is sufficiently close to 1 and when population immunity cannot be ignored, as shown in the predictions
a7 of Fig.6a, for the highly vaccinated UK population. When R, is close to 1, changes in the susceptible
azs pool due to new infections cause a large relative change in R, itself and it cannot be considered
a9 constant; we find a simple expression for this threshold R} and use a semi-heuristic method to calcu-
a0 late the extinction time distribution based on calculating the final or ultimate effective reproduction
st number RZ°, which is arrived at once again infections drop to a level that new infections cause a
a2 small relative change in the susceptible pool. In general, we find that as R, > R} and approaches 1,
483 the extinction times plateau, instead of diverging using the constant R, theory. Interestingly, we find
g4 that in this regime higher initial infections lead to significantly shorter extinction times compared to
ass  lower initial infections, because the former leads to a lower RZ°. This new theoretical calculation
486 also shows explicitly that for the SIR model, the epidemic declines for R, = 1, culminating in an
a7 asymptotic R, = R2° < 1 and ultimately extinction, whereas a naive expectation would be that the
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438 epidemic does not grow or shrink when R, = 1.

489 We have also made a very crude extrapolation of our results to extinction at the global level.
a0 The most problematic assumption, of course, is a single value of R, globally, and so the predictions
a1 in Fig.6b should be viewed as a guide to what could be achieved globally if all countries acted
a2 roughly in the same way on average. As we show, sub-divided regions with uniform migration, simply
203 lead to a upwards rescaling of R, by factor (1 + ¢) where ¢ is the migration probability, and so
a4 we can have confidence in these predictions, as long as R, at a global level is suitably interpreted.
105 Previous work on generalising the concept of the reproductive number to include spread between
a6 different regions, uses a different approach, by defining an analogous reproductive number R, for
a7 regions, (3-5), i.e. how many sub-populations or regions have at least one infection, where migration
208 plays an analogous role to individual contacts for the spread of infection in a single population. This
499 gives rise to a condition for spread or decline of infections to multiple regions and eventually globally,
soo if Ry > 1 or R, < 1, respectively. In the context of a local reproductive number R, < 1, as has
so1  been discussed previously (3), it is still theoretically possible that R, > 1, particularly when infection
s02 is highly prevalent in a region (due to a previous time when Ry > 1, as has occurred across many
s03 countries with SARS-Cov-2 in 2020 before lockdowns were imposed); this can happen if the global
s04 contact probability is sufficiently large, meaning that the infection can continue to spread between
sos countries and regions. However, these long distance seedings of infection will not in themselves
so6 lead to regional or national outbreaks, as long as locally R, < 1 (49); the simple upward rescaling
sor of Re — (1 + ¢)R., which we observe for small ¢ captures this phenomenon. These results also
s08 suggest that at the national level, a simple rescaling of R, should describe the reduction in the rate of
so0 decline of infections due to importation of infected cases, and should be accounted in more accurate
s10  estimates of extinction times.

511 This brings up an important question: whether a country should pursue elimination whilst other
512 countries are not and there is the chance cases can be imported. As alluded to above, whether before
s13  or after zero infections have been achieved, if the country pursuing elimination keeps R, < 1 through
514 NPls then there cannot be an outbreak; after zero infections have been achieved in practice there
sis will clearly be a pressure to open up, but the counterfactual prediction above of global elimination
si6 by January 2021, essentially assumes this is not the case, that all countries keep R. < 1 until zero
si7 - cases worldwide. If this is not the case, then with any level of migration and non-zero cases abroad,
si8  extinction is not a stable state. So in which case, what do the extinction times mean practically at
sio the national level? If there is a total rate M of migrations of infected cases into a country per day
s20 and M < 1 — for example, if there are strict control of immigration, and /or globally infections are
21 rare — then extinction will be a meta-stable state with lifetime ~ 1/M days. On the other hand,
s22 if M 2 1 due to open borders and/or highly prevalent infections abroad, then extinction cannot be
s23 achieved. As an illustration of these considerations, pre-pandemic levels of immigrations into UK
s24  were ~ 400,000 per day (50), and assuming a prevalence of ~ 0.09% globally (June 2020), that
55 would mean M = 360 infected arriving per day; however, according to the Civil Aviation Authority
26 (UK) passenger numbers for June 2020 had dropped significantly, to roughly 2.4% of their levels
s27 in June 2019 (51), which would then suggest M = 6 per day. If we further factor in quarantine
sos  rules for arrivals from specific countries, then it possible that in aggregate M < 1, or potentially
s20 even M < 1. In this case, extinction can persist for a period of time 1/M, where a country would
s30 likely need to be prepared to act quickly to contain any potential outbreaks. This estimate itself is
s31 likely to be pessimistic, as each new infection must establish to the critical size [* ~ R./(R. — 1),
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22 which has probability p* = 1—1/R. (Williams' threshold theorem (36)), before causing an outbreak
533 and so if R. is not too large many imported infections will initially stochastically die out, and as
ss¢  discussed if R, < 1 the probability is zero. Overall, these considerations highlights that technically
535 extinction can only occur nationally when all infections globally have been eliminated; nonetheless, a
536 joined-up global strategy would entail each country aiming for a state of quasi-extinction, by keeping
57 R, < 1, where declining infections world-wide would lead to increasingly longer periods of zero
s3s infections nationally. Once infections have been eliminated locally/nationally, and while infections
539 globally persist, this analysis would suggest only allowing R, to be moderately greater than one,
se0  where the actual number would be a balance between acceptable border controls, relaxation of NPIs
se1 - and how quickly NPIs can be re-introduced and affect a decline in infections, once new infections
s2 have been detected.

543 We see broadly the results in this paper demonstrate that in worst-case scenarios where vaccines
saa  cannot be developed for highly transmissible diseases, with relatively short recovery times (1/7),
ses  the alternative strategy of NPIs can be used to eliminate the virus on practicable time-scales of
ss6  many months. In the case of SARS-Cov-2 , at the time of writing it is still not very clear to what
sa7  degree vaccines can cut transmission (13-16), even though they have been demonstrated to be highly
sas  effective at preventing serious illness. If we assume that current vaccines do not cut transmission
sa0  significantly, then as the results in Fig.6a show it is possible, assisted by population immunity, to
ss0  eliminate Sars-Cov2 within the UK within about 6 months given the levels of infection at the time
ss1 of writing (I ~ 7 x 10°). However, it is also not known how long vaccine-induced immunity will last;
s52  if immunity wanes over the time-period of many months to years standard models, such as the SIRS
553 model, show that our predictions are broadly correct — typically underestimating extinction times,
554 since waning immunity leads to an increasing pool of susceptibles over time — except extinction is
ss5  only possible if Ry < 1, which could be achieved by NPIs. On the other hand opening up such that
ss6  Rg > 1, with waning immunity, leads to an endemic state.

557 Related to vaccine efficacy, this paper also does not consider the trade-off between mitigation and
sss  elimination in terms of the evolution of new variants of concern, particularly vaccine escape variants.
sso However, very broadly the literature on population rescue and evolution of resistance (52-54) clearly
se0  predicts that resistance is more likely with increasing effective population size. In an epidemiological
se1  setting, there is a multi-scale aspect to the problem, involving within-host vs between-host evolution,
sc2 and potential trade-offs between the two (55-58), however, if we treat each infected individual as
63 a unit of evolution which produces mutants at a certain rate (determined by selection through an
se« evolutionary substitution process within host), then this would predict that vaccine escape becomes
ses more likely with increasing number of infected individuals. As the cumulative number of infections
s66  Will be lower with an elimination strategy compared to mitigation, we would expect elimination to
s67 have the added benefit of being robust to the evolution of new variants.

568 Finally an aspect, which we have not considered, is the possibility of a non-human reservoir
se0  of SARS-Cov-2 , which could allow re-infections of human populations, such that, as with the
s7o  case of migrations, extinction is not a permanent (stable) state. This could be accounted in a
s71 similar way as we account for migration in this theory; unlike human populations (and arguably
s72even in human populations), we have much less control, or even understanding, of a potential non-
s73 human reservoir. However, if such reservoirs, whether bat or pangolin (59, 60), can be identified
s74+ and surveyed (61), measures can be taken to control contact with human populations, such that
s effective global elimination in human populations is possible, even if the virus cannot be eliminated
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from non-human populations.

Overall our results suggest an viable and relatively rapid (~ months) alternative strategy to
eliminate infections without having to rely on herd immunity, either naturally acquired, or through
vaccination; in a worst case scenario, for highly transmissible diseases where no effective vaccine is
found, and/or immunity is short-lived, such alternative strategies may be the only option remaining.
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«s Data and materials availability

664 Code to plot extinction time predictions and distributions, as well as for performing the Gillespie
ess  simulations can be found at https://github.com/BhavKhatri/Stochastic-Extinction-Epidemic.
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Supplementary Text

Estimating extinction times from direct estimate of p,
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Figure S1: Data from NHS England (SI) on daily deaths within hospitals in England and different
regions within England. Each region is fit using a simple decaying exponential from 40 days after
the 1st March 2020, where each region first shows a clear decline in number of daily deaths.

Precise predictions of extinction times based on Eqn.7 in the main text require knowledge of
both R. and v, which are generally quite difficult to estimate. However, Eqn.7 in the main text
is mainly dependent on the rate of decline of the epidemic p., with weak dependence separately
on R, and v. pe can be determined more straightforwardly if we assume current daily deaths are
proportional to the number infected; if infections are declining exponentially at a rate p. then so
will the number of daily deaths, so a curve fit will give an accurate measure of p. even if we cannot
determine the proportionality constant to translate deaths to infections. An alternative could be to
look at time-series of number of daily infections per number of tests performed, to remove biases
due to testing, however, here the aim is to illustrate why a direct estimate of p, is useful, rather than
to estimate this number very accurately.

As shown in Fig.S1, fitting decaying exponentials to daily number of deaths (date of death, not
date of reporting) from the NHS UK (5I), from the moment of decline to 13th July 2020, shows
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a very good fit (showing deaths are declining as a simple exponential and giving further weight to
our simple model), giving an England wide estimate of p. = 0.043 + 0.001 days~!, with a range
of pe = 0.036 £ 0.001 days—! (slowest decline) for North Yorkshire and p. = 0.069 + 0.001 days™*
(most rapid decline) in London. As an example, we estimate the mean time to extinction had the UK
remained in lockdown from July 2013, when infections were Iy ~ 3.7 x 10%; using the rate of decline
of England, we estimate a mean extinction time in the UK as 231430 days (95% Cl: (187, 303) days),
for Re = 0.7,1/~ = 7 days and 238 4+ 30 days (95% Cl:(195,310) days), for R, = 0.57,1/y = 10
days; as we can see changing R. and ~ for a fixed p. does not change the predictions significantly,
and we suggest in general, determining p. could be a more robust way to estimate extinction times.

Branching process analysis

A birth-death process with birth rate b = yvR, and death rate d = +, corresponds to a pure exponential
growth (R, > 1) or decay (R, < 1) phase of an epidemic, when the number of susceptible individuals
S(t) are far in excess of the total number infected I(¢). In this appendix, for presentational clarity,
we will use n = I to represent the number of infected individuals. To write down the rate of change
of the probability of n infected individuals at time ¢, we need only consider the probability of having
n — 1,n,n + 1 individuals and rates of transitions between them, since in the limit of infinitesimal
(continous) changes in time, we consider only changes of single individuals. The rate of transition
from n — 1 — n happens with rate yR.(n — 1) and the rate of transition from n + 1 — n happens
with rate y(n+ 1), which both lead to an increase in the probability of 7, while the rate of transition
from n — n + 1 happens with rate vR.n and the rate of transition from n — n — 1 happens with
rate yn, which both decrease the probability of n. Using these facts we can write down the rate of
change of the probability of n at time t:

dpn(t)
dt

= V(Re(n - 1)p(n - lvt)
— (Re + )np(n,t) + (n+ 1)p(n+ 1,1)).

(S1)

However, this description isn't complete, and we need to consider how the probability of the n = 0
state changes, since the above equation won't work for n — 1, since we cannot have a negative
number of individuals:

dpn:O(t)
dt
We can encompass both equations together in one by using the unit step function U,, = 1 for n > 0,
while U,, = 0 for n < 0:

=~ (Renp(n, t) + (n + 1)p(n + 1,1)) . (52)

dp(n, 1)
dt

= ’y(Un_lRe(n — p(n —1,1)
— Un(Re + 1)np(n, t) + (n + D)p(n + 1,t)).
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For n < 0, as long as we have an initial condition, p,<o(t = 0) = 0, the ODEs above guarantee that
Prn<o(t)Vt. Considering each value of n: 0 < n < 0o, we have an infinite set of coupled differential
equations. The standard way to solve this is to use probability generating functions:

G(Z7t) = an(t)zn7 (54)
n=0

which is in general a complex function of a complex variable z. Using the fact that 20G(z,t)/0t =
> npn(t)z", it is straightforward to show that the set of ODEs give the following first order partial
differential equation for G(z,t):

0G(z,t) 0G(z,t)
WD _ o520, (59)
where
a(z) = Y(Rez? — (Re + 1)z + 1). (S6)

This PDE can be solved by using the method of characteristics, which finds a parametric path
z(s),t(s) along which our original PDE is obeyed. The rate of change of G(s) along this path in
terms of our parameterisation is:

dG(s) dtoG = dz0G

ds ~ds ot T ds 0z &7)
and so with reference to the original PDE (Eqn.S5), we can identify that
dt dz
=1 Z=—a2).
P Pl C) (S8)
Integrating these pair of equations gives the characteristic paths for which dG(s)/ds = 0 is a
constant:
2=l ment _ o (S9)
z—1/R. ’
where C'is a constant that represents different possible initial conditions. Integrating dG(s)/ds = 0,
gives
z—1
G(s) = e'V(Rel)t> , S10
0 =0( G (510

where ¢ is an arbitrary function to be determined by consideration of the initial conditions on p,,(t).
We can use the fact that at time ¢ = 0 we assume we know the exact number of infected individuals
is no and hence, p,(t = 0) = Onpny, Where 0y, = 0 for n # ng and dpp, = 1 for n = nyg.
Calculating the probability generating function for the initial delta function probability mass, we get
G(z,t =0) = 2™, and so we need to find a function ¢ satisfying:

G(2,0) = o (;__Rll> =™, (S11)

Substituting x = (2 — 1)/(z — 1/R.), we can find ¢(z), to give our solution:

4
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[ 14+ (z =1 B 2R, "
Glat) = (1 + Re(z — 1)evEe=1) — 2R, | (512)

Our probability mass function py(t), should always be normalised Y pn(t) = G(z = 1,t) = 1;
substituting z = 1 we see this that the solution G(z,t) behaves correctly. Finally, the reason this
is all useful, is that we want to calculate the probability of zero individuals infected pg(t), which is
simply given by G(z = 0,1), since 0° = 1:

1— B \™
po(t) = G(0,t) = 1 ReoET1 ) (513)

Substituting ng = Iy and p. = (1 — R,) gives Eqn.6 in the main text.
Differentiating Eqn.S13 to obtain the extinction time distribution, we find

_ dpo (t)
dt

(1 _ e—pet)no—l

—pet
(1= Rocreijorl e . (S14)

pi(t)

= (1 = Re)peno

This is an exact expression, which is valid for all values of I and IT, as long as the original assumptions
of the model that changes in susceptible numbers are negligible (R. < R}) is true, where R is given
by Eqn.S19. If Iy > I' then we expect there to be a strong division between the deterministic
phase and the stochastic phase, such that in Eqn.S14 the exponentials have sufficiently decayed
such that nge P! < 1, before any extinction is likely, then it is straightforward to show that the
limiting form of Eqn.S14, is the Gumbel distribution, Eqn.7 in the main text, using the fact that
(1 — e Pet)™ ~ (1 — nge Pet) ~ exp(—nge P).

Extinction for R, > R}

Infections decline when R, < 1. R.(t) = RoxS(t)/N is in general time-dependent, composed of two
factors, Ry = /7, which for simplicity we assume is time-independent and S(¢)/N, which will tend
to decrease in time as more susceptibles become infected, so the rate of decline p. = (1 — Re) is
in general time-dependent and increasing over time. When R, < 1, reductions in transmissions due
to NPIs dominates the decrease in infections, compared to the fractional change in the susceptible
pool and so R, ~ RySy/N is constant to a good approximation. However, when R, < 1 but close
to 1, this is no longer true, and the assumption that the number of susceptibles is roughly constant
S(t) ~ Sy with respect to changes in I(t) and R.(t) is a poor one.

It is within this context that we would like to calculate the extinction time distribution. Although,
an exact solution is not easily obtainable, we can make a semi-heuristic approximation that works
very well. Initially R, is time-dependent since the changing susceptible pool has significant affect
on the decline in infections. However, once infections become sufficiently small the change in the
susceptible pool, per unit time, once again becomes relatively small compared to its current value and
S(t) — S°° attains its asymptotic value S, at which point the constant R. assumption becomes
accurate again and infections decline at a constant rate. The asymptotic value S°° cannot be
calculated via standard fixed point analysis of the SIR differential equations, since the only condition
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for a fixed point is that 7 = 0, and this can happen for any value of .S; the final asymptotic values

depend on the initial conditions. Taking the SIR differential equations and calculating S/R we have

ds B8S Ry

—_r _ g S15

dR vyN N (515)

Integrating this equation, starting from an initial condition S(0) = Sp and R(0) to their final

asymptotic values S°° and R*® = N — I*® — §%° = N — §°, then we arrive at the following
transcendental equation for S°°:

G — SoeRo(l—Soo/N—R(O)/N). (516)

The solution can however, be expressed using the Lambert W function:

N R()S() —R, _
g — "y [ 22020 (—Ro(1-R(0)/N) S17
o (- , (517
where w = W(z) is the solution to the transcendental equation we® = z. We are interested
in finding the asymptotic effective reproductive number R = RpS°°/N in terms of the initial
effective reproductive number R, = RySy/N, for which the above expression can be rearranged to
give

R® = —W (—Ree_RO(l_R(O)/N)> . (518)

We can replace R. — R2° in Eqn.7 of the main text to calculate the distribution of extinction
times to give a good approximation of the extinction times when R, =~ 1 and where the above
condition for constant R, is not met. However, this gives a systematic underestimate of the time to
extinction, since it effectively ignores the time it takes to attain these asymptotic values, which takes
of order 1/p2° days, where p2°® = (1 — R°). So finally an accurate and robust approximation to
the extinction time distribution is obtained by the replacement R, — R and 71 — 71 +1/p>°, as
we can see in Fig.4b in the main text for simulations of R, = 0.99 and 1/~ = 7 days. Note that for
sufficiently small R, the correction to 7 is not needed, as R:° ~ R, and the assumption of constant
R, is very accurate. We approximate this threshold value of R, as the value of RX°(R. — 1):

R = R®(R, = 1) = —W (—e~ Ro(=RO)/N)y, (S19)

which is roughly the plateau value of R®, which will robustly be close to the value of R, that
R begins to deviate from R.. We can then also stitch together 71 for R, < R¥ and 7 + 1/p™
for R, > R* using a standard tanh switching function centred on R} and with width 0.05, which is
used in Figs. 5&6 in the main text to provide the extinction time predictions across the whole range
of 0 < R, < 1.

Invariance of extinction time distribution to population sub-division
If we imagine a single population to be divided into n equally sized sub-populations, each with a

reproductive number R, and zero-migration between, then the extinction time distribution of ¢ in
the k" sub-population will be given by Eqn.7 in the main text, but with Iy — Iy/n. Now we want
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to calculate the extinction time distribution of the whole population. Extinction will occur when
all sub-populations have zero infected individuals. We can record the extinction times in each sub-
population: t1,t9, ..., g, ..., t, and the extinction time of the whole population will be the maximum
of this set: £ = max{t1,ts, ..., 1k, ..., tn}. The cumulative distribution function of the maximum time
t will be the probability of the joint event that each sub-population k has an extinction time less
than ¢:

t1 <t)P(ty < 1)..P(t, < 1)..P(t, <1) (S20)

where P(t) is the CDF for a single population given by Eqn.10 in the main text, but with Iy — Iy/n.
Given the form of Eqn.10, these calculations can be performed exactly, whereas using extreme
value theory it usually required that the tails of the distribution asymptotically obey some expo-
nential form, which allows approximate calculation. Doing these calculations we find (P())" =
(exp(—e_/’e(f_ﬁl)))", where 7, = piln(lo/nﬁ). It is then simple to show that the n-dependence
cancels in the final result to give ’

Po(f) = P(f) = exp(—e P<(=™)). (521)

In other words, population sub-division into equal sized isolated populations does not affect the
extinction time distribution of the whole global population. In fact, it is simple to extend these argu-
ments to any population sub-division, where Iy = > "7, Ii,, where I}, is the initial infected population
in each, as long as the fraction of susceptible and R, is the same in each sub-population. This is
not surprising, as it is just a restatement of the mean-field/well-mixed approximation that infected
individuals and sub-populations all experience the same probability of encountering a susceptible
individual So/N which is set by the global number of susceptible individuals Sp.
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