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3

The global response to the SARS-Cov-2 pandemic has consisted of two main4

strategies both involving non-pharmaceutical interventions to control spread:5

mitigation, ultimately relying on herd immunity from vaccination, and elimi-6

nation of infections locally. While simple theory for controlling an epidemic7

through herd immunity exist, there is no corresponding simple theory for the8

strategy of elimination with non-pharmaceutical interventions. Here we quantify9

an important aspect of the elimination strategy: the time to extinction without10

herd immunity, based solely on non-pharmaceutical interventions. Using a sim-11

ple well-mixed stochastic SIR model, we find two new results: 1) using random12

walk theory we calculate a simple approximation of the mean extinction time13

and 2) using branching process theory the full distribution of times to extinction,14

which we show is given by the extreme value Gumbel distribution. We compare15

these results against complex spatially-resolved stochastic simulations to show16

very good quantitative agreement, demonstrating the validity of this simple ap-17

proach. Overall, for SARS-Cov-2 our results predict rapid extinction — of order18

months — of an epidemic or pandemic if the reproductive number is kept to19

Re < 0.5; in a counterfactual scenario with global adoption of an elimination20

strategy in June 2020, SARS-Cov-2 could have been eliminated world-wide by21

early January 2021.22
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Introduction23

The SIR model has remained a popular paradigm to understand the dynamics of epidemics (1,24

2), despite its simplifications compared to real world epidemics, which have spatial structure (3,25

4), heterogeneity (5, 6) in connection between regions and heterogeneity in contact rates between26

individuals, often giving rise to super-spreading events (7). The SIR model makes a simple prediction27

for a closed population (2): in the absence of any interventions and assuming individuals recovered28

from infection have permanent immunity, infections increase, eventually leading to the population29

developing herd immunity, at which point infections decline and after some time the epidemic goes30

extinct.31

However, for infectious diseases, such as SARS-Cov-2 , we have seen such strategies, which carry32

a high burden of hospitalisation and mortality may not be socially and politically acceptable. This33

led to much of the globe adopting mitigation strategies, particularly in the West, which broadly,34

allowed infections to increase within the allowed capacity of health infrastructure, adopting non-35

pharmaceutical interventions (NPIs) when necessary, while a number of countries in the Asia-Pacific36

region adopted an elimination strategy that aimed to eliminate infections though NPIs (8, 9). Al-37

though, the latter strategy does not explicitly aim at eradication — since in the absence of concerted38

global cooperation, it is clear in a global pandemic an infectious disease cannot be eradicated, until39

it has been essentially eradicated everywhere — it does aim at a local eradication or elimination,40

such that infections are not routinely circulating in the population. Although, there has been some41

specific modelling regarding elimination, for example, in New Zealand (9), there is in general a basic42

lack of fundamental and simple theoretical results for this second scenario, which this paper addresses43

through calculation of the timescales of eradication/exctinction both at a national and global level.44

In practice, the mitigation strategy is a stop-gap measure until population immunity can be45

achieved by vaccination and if the population is vaccinated to a sufficient fraction to achieve herd46

immunity, then the epidemic will decline. A key assumption that negates in practice the ultimate47

prediction of extinction of epidemics, is the lack of long-term immunity, particularly amongst the48

family of coronaviridae, which SARS-Cov-2 is a member, as well as the evolution of new escape49

variants. Currently, for SARS-Cov-2 the question of long-term immunity is not completely known,50

whether by natural immunity or vaccine induced; although there is evidence of waning antibody51

immunity on the timescale of a few months (10), the overall immunological response maybe more52

robust over the timescale of roughly a year (11, 12). Importantly, although vaccines may have high53

efficacy for reducing serious disease, the picture regarding a significant reduction in transmission is54

still not clear (13–16). In addition, as the recent emergence of new variants (17, 18) have shown,55

there is the possibility that vaccine escape mutants could evolve (19), reducing the efficacy or56

rendering redundant vaccines based on previously circulating antigen sequences. Although, much is57

still unknown, in a worst case scenario where immunity is short-lived and infections are endemic (20),58

there will be a continuing risk of vaccine escape, and so alternative strategies may be required;59

ultimately, even for those countries pursuing mitigation, elimination may be the only option available,60

other than naturally acquired immunity.61

This paper examines the SIR model, but fully accounting for the discreteness of individuals that62

leads to stochasticity in the progress of an epidemic. This is critical to examine the question of63

extinction, since the continuous (deterministic) SIR model is unrealistic when only a few individuals64

are infected and gives the erroneous prediction that extinction only arises asymptotically at very long65
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times. There has been considerable work done on understanding stochastic aspects of epidemics66

(21, 22) from the role of critical community sizes in diseases such as measles (23, 24), stochastic67

phases in the establishment of epidemics (25), to stochastic extinction. With regard stochastic68

extinction most results have been focussed on understanding the time to extinction either through the69

whole course of an epidemic (26,27) or assuming a quasi-equilibrium has been reached through herd70

immunity in the population (28). However, the situation faced by many countries at the beginning71

stages of the SARS-Cov-2 pandemic and before vaccination, has not been strongly considered in72

previous modelling, that is where significant herd-immunity has not been achieved in the population,73

and there is the potential that NPIs alone can be used to reduce the reproductive number to less74

than 1, the critical threshold for growth and give rise to extinction of an epidemic.75

It is with this scenario in mind, where a population still has many more susceptible (& recovered),76

compared to infected, where our main simple result is focussed, and we find the stochastic dynamics77

tractable within a simple birth-death branching process framework. Our main theoretical result is the78

distribution of the times to extinction of an epidemic, which surprisingly, we find is a Gumbel-type79

extreme value distribution. Although the extinction time distribution has been previously studied (29),80

a closed form solution for a Poisson offspring distribution was not obtained. Key to this result is81

a new threshold I† = 1/(1 − Re), below which stochastic changes dominate and which we show82

arises from simple random walk theory. However, we then also extend the calculation using heuristic83

considerations that cover the whole range of 0 < Re ≤ 1, accounting for the dynamics of Re, when84

Re . 1, where by necessity population immunity must play a role in the dynamics of the epidemic.85

As this result ignores spatial structure and heterogeneity of an epidemic, we then compare to simple86

and more complex spatial epidemic simulations, and find our theory captures the extinction time87

distribution very well, as long as Re is appropriately rescaled to account for migration. We then use88

this theory to make broad predictions of extinction times within the UK, and globally to serve as a89

guide to more complex and detailed models. Our key message is that for an infectious disease like90

SARS-Cov-2 , where infection durations are of order a week, reproductive numbers Re > 0.6 give91

extinctions times which are long and of order many years — on the other hand, extinction can be92

rapid with times much less than a year, or a few months, if restricted to Re < 0.5.93

Susceptible–Infected–Recovered (SIR) model of epidemiology94

The SIR model divides the population of N individuals in a region into 3 classes of individuals:95

susceptible S (not infected and not immune to virus), I infected and R recovered (and immune,96

so cannot be re-infected). If we assume a rate β of an infected individual infecting a susceptible97

individual (S + I → 2I), and a rate γ that an infected person recovers from illness (S → R), the98

ordinary differential equations describing the dynamics of this process are:99

dS

dt
= −βI(S/N) (1)100

dI

dt
= βI(S/N)− γI (2)101

dR

dt
= γI. (3)102
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A key aspect of this model is that it allows a simple characterisation of when number of infections103

will grow or decline: whatever the previous history of the epidemic, for growth we need dI
dt > 0 and104

this happens for the following condition on RHS of the 2nd equation above: βS(t)/N − γ > 0,105

or equivalently, Re = βS(t)/N
γ > 1, where we have defined the dimensionless number Re (also106

commonly called Rt) as the combination shown, and will in general be time-dependent, as the107

number of susceptible individuals in a population change. Re represents the average number of108

individuals an infected person infects through the duration of the infection τ = 1/γ. It is important109

to understand that this interpretation of Re is within the context of a well-mixed model. In reality,110

locally there may be deviations from the global density of susceptible individuals (S(t)/N) and also111

differences in connectivity between different regions causing differing rates of infection locally.112

It is worthwhile to briefly revisit how extinction arises through herd immunity in the standard SIR113

model, in contrast to the main mechanism we discuss in this paper, where there is extinction without114

herd-immunity and only using NPIs. Initially, it is assumed the whole population is susceptible, as115

the number of infected is 1 or very small, so S(t = 0) ≈ N and the reproductive number in this case116

is R0 = β/γ. The above SIR equations lead to a growing number of infected I(t), and a decreasing117

susceptible pool S(t), which leads to a decreasing Re. The epidemic continues to grow until Re = 1118

(i.e. when the fraction of susceptibles has become sufficiently small), at which point dI/dt = 0 — this119

defines the classic herd-immunity threshold of the number of immune/recovered 1−1/Re. The classic120

herd immunity threshold only defines the point when the effective reproductive number is exactly 1,121

and in fact the number of susceptibles continues to decline beyond this point, causing Re < 1, until122

it reaches a plateau S∞ (2). The plateau corresponds to when infections have become sufficiently123

small that additional infections cause only a negligible change to the susceptible pool; once this124

plateau is reached we have a constant “ultimate” reproductive number R∞e = −W (−Ree−R0) < 1,125

where W (z) is Lambert’s W -function, which is defined by the solution to the transcendental equation126

wew = z. In this limit, as discussed below, the number of infected then declines exponentially until127

extinction.128

Assumption of constant Re with small fraction of infected individuals129

in SIR model130

As just discussed, in an idealised SIR epidemic, if β does not change due to behaviourial changes,131

the reproductive number is in general a constantly decreasing number, due to the susceptible pool132

of individuals diminishing — this eventually leads to herd immunity as the decreasing susceptible133

fraction brings Re < 1. However, changes in social behaviour (non-pharmaceutical interventions or134

NPIs) can also bring Re < 1 by controlling β, before any significant herd immunity is established,135

which was generally still the case in many countries with SARS-Cov-2 (before February 2021), when136

vaccination coverage was low. In this case, if we assume that the fraction of the population that are137

currently infected is small, compared to the number of susceptibles, we can assume that the effects138

of herd immunity are negligible; analogously to the description with herd immunity, this is manifested139

by an approximately unchanging susceptible pool and constant effective reproductive number Re.140

Using the United Kingdom as an example, just after the first lockdown, the UK Office for National141

Statistics (30) estimates from serological testing in England that 6.8% of the population had been142

infected to June 12th 2020 (≈ 4.6× 106 extrapolated to the UK population) and from random PCR143
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testing a current incidence of 0.055% (≈ 3.7 × 104 were actively infected in UK) – in which case,144

extrapolating to a UK population size of ≈ 67× 106, the total number of susceptibles (≈ 62× 106)145

is much greater than the number currently infected. More recently, with the emergence of more146

transmissible variants and varied application of NPIs, infections peaked at of order a million, and147

roughly 18.5% of the population estimated to have antibodies in February 2021 (31); this leads to a148

susceptible pool of approximately 55 million, which is still much greater than the number currently149

infected.150

In this case, as long as Re isn’t very close to 1, it is reasonable to assume that the population of151

susceptible individuals S(t) = S0 is roughly constant and the reproductive number unchanging Re =152

βS(t)/N
γ ≈ βS0/N

γ ; although each time an individual is infected, we loose exactly one susceptible the153

relative change of the susceptible pool is negligible, since the total number of susceptible individuals154

is very large. As we show in Supplementary Materials, this approximation is good as long as Re < R∗e,155

where R∗e = −W (−e−R0(1−R(0)/N)), which corresponds to an initial value of Re, such that the decline156

is sufficiently rapid that the error due to ignoring the change in the susceptible pool is negligible.157

Calculating R∗e within the United Kingdom, last summer infections were small I0 ≈ 3 × 104 and158

assuming roughly 10% had recovered (R(0) = 0.1N), we find the constant Re assumption to be159

good for Re < 0.98, i.e. for all but Re very close to 1, however, using numbers from January 2021,160

I0 ≈ 106, and 15% recovered this requires Re < 0.82. Assuming that I0 � S0 and Re < R∗e, this161

model of constant Re should also be very reasonable, when there is no immunity (SIS model), or in162

the presence of waning immunity, where immunity only lasts a finite time (SIRS), since increasing the163

susceptible pool again should have negligible effect, since we assume the total number of susceptibles164

is very large in comparison.165

This means for the case where only a small fraction of the population are ever currently infected,166

the SIR dynamics results in a single differential equation for I(t):167

dI

dt
= (βS0/N − γ)I. (4)

The last differential equation involving R can be ignored as it is really only there for book-keeping,168

as there is no direct effect of R on the dynamics of S and I. The solution to this is of course an169

exponential function:170

I(t) = I0e
(βS0/N−γ)t = I0e

ρet,

where ρe = γ(Re − 1) is the effective growth rate for Re > 1, and decay rate when Re < 1, and171

I0 = I(0) the initial number of infected individuals. Note that Re is not a rate, it does not in172

absolute terms tell you anything about the time scales of change; however, ρe is a rate, and if it173

could be measured empirically, it would give information in the speed of spread of the infection, as174

well as having the same sign information for the direction of change (ρe > 0 the epidemic spreads,175

while ρe < 0 means the epidemic cannot spread). As we will see ρe more directly determines the176

dynamics of the extinction process than Re or γ separately, and is in fact an easier quantity to177

determine (Supplementary Materials).178

We are interested in understanding extinction of an epidemic and so from here on we define the179

rate ρe = γ(1−Re) to be a positive quantity, making the assumption that Re < 1. In this case we180

can make a simple deterministic prediction for the time to extinction, by calculating the time for the181

infected population to reach I(t) = 1:182
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t† =
1

ρe
ln (I0), (5)

Of course, we want to know the time to complete elimination I(t) = 0, but we cannot answer this183

question with a deterministic continuous approximation, since the answer would be ∞; the time it184

takes to go from 1 infected individual to 0 cannot be handled in a deterministic approach, since185

it ignores the discreteness of individuals and the stochasticity that lies therein. In fact, without186

understanding the stochasticity of the extinction process, it is difficult a priori to say anything about187

the goodness of this deterministic calculation, since in general we would expect stochasticity to be188

important far before there remains only a single infected individual. We answer below, using heuristic189

arguments, the minimum number of infected individuals needed to overcome stochastic effects and190

confirm that this threshold also arises as a key determinant in the extinction time distribution in an191

exact branching process calculation.192

Stochastic extinction of an epidemic193

The above analysis assumes deterministic dynamics with no discreteness – it ignores any randomness194

in the events that lead to changes in number of infected individuals; an infected person might typically195

take the tube to work, potentially infecting many people, whilst on another day decide to walk or196

take the car, reducing the chances of infecting others. When the epidemic is in full flow with large197

numbers of individuals infected, all the randomness of individual actions, effectively average out to198

give smooth almost deterministic behaviour. However, at the beginning of the epidemic, or towards199

the end, there are very small numbers of individuals infected, so these random events can have a200

large relative effect in how the virus spreads and need a stochastic treatment to analyse. We are201

interested in analysing the stochasticity of how the number of infected decreases when Re < 1 and202

eventually gives rise to extinction, i.e. when there is exactly I = 0 individuals; in particular, we are203

primarily interested in calculating the distribution of the times to extinction.204

We can initially confirm that the assumptions of a constant Re due to a negligibly changing205

susceptible population of the previous section are accurate, by running multiple replicate stochastic206

continuous time simulations with Poisson distributed events (Gillespie or kinetic Monte Carlo sim-207

ulations) (32) of the SIR model with Re = 0.7, γ = 1/7 days−1, I0 = 3.7 × 104 and an initial208

recovered population of R(0) = 6× 106, which for simplicity we take as 10% of population infected209

and recovered. Fig.1 plots the decline in number of infected over time I(t). Each of the trajectories210

from the Gillespie simulations is a grey curve, whilst the deterministic prediction (Eqn.5) is shown211

as the solid black line. We see that for I(t) � 1 the stochastic trajectories are bisected by the212

deterministic prediction, indicating that the assumption of a constant Re is a good one.213

Simple random walk analysis214

We can see from Fig.1 that as I(t) approaches extinction, as expected the trajectories become more215

and more varied as the number of infected becomes small. A simple heuristic treatment inspired216

from population genetics (35) would define a stochastic threshold I†, below which stochastic forces217

are more important than deterministic, as indicated by the dashed black line in Fig.1; the time to218
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Figure 1: Simulation trajectories on log-linear scale (inset: linear-linear scale) for a decay rate of
ρe = 0.043/day, corresponding to Re = 0.7, 1/γ = 7 days, I0 = 3.7 × 104 and an initial recovered
population of R(0) = 6 × 106. The solid black line is the deterministic prediction from Eqn.5,
grey trajectories are 100 replicate Gillespie simulations of a standard SIR model, whilst the yellow
trajectories are from 50 replicates using the spatial epidemic simulator GleamViz (33, 34) restricted
to the United Kingdom with a gravity model between heterogeneous sub-populations as shown in
the inset map of the UK. The dashed black line is the threshold number of infected individuals I†,
below which changes in infected number of individuals is mostly stochastic.

extinction is then approximately the sum of the time it takes to go deterministically from I0 to I†219

( 1
ρe

ln(I0/I
†)) and the time it takes to go from I† to I = 0 by random chance.220

Assuming such a threshold I† exists, this latter stochastic time can be approximated as follows: if221

there are n ≤ I† infected individuals and changes are mainly random, then we are randomly drawing222

individuals from a pool of n infected individuals and N − n non-infected individuals — a binomial223

random walk — which when n � N has standard deviation ≈
√
n per random draw, which means224

we need k = n random draws, such that the standard deviation over those k draws is
√
kn ≈ n; a225

single random draw corresponds to one infection cycle of the virus, which is τ = 1/γ days, so the226

time to extinction starting with n individuals is approximately n/γ.227

How do we estimate I†? It is given by the threshold size at which random stochastic changes,228

change the number of infected by the same amount as the deterministic decline. In one cycle229

or generation of infection, if there was no stochasticity, the number of infected would decline by230

≈ ρeI
†/γ, so equating this to the expected standard deviation of purely random changes,

√
I†, we231
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find I† = 1/(1 − Re), which is shown in Fig.1 for Re = 0.7. Note that this threshold is closely232

related to Williams’ threshold theorem (36), where the probability of establishment of an epidemic233

from a single infected individual is p∗ = 1 − 1/Re, in the case that Re > 1, which then gives a234

critical number of infected I∗ ∼ 1/p∗ = Re/(Re − 1), below which infections changes as a random235

walk.236

As discussed below, and in more detail in the Supplementary Materials, a more exact calculation237

of these considerations, using branching process theory, gives exactly the same expression for I†.238

This means the typical stochastic phase lasts I†/γ = 1
ρe

days and so adding the deterministic and239

stochastic phases, the mean time to extinction ≈ 1
ρe

(1 + ln(I0/I
†)) (see Eqn.8 below for a more240

exact expression of the mean).241

Exact branching process analysis242

The branching process framework used to calculate the distribution of extinction times is standard,243

but detailed, and so we will sketch the derivation here and leave details for the Supplementary244

Materials. The first step is to recognise that there are two independent stochastic events that give245

rise to the net change in the numbers of infected individuals, as depicted in Eqn. 4 for the continuum246

deterministic limit: 1) a susceptible individual is infected by an interaction with a infected individual,247

such that I → I + 1 and 2) an infected individual recovers spontaneously such that I → I − 1. This248

is a simple birth death branching process for which it possible to write down differential equations249

(dpI(t)/dt) for how the probability of I infected individuals changes with time in terms of the birth250

and death events just defined. It is possible to find after some calculation the probability generating251

function G(z, t) of the birth-death process, from which the probability of having exactly I = 0252

individuals as a function of time is given by:253

p0(t) = G(z = 0, t) =

(
1− e−ρet

1−Ree−ρet

)I0
. (6)

If p†(t) is the distribution of times to extinction (i.e. the probability of an extinction occuring between254

time t and t + dt is p†(t)dt), then clearly the integral of this distribution, between time 0 and t is255

exactly Eqn.6, and hence the distribution of times to extinction is simply the derivative of p0(t) with256

respect to time. Doing this and also taking the limit that I0 � I†, we find:257

p†(t) =
dp0(t)

dt
≈ ρee−ρe(t−τ

†) exp(−e−ρe(t−τ†)) (7)

where τ † = 1
ρe

ln(I0/I
†), which is the time it takes for number infected to change from the initial258

number I0 to the critical infection size, which this calculation shows is given by I† = 1
1−R0

; pleasingly,259

this is the same result as arrived by the simple heuristic analysis above. Fig.2 shows a histogram260

(grey bars) from Gillespie simulations of the SIR model with 5000 replicates of the number of infected261

individuals for Re = 0.7, γ = 1/7 days, with initial number infected I0 = 3.7 × 104 and an initial262

recovered population of R(0) = 6 × 106, corresponding to the situation in the UK in 12th June263

2020. The corresponding prediction from Eqn.7 is given by the solid black line — we see that264

there is an excellent correspondence. In addition, Fig.5, we see that for the range of Re < R∗e the265

mean extinction time from simulation fits this prediction perfectly. Surprisingly, the extinction time266
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Figure 2: Probability density of extinction times for the same parameters as in Fig.1. Grey bars are
a histogram of 5000 replicate simulations of Gillespie simulations normalised to give an estimate of
the probability density, and the black curve is the prediction of the analytical calculation given in
Eqn.7, which we see matches the simulations extremely well. The yellow bars are histograms from
the GleamViz spatial epidemic simulator with 50 replicates, which we see gives similar results to the
predictions of the stochastic SIR model.

distribution is a Gumbel-type extreme value distribution (37,38); it is surprising as an extreme value267

distribution normally arises from the distribution of the maximum (or minimum) of some quantity,268

although here it is not clear how this relates to the extinction time.269

There are number of standard results for the Gumbel distribution Eqn.7, so we can write down270

(or directly calculate) the mean and standard deviation of the extinction time:271

〈t〉 =
1

ρe

(
Υ + ln

(
I0
I†

))
(8)272

√
〈〈t2〉〉 =

π/
√

6

ρe
, (9)273

where Υ ≈ 0.577 is the Euler-Mascheroni constant (conventionally assigned the symbol γ, but here274

γ is the recovery rate). We see that the heuristic calculation overpredicts the stochastic part of the275

extinction time by a factor of ≈ 2. Note that the standard deviation or dispersion of the distribution276

only depends on the inverse of the rate of decline ρe and as expected not on the initial number of277
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infected individuals I0; hence as ρe decreases (Re gets closer to 1), we see that the distribution of278

extinction times broadens (as we see below in Fig.6).279

We can also calculate the cumulative distribution function280

P †(t) =

∫ t

0
p†(t′)dt′ = exp(−e−ρe(t−τ†)), (10)

from which the inverse cumulative distribution function T † = (P †)−1 can be calculated:281

T †(p) = τ † − 1

ρe
ln (− ln (p)), (11)

which enables direct generation of random numbers drawn from the extinction time distribution, by282

drawing uniform random u on the unit interval and calculating T †(u). It also allows calculation of283

arbitrary confidence intervals, for example, the 95% confidence intervals, by calculating T †(0.025)284

and T †(0.975), as well as the median T †(1/2) = τ † − 1
ρe

ln (ln (2)).285

Finally, it is important to stress that the distribution of extinction times Eqn.7 and the following286

results all assume that I0 � I†, so that there is a clear separation of the deterministic and stochastic287

phases of the decline in infections. A more general and exact result for the distribution of extinction288

times is given in the Supplementary Materials.289

Extinction time distribution with spatial structure and heterogeneity290

National level (United Kingdom)291

A potentially valid criticism is that real populations have spatial structure and heterogeneity of292

contacts between regions. To make comparison to our simple predictions, we used a complex epidemic293

simulator GleamViz (v7.0) (33, 34), which includes a gravity model of migration, where rates of294

migrations between sub-populations are proportional to their population sizes (see Fig.1 inset map295

of UK), and each sub-population based on accurate census data within a grid of 25 km. We ran296

50 replicate simulations for an SIR epidemic within the United Kingdom and with zero air travel297

to other countries, with the same parameters as the stochastic SIR simulations in the previous298

section (corresponding to 12th June 2020: Re = 0.7, γ = 1/7 days, initial recovered population299

R(0) = 6× 106 – in addition, each definable sub-population in the UK was given a current infection300

incidence of 0.06% giving a total I0 ≈ 3.7× 104). We see the trajectories (Fig.1 – yellow lines) and301

histogram of extinction times (Fig.2 – yellow bars) compare very favourably to the predictions of the302

stochastic SIR model (black solid line and grey histogram bars); the mean and standard deviation303

including the gravity migration model is 211±16 days, which is slightly smaller than the prediction of304

the stochastic SIR model which has no migration or spatial structure (231± 30 days). This suggests305

that heterogeneity and migration might together have the net effect of reducing extinction times, as306

below we see increasing migration uniformly, has the opposite effect; nonetheless within the UK it307

would seem the overall effect of heterogeneity and migration is of second order to predictions of a308

well mixed model. Overall, at a national level, we find the results of our simple model are accurate309

to within the width of the distributions of the extinction times.310
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Figure 3: Probability density of extinction times for the same parameters as in Fig.1, but including
migration and sub-division into equal sized populations. Each histogram comprises 1000 replicates
for n = 5 regions connected by uniform migration with probability φ. Grey bars are φ = 0 (complete
isolation), blue correspond to φ = 0.05 and φ = 0.1 are the red bars. For φ = 0 the solid line grey
line is exactly the solid black line in Fig.2, showing that the extinction time distribution of identical
to the single global well-mixed population of same aggregate size. The solid blue and red lines are
fits to the histogram using Eqn.7 with a single free parameter Re (with γ and I0 constrained to the
values used to run the simulations).

Global311

It was not possible to repeat these simulations on a global scale as GleamViz does not record individual312

level changes in infections and deaths in its global output. Here instead we first consider the total313

extinction time distribution for a number of isolated regions (countries) with no migration between,314

but each with the same Re. As we show in the Supplementary Materials, in fact, the extinction315

time distribution of the whole region (i.e. the distribution of the maximum time of all the groups) is316

exactly the same distribution as assuming a single unstructured/undivided population for the region.317

We verify this by Gillespie simulation of a simple birth-death model with growth rate γRe and death318

rate γ for n isolated populations; the grey histogram in Fig.3 is the estimate of the extinction time319

distribution for isolated sub-populations and this matches the grey solid line, which is exactly the320

solid black line in Fig.2.321

We now look at the effect of migration, where we examine the same Gillespie simulations of birth322
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and death, but with a probability of global migration per individual of φ. As we increase φ we see that323

the extinction time distribution shifts to longer times, yet still maintains the same form as given by324

Eqn.7 – fitting to this equation using only Re as a free parameter, we find for φ = {0.01, 0.05, 0.1},325

R̂e = {0.709±0.001, 0.732±0.001, 0.760±0.001}, respectively (minimum R-sqd statistic of 0.975).326

These fits are shown as the blue and red solid lines in Fig.3 for φ = 0.05 and φ = 0.1, respectively,327

and we see that the fits follow the data very closely (the histogram and fits for φ = 0.01 are not shown328

in Fig.3 for clarity, as they overlap closely with φ = 0). We see that we can predict these estimated329

reproductive numbers R̂e by simply rescaling the base Re to Re → (1 +φ)Re = {0.707, 0.735, 0.77}330

for φ = {0.01, 0.05, 0.1}, respectively. This finding is closely related to the literature on the group331

level reproductive number R∗ (3–5), except here we are studying the decline and extinction of an332

epidemic/pandemic as opposed to its establishment, which has not been previously studied in this333

context. Overall, these results suggest that under the assumption that each national region has the334

same Re, that the extinction time distribution is given by the stochastic SIR model (Eqn.7) but with335

a rescaled Re to account for air traffic or migration between regions/countries.336

Modification to theory for Re > R∗e337

Figure 4: a) Trajectories of numbers infected I(t) for simulations with Re = 0.99 > R∗e for I0 =
3 × 104, N = 67 × 106 and assuming 10% of population recovered at time t = 0, which gives
R∗e ≈ 0.97; the solid line is the mean of the simulations, while the dashed line shows the decline of
infections if Re = R∞e from t = 0, where we see the slope is the same as the mean at longer times.
b) Histogram of extinction time distributions of the same simulations with prediction given by Eqn7,
but with Re → R∞e and τ † → τ † + 1/ρ∞e , as detailed in the text.
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When Re is close to 1, we can no longer assume that changes in the number of susceptibles338

has a negligible effect on Re itself. In this case the decline of infections is initially non-exponential,339

since Re decreases over time, as we see in the trajectories of Fig.4a, but at later times becomes340

exponential again, once Re is sufficiently small that again changes in S become relatively negligible.341

As we detail in the Supplementary Materials, there is a critical value of Re above which the constant342

Re assumption is no longer an accurate approximation, which is given by343

R∗e = −W (−e−R0(1−R(0)/N)). (12)

For Re > R∗e, we take a semi-heuristic approach and calculate the steady state value of number of344

susceptible S∞, by integrating the SIR equations and then calculate345

R∞e = R0S
∞/N = −W (−Ree−R0(1−R(0))), (13)

as the steady-state value of the reproductive number once infections have become sufficiently small.346

In Fig.4a, we plot how infection would decline with Re = R∞e , which we see has the same slope on347

a log-linear plot as the asymptotic mean of the simulation trajectories at later times (solid line).348

To calculate the extinction time distribution for Re > R∗e, we substitute for R∞e for Re in Eqn.7349

and in addition, make the substitution τ † → τ † + 1/ρ∞e , where ρ∞ = γ(1 − R∞e ) to account for350

the time it takes to reach this steady state. We see in Fig.4b, that this prediction for the extinction351

time distribution matches the histogram of times obtained by simulation very well. In addition, we352

see in Fig.5 that the mean extinction time of simulations fits the predictions very well for Re > R∗e.353

Finally, we can simply “stitch” the solutions for Re ≤ R∗e and Re > R∗e, if needed, using a standard354

tanh switching function for τ †, as detailed in the Supplementary Materials, and shown as the dashed355

line in Fig.5.356

It is interesting to note that for Re > R∗e, the extinction times are significantly lower for a higher357

number of initial infected because R∞e is much lower; in essence the higher infection levels lead to a358

significant relative reduction in the susceptible pool causing Re to drop more dramatically.359

Extinction time predictions for SARS-Cov-2360

United Kingdom361

We first consider what this model predicts for the extinction of the SARS-Cov-2 epidemic within the362

United Kingdom, given an estimate of number infected of I0 ≈ 3.7 × 104 with approximately 10%363

of the population immune for June 2020, when the epidemic was near it’s lowest incidence, and for364

the current number of infected I0 = 7× 105, assuming roughly 70% of the population are immune365

through a combination of infection and vaccination (39). In Fig.6a we have plotted the estimates366

of mean (solid line) together with 95% confidence intervals (shaded region), given an initial number367

of infected I0 for various reproductive numbers Re between 0 < Re < 1. In all these estimates we368

assume a typical duration of 1/γ = 7 days for infections (40).369

We see three broad trends: 1) for R >≈ 0.6 the extinction times are very long of order years,370

whilst at the same time the 95% confidence intervals becomes increasingly broad (of order years371

themselves) meaning increasing unpredictability; 2) also for Re >≈ 0.6, the deterministic prediction372

increasingly and significantly overestimates the mean extinction time; 3) for Re < 0.5 the extinction373
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Figure 5: Mean extinction times for I0 = 3 × 104 (red) and I0 = 106 (blue) for N = 67 × 106

and assuming 10% of population has recovered. The simple theory (Eqn.8) that assumes a constant
unchanging Re are shown by solid lines, while the theory modified for values of Re > R∗e are shown
as dashed lines. The values of R∗e are indicated by the vertical dashed lines, which for I0 = 3×104 is
R∗e ≈ 0.97 and for I0 = 106 is R∗e ≈ 0.83. The filled squares are the mean extinction times obtained
using simulations for same sets of parameters.

times plateau with diminishing returns for further decreases in the reproductive number. Regarding374

point 3), we see that there is minimum time to extinction, given by Re = 0; from Eqn.8 in the375

limit that Re → 0, the mean time to extinction 〈t〉 → 1/γ(ln(I0) + Υ), which shows the extinction376

process is ultimately limited by the rate of recovery γ, imposing a maximum speed limit on the rate377

of decline of infections.378

In the case corresponding to summer 2020, we see that the simple stochastic SIR model predicted379

that extinction or elimination of the epidemic could have occurred within the United Kingdom within380

4 to 5 months, which would be October/November 2020, if Re can be kept to below about 0.5, and381

assuming no immigration of cases. More precisely, if Re = 0.4, the mean time is 123± 15 days with382

95% confidence intervals:(87, 145) days. On the other hand for Re > 0.6 we see extinction times383

increase very rapidly and are of order years. However, it should be noted that should 1/γ = 7 days be384

an underestimate of the infectious period then we would expect extinction times to be approximately385

scaled upwards in proportion. On the other hand, taking the more recent situation (mid-August386
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Figure 6: Prediction of the extinction times from analytical theory of the epidemic within the United
Kingdom (a) and the pandemic globally (b) as a function of Re. a) For the United Kingdom we use
an initial infected population of I0 = 3.7 × 104 with 10% of the population recovered and immune
(purple) and I0 = 7 × 105 with 70% of the population immune (green), both with 1/γ = 7 days.
b) For the global prediction, we use an initial infected of I0 = 3.5 × 106 and 1/γ = 7 days. Solid
lines are the predictions of the mean (Eqn.8), whilst each shaded region corresponds to the 95%
confidence interval (Eqn.11) and the deterministic prediction (Eqn.5) are the dashed lines.

2021) where I0 ≈ 7 × 105, we see extinction can occur within about 6 months if Re < 0.5, or387

roughly by February 2022; more precisely the mean extinction time is predicted to be 157± 15 days388

(120, 177) if Re = 0.4.389

Global extinction time predictions390

We can also use our calculation to make approximate predictions of global extinction times of SARS-391

Cov-2 , with all the same broad caveats, given the simplifications of the model. However, as392

argued above at a global level, we can have confidence that the predictions of the extinction time393

distribution Eqn.7 can be quantitatively correct, when the Re value is effectively rescaled to account394

for migration/air-traffic between nations. We choose to examine the time to extinction from the395

period of summer 2020, as a hypothetical counterfactual scenario, where nations decided globally396

to adopt an elimination strategy. In June 2020, the global death rate was very approximately 5, 000397

deaths per day, and so with an approximate infection fatality rate η ≈ 0.01, (41, 42) the rate of398

change of deaths would be roughly d(deaths)/dt = ηγI(t); inverting this gives a crude estimate399

of the current number of actively infected globally as I0 ≈ 3.5 × 106, or roughly 3.5 million. More400

precise estimates would require understanding the age structure of the infection fatality rate, which is401

highly biased to older populations, as well as accounting for more recent improvements in treatments402
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of severe cases, but as extinction times are only logarithmically dependent on initial size (Eqn.8),403

these improvements would not significantly change these estimates. Given a global population of404

7.8 billion this corresponds to a global incidence of ≈ 0.09%. We further assume that as in the UK405

at the time very roughly 10% of the population had acquired immunity naturally. In Fig.6b we plot406

how the predicted extinction time changes with effective reproductive numbers between 0 < Re < 1407

for 1/γ = 7 days. As would be expected, the results mirror the predictions for within the United408

Kingdom, except the plateau as Re → 1 occurs at much longer times; for sufficiently small values409

of Re (Re < 0.5), the theory predicts global extinction on a timescale of slightly greater than 200410

days or 7 to 8 months, whilst Re > 0.6 lead to very long extinction times (∼years). More precisely,411

for Re = 0.4 and assuming 1/γ = 7 days, we find a mean extinction time of 177 ± 15 days (95%412

CI: (140, 199) days). In this counterfactual scenario, global extinction of SARS-Cov-2 could have413

occurred by the beginning of January 2021.414

Discussion & Conclusions415

We have presented a new analysis of extinction in the stochastic SIR model in the context of416

populations with very little herd immunity and yet a significant number of infected individuals.417

Using simple random walk theory, we calculate the mean time to extinction and show that there is418

a critical threshold I† = 1/(1 − Re), below which random stochastic changes are more important,419

which suggests that for Re < 1, but approaching 1, a simple deterministic prediction will be poor.420

With a more exact branching process analysis, we then calculate in closed form the extinction time421

distribution of an epidemic, which surprisingly, is an extreme value distribution of the Gumbel type,422

and is mainly dependent on the rate of decline of the epidemic ρe = γ(1−Re), with a weak logarithmic423

dependence on Re explicitly. A key advantage of a closed form solution for the distribution is that424

we can discern broad trends very quickly without doing a large number of complex simulations over425

a large parameter space. Given the simplicity of SIR well-mixed model, we compared our results to426

a complex spatial epidemic simulator, GleamViz (33, 34) with explicit heterogeneity in connections427

between sub-populations, as well as simulations of uniform migration between sub-populations and428

find good overall agreement for the distribution of extinction times with our simple predictions. We429

have also extended the theory of extinction to the whole range of 0 < Re < 1, where for Re close to430

unity, herd or population immunity must play a role in the dynamics of the epidemic.431

We use these results to produce predictions of extinction times within the UK and globally of432

the SARS-Cov-2 epidemic/pandemic under various scenarios, as a function of Re as a guide to the433

expected trends in more complex models. The results suggest that if the reproductive number was434

constrained to Re = 0.4 (assuming 1/γ = 7 days), within the UK from mid-June 2020, extinction435

would have occurred with 97.5% probability by the end of October 2020 (145 days). Alternatively, if436

the UK were to enact the same measures now with the help of immunity afforded by vaccination, the437

theory predicts that extinction would occur with 97.5% probability by the middle of February 2022438

(177 days); note that in this scenario to achieve Re = 0.4 with NPIs is on one hand much easier439

with vaccination, but also more difficult due to the higher transmissibility of the δ-variant. Globally,440

under a counterfactual scenario where all nations decided to adopt an elimination strategy in summer441

2020 with Re = 0.4, the theory predicts extinction would have occurred with 97.5% probability by442

the beginning of January 2021 (199 days).443
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However, unless Re is strongly controlled, extinction times increase to times of order years for444

Re > 0.6, as shown in Figs.6a&b and become increasingly unpredictable, which is an indication that445

the stochastic, random walk phase of the extinction process is dominant. On the other hand the446

same figures show that decreasing Re much below Re = 0.4 produces diminishing gains in reductions447

of extinction times; hence, given social consequences of lockdown measures this suggests an optimal448

Re ≈ 0.4→ 0.5, which in the United Kingdom was achieved just after lockdown in regions such as449

London (43).450

The basic calculation in this paper ignores spatial structure (3, 4) and heterogeneity of contacts451

between individuals (5). To assess the realism of our simple model, we performed simulations using a452

realistic spatial epidemic simulator, GleamViz, (33,34) which gave a distribution of extinction times453

matching reasonably closely the Gumbel distribution in Eqn.7, with a slightly smaller mean time. On454

one hand we might expect spatial structure to give local deviations of the fraction of susceptibles455

from the global average, allowing herd immunity to arise locally in regions overall speeding up the456

decline of the epidemic, but on the other hand, migration between regions (as we see with the global457

migration simulations) act to slow down the decline. These results might suggest the well mixed458

model does reasonably well because of a cancellation of these two competing effects.459

The simple SIR model also ignores age structure, as well as heterogeneity or individual variation in460

contact/spreading rates, which could give rise to super-spreading events. Although age structure has461

been shown to have a significant quantitative effect on the critical fraction of the population required462

to reach herd immunity (44, 45), here we expect for Re < R∗e (Eqn.12) as the calculation assumes463

negligible herd immunity, we do not expect that different age transmission matrices will affect our464

results for the same mean rate of transmission β. On the other hand the role of superspreaders and465

a very leptokurtic off-spring distribution could have a significant quantitative effect, although we466

expect the qualitative behaviour to remain unchanged; analysis of contact patterns for the spreading467

of SARS-Cov-2 estimate a dispersion parameter k in the range of 0.1 to 0.6 (46–48), which suggests a468

small number of individuals cause a majority of infections. As previous work has shown strong super-469

spreading tends to enhance the probability of extinction, when starting from a single individual (7).470

If few individuals carry the majority of infections, this might suggest that the number of infected is471

effectively smaller giving rise to a shorter time to extinction, than for smaller individual variation; this472

however, may be a relatively weak logarithmic effect, as suggested by the mean time to extinction473

expression calculated in this paper (Eqn.8).474

We have also shown how to calculate accurate extinction time distributions for the case when Re475

is sufficiently close to 1 and when population immunity cannot be ignored, as shown in the predictions476

of Fig.6a, for the highly vaccinated UK population. When Re is close to 1, changes in the susceptible477

pool due to new infections cause a large relative change in Re itself and it cannot be considered478

constant; we find a simple expression for this threshold R∗e and use a semi-heuristic method to calcu-479

late the extinction time distribution based on calculating the final or ultimate effective reproduction480

number R∞e , which is arrived at once again infections drop to a level that new infections cause a481

small relative change in the susceptible pool. In general, we find that as Re > R∗e and approaches 1,482

the extinction times plateau, instead of diverging using the constant Re theory. Interestingly, we find483

that in this regime higher initial infections lead to significantly shorter extinction times compared to484

lower initial infections, because the former leads to a lower R∞e . This new theoretical calculation485

also shows explicitly that for the SIR model, the epidemic declines for Re = 1, culminating in an486

asymptotic Re = R∞e < 1 and ultimately extinction, whereas a naive expectation would be that the487
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epidemic does not grow or shrink when Re = 1.488

We have also made a very crude extrapolation of our results to extinction at the global level.489

The most problematic assumption, of course, is a single value of Re globally, and so the predictions490

in Fig.6b should be viewed as a guide to what could be achieved globally if all countries acted491

roughly in the same way on average. As we show, sub-divided regions with uniform migration, simply492

lead to a upwards rescaling of Re by factor (1 + φ) where φ is the migration probability, and so493

we can have confidence in these predictions, as long as Re at a global level is suitably interpreted.494

Previous work on generalising the concept of the reproductive number to include spread between495

different regions, uses a different approach, by defining an analogous reproductive number R∗ for496

regions, (3–5), i.e. how many sub-populations or regions have at least one infection, where migration497

plays an analogous role to individual contacts for the spread of infection in a single population. This498

gives rise to a condition for spread or decline of infections to multiple regions and eventually globally,499

if R∗ > 1 or R∗ < 1, respectively. In the context of a local reproductive number Re < 1, as has500

been discussed previously (3), it is still theoretically possible that R∗ > 1, particularly when infection501

is highly prevalent in a region (due to a previous time when R0 > 1, as has occurred across many502

countries with SARS-Cov-2 in 2020 before lockdowns were imposed); this can happen if the global503

contact probability is sufficiently large, meaning that the infection can continue to spread between504

countries and regions. However, these long distance seedings of infection will not in themselves505

lead to regional or national outbreaks, as long as locally Re < 1 (49); the simple upward rescaling506

of Re → (1 + φ)Re, which we observe for small φ captures this phenomenon. These results also507

suggest that at the national level, a simple rescaling of Re should describe the reduction in the rate of508

decline of infections due to importation of infected cases, and should be accounted in more accurate509

estimates of extinction times.510

This brings up an important question: whether a country should pursue elimination whilst other511

countries are not and there is the chance cases can be imported. As alluded to above, whether before512

or after zero infections have been achieved, if the country pursuing elimination keeps Re < 1 through513

NPIs then there cannot be an outbreak; after zero infections have been achieved in practice there514

will clearly be a pressure to open up, but the counterfactual prediction above of global elimination515

by January 2021, essentially assumes this is not the case, that all countries keep Re < 1 until zero516

cases worldwide. If this is not the case, then with any level of migration and non-zero cases abroad,517

extinction is not a stable state. So in which case, what do the extinction times mean practically at518

the national level? If there is a total rate M of migrations of infected cases into a country per day519

and M � 1 — for example, if there are strict control of immigration, and /or globally infections are520

rare — then extinction will be a meta-stable state with lifetime ≈ 1/M days. On the other hand,521

if M & 1 due to open borders and/or highly prevalent infections abroad, then extinction cannot be522

achieved. As an illustration of these considerations, pre-pandemic levels of immigrations into UK523

were ≈ 400, 000 per day (50), and assuming a prevalence of ≈ 0.09% globally (June 2020), that524

would mean M ≈ 360 infected arriving per day; however, according to the Civil Aviation Authority525

(UK) passenger numbers for June 2020 had dropped significantly, to roughly 2.4% of their levels526

in June 2019 (51), which would then suggest M ≈ 6 per day. If we further factor in quarantine527

rules for arrivals from specific countries, then it possible that in aggregate M < 1, or potentially528

even M � 1. In this case, extinction can persist for a period of time 1/M , where a country would529

likely need to be prepared to act quickly to contain any potential outbreaks. This estimate itself is530

likely to be pessimistic, as each new infection must establish to the critical size I∗ ∼ Re/(Re − 1),531
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which has probability p∗ = 1− 1/Re (Williams’ threshold theorem (36)), before causing an outbreak532

and so if Re is not too large many imported infections will initially stochastically die out, and as533

discussed if Re < 1 the probability is zero. Overall, these considerations highlights that technically534

extinction can only occur nationally when all infections globally have been eliminated; nonetheless, a535

joined-up global strategy would entail each country aiming for a state of quasi-extinction, by keeping536

Re � 1, where declining infections world-wide would lead to increasingly longer periods of zero537

infections nationally. Once infections have been eliminated locally/nationally, and while infections538

globally persist, this analysis would suggest only allowing Re to be moderately greater than one,539

where the actual number would be a balance between acceptable border controls, relaxation of NPIs540

and how quickly NPIs can be re-introduced and affect a decline in infections, once new infections541

have been detected.542

We see broadly the results in this paper demonstrate that in worst-case scenarios where vaccines543

cannot be developed for highly transmissible diseases, with relatively short recovery times (1/γ),544

the alternative strategy of NPIs can be used to eliminate the virus on practicable time-scales of545

many months. In the case of SARS-Cov-2 , at the time of writing it is still not very clear to what546

degree vaccines can cut transmission (13–16), even though they have been demonstrated to be highly547

effective at preventing serious illness. If we assume that current vaccines do not cut transmission548

significantly, then as the results in Fig.6a show it is possible, assisted by population immunity, to549

eliminate Sars-Cov2 within the UK within about 6 months given the levels of infection at the time550

of writing (I ≈ 7×105). However, it is also not known how long vaccine-induced immunity will last;551

if immunity wanes over the time-period of many months to years standard models, such as the SIRS552

model, show that our predictions are broadly correct — typically underestimating extinction times,553

since waning immunity leads to an increasing pool of susceptibles over time — except extinction is554

only possible if R0 < 1, which could be achieved by NPIs. On the other hand opening up such that555

R0 > 1, with waning immunity, leads to an endemic state.556

Related to vaccine efficacy, this paper also does not consider the trade-off between mitigation and557

elimination in terms of the evolution of new variants of concern, particularly vaccine escape variants.558

However, very broadly the literature on population rescue and evolution of resistance (52–54) clearly559

predicts that resistance is more likely with increasing effective population size. In an epidemiological560

setting, there is a multi-scale aspect to the problem, involving within-host vs between-host evolution,561

and potential trade-offs between the two (55–58), however, if we treat each infected individual as562

a unit of evolution which produces mutants at a certain rate (determined by selection through an563

evolutionary substitution process within host), then this would predict that vaccine escape becomes564

more likely with increasing number of infected individuals. As the cumulative number of infections565

will be lower with an elimination strategy compared to mitigation, we would expect elimination to566

have the added benefit of being robust to the evolution of new variants.567

Finally an aspect, which we have not considered, is the possibility of a non-human reservoir568

of SARS-Cov-2 , which could allow re-infections of human populations, such that, as with the569

case of migrations, extinction is not a permanent (stable) state. This could be accounted in a570

similar way as we account for migration in this theory; unlike human populations (and arguably571

even in human populations), we have much less control, or even understanding, of a potential non-572

human reservoir. However, if such reservoirs, whether bat or pangolin (59, 60), can be identified573

and surveyed (61), measures can be taken to control contact with human populations, such that574

effective global elimination in human populations is possible, even if the virus cannot be eliminated575
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from non-human populations.576

Overall our results suggest an viable and relatively rapid (∼ months) alternative strategy to577

eliminate infections without having to rely on herd immunity, either naturally acquired, or through578

vaccination; in a worst case scenario, for highly transmissible diseases where no effective vaccine is579

found, and/or immunity is short-lived, such alternative strategies may be the only option remaining.580

References581

1. W. O. Kermack, A. G. McKendrick, Proceedings of the Royal Society, 115A,, 700721 (1927).582

2. J. Murray, Mathematical Biology I: An Introduction (Springer-Verlag, 2002), chap. 10, pp. 319–583

326.584

3. F. Ball, D. Mollison, G. Scalia-Tomba, The Annals of Applied Probability 7, 46 (1997).585

4. P. C. Cross, J. O. Lloyd-Smith, P. L. F. Johnson, W. M. Getz, Ecology Letters 8, 587 (2005).586

5. V. Colizza, A. Vespignani, Physical Review Letters 99, 148701 (2008).587

6. N. M. Ferguson, et al., Nature 425, 681 (2003).588

7. J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, W. M. Getz, Nature 438, 355 (2005).589

8. W. R. Dowdle, Bulletin of the World Health Organization 76 Suppl 2, 22 (1998).590

9. S. Hendy, et al., Journal of the Royal Society of New Zealand 51, 1 (2021).591

10. H. Ward, et al., medRxiv (2020).592

11. A. W. D. Edridge, et al., Nature Medicine 26, 1691 (2020).593

12. J. M. Dan, et al., Science 371, eabf4063 (2021).594

13. M. C. Shamier, et al., medrxiv (2021).595

14. I. Kroidl, et al., Eurosurveillance 26, 2100673 (2021).596

15. N. E. Blachere, E. Hacisuleyman, R. B. Darnell, New England Journal of Medicine 385, e7597

(2021).598

16. E. Hacisuleyman, et al., New England Journal of Medicine 384, 2212 (2021).599

17. N. G. Davies, et al., Science p. eabg3055 (2021).600

18. K. Leung, M. H. Shum, G. M. Leung, T. T. Lam, J. T. Wu, Eurosurveillance 26 (2021).601

19. S. A. Kemp, et al., Nature pp. 1–10 (2021).602

20. T. Crellen, et al., medRxiv (2021).603

21. T. Britton, Mathematical biosciences 225, 24 (2010).604

20

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


22. N. T. J. Bailey, Biometrika 50, 235 (1963).605

23. M. S. Bartlett, Journal of the Royal Statistical Society. Series A (General) 120, 48 (1957).606

24. M. S. Bartlett, Applied Statistics 13, 2 (1964).607

25. F. Ball, Journal of Applied Probability pp. 227–241 (1983).608

26. A. D. Barbour, Biometrika 62, 477 (1975).609

27. P. Holme, PloS one 8, e84429 (2013).610

28. I. Nasell, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 309611

(1999).612

29. C. P. Farrington, A. D. Grant, Journal of Applied Probability 36, 771 (1999).613

30. Office for National Statistics, Coronavirus (COVID-19) Infection Survey pilot: England, 12 June614

2020.615

31. Office for National Statistics, Coronavirus (COVID-19) Infection Survey, antibody data for the616

uk: 16 February 2021.617

32. D. T. Gillespie, Journal of computational physics 22, 403 (1976).618

33. W. V. d. Broeck, et al., BMC infectious diseases 11, 37 (2011).619

34. D. Balcan, et al., BMC medicine 7, 45 (2009).620

35. M. M. Desai, D. S. Fisher, Genetics 176, 1759 (2007).621

36. T. Williams, Advances in Applied Probability 3, 223 (1971).622

37. R. A. Fisher, L. H. C. Tippett, Mathematical Proceedings of the Cambridge Philosophical Society623

24, 180 (1928).624

38. E. J. Gumbel, The Annals of Mathematical Statistics 12, 163 (1941).625

39. Office for National Statistics, Coronavirus (COVID-19) Infection Survey pilot: England, 19 Febru-626

ary 2021.627

40. A. W. Byrne, et al., medRxiv p. 2020.04.25.20079889 (2020).628

41. R. Verity, et al., The Lancet. Infectious diseases 20, 669 (2020).629

42. S. Ghisolfi, et al., Working Paper 535: Predicted COVID-19 Fatality Rates Based on Age, Sex,630

Comorbidities, and Health System Capacity (2020).631

43. MRC Biostatistics Unit, University of Cambridge, COVID-19 Nowcast and forecast.632

https://www.mrc-bsu.cam.ac.uk/now-casting/.633

44. T. Britton, F. Ball, P. Trapman, Science (New York, N.Y.) (2020).634

21

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


45. M. Chikina, W. Pegden, PLOS ONE 15, e0236237 (2020).635

46. A. Endo, C. for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group,636

S. Abbott, A. J. Kucharski, S. Funk, Wellcome Open Res 5 (2020).637

47. D. C. Adam, et al., Nature Medicine 26, 1714 (2020).638

48. L. Wang, et al., Nature Communications 11, 5006 (2020).639

49. A. F. Siegenfeld, N. N. Taleb, Y. Bar-Yam, Proceedings of the National Academy of Sciences640

p. 202011542 (2020).641

50. UK Government: Home Office, National Statistics: How many people come to the UK each year642

(including visitors)? https://www.gov.uk/government/publications/immigration-statistics-year-643

ending-june-2019/how-many-people-come-to-the-uk-each-year-including-visitors.644

51. Civil Aviation Authority, Airport data: https://www.caa.co.uk/data-and-analysis/uk-aviation-645

market/airports/datasets/uk-airport-data/airport-data-2020-06/.646

52. H. A. Orr, R. L. Unckless, The American naturalist 172, 160 (2008).647

53. H. A. Orr, R. L. Unckless, PLoS genetics 10, e1004551 (2014).648

54. J. Hermisson, P. S. Pennings, Genetics 169, 2335 (2005).649

55. S. Bonhoeffer, M. A. Nowak, Proceedings of the National Academy of Sciences 91, 8062 (1994).650

56. E. C. Holmes, Journal of Virology 77, 11296 (2003).651

57. C. Fraser, et al., Science 343, 1243727 (2014).652

58. K. A. Lythgoe, L. Pellis, C. Fraser, Evolution 67 (2013).653

59. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, R. F. Garry, Nature Medicine 26, 450654

(2020).655

60. A. Latinne, et al., bioRxiv (2020).656

61. M. Watsa, Science 369, 145 (2020).657

Acknowledgements658

I thank John McCauley (The Francis Crick Institute), Austin Burt, Vassiliki Koufopanou, Tin-Yu Hui659

(Imperial College) and Ace North (Oxford) for their insights and useful comments on the manuscript.660

Competing interests661

The author declares that they have no competing interests.662

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


Data and materials availability663

Code to plot extinction time predictions and distributions, as well as for performing the Gillespie664

simulations can be found at https://github.com/BhavKhatri/Stochastic-Extinction-Epidemic.665

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


Supplementary Materials for

How long does it take to eliminate an epidemic without herd
immunity?

Bhavin S. Khatri∗

∗To whom correspondence should be addressed; E-mail: bkhatri@imperial.ac.uk

This PDF file includes:

Supplementary Text
Figs. S1
References (S1)

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


Supplementary Text

Estimating extinction times from direct estimate of ρe

Figure S1: Data from NHS England (S1) on daily deaths within hospitals in England and different
regions within England. Each region is fit using a simple decaying exponential from 40 days after
the 1st March 2020, where each region first shows a clear decline in number of daily deaths.

Precise predictions of extinction times based on Eqn.7 in the main text require knowledge of
both Re and γ, which are generally quite difficult to estimate. However, Eqn.7 in the main text
is mainly dependent on the rate of decline of the epidemic ρe, with weak dependence separately
on Re and γ. ρe can be determined more straightforwardly if we assume current daily deaths are
proportional to the number infected; if infections are declining exponentially at a rate ρe then so
will the number of daily deaths, so a curve fit will give an accurate measure of ρe even if we cannot
determine the proportionality constant to translate deaths to infections. An alternative could be to
look at time-series of number of daily infections per number of tests performed, to remove biases
due to testing, however, here the aim is to illustrate why a direct estimate of ρe is useful, rather than
to estimate this number very accurately.

As shown in Fig.S1, fitting decaying exponentials to daily number of deaths (date of death, not
date of reporting) from the NHS UK (S1), from the moment of decline to 13th July 2020, shows
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a very good fit (showing deaths are declining as a simple exponential and giving further weight to
our simple model), giving an England wide estimate of ρe = 0.043 ± 0.001 days−1, with a range
of ρe = 0.036± 0.001 days−1 (slowest decline) for North Yorkshire and ρe = 0.069± 0.001 days−1

(most rapid decline) in London. As an example, we estimate the mean time to extinction had the UK
remained in lockdown from July 2013, when infections were I0 ≈ 3.7× 104; using the rate of decline
of England, we estimate a mean extinction time in the UK as 231±30 days (95% CI: (187, 303) days),
for Re = 0.7, 1/γ = 7 days and 238 ± 30 days (95% CI:(195, 310) days), for Re = 0.57, 1/γ = 10
days; as we can see changing Re and γ for a fixed ρe does not change the predictions significantly,
and we suggest in general, determining ρe could be a more robust way to estimate extinction times.

Branching process analysis

A birth-death process with birth rate b = γRe and death rate d = γ, corresponds to a pure exponential
growth (Re > 1) or decay (Re < 1) phase of an epidemic, when the number of susceptible individuals
S(t) are far in excess of the total number infected I(t). In this appendix, for presentational clarity,
we will use n = I to represent the number of infected individuals. To write down the rate of change
of the probability of n infected individuals at time t, we need only consider the probability of having
n − 1, n, n + 1 individuals and rates of transitions between them, since in the limit of infinitesimal
(continous) changes in time, we consider only changes of single individuals. The rate of transition
from n− 1→ n happens with rate γRe(n− 1) and the rate of transition from n+ 1→ n happens
with rate γ(n+1), which both lead to an increase in the probability of n, while the rate of transition
from n → n + 1 happens with rate γRen and the rate of transition from n → n − 1 happens with
rate γn, which both decrease the probability of n. Using these facts we can write down the rate of
change of the probability of n at time t:

dpn(t)

dt
= γ

(
Re(n− 1)p(n− 1, t)

− (Re + 1)np(n, t) + (n+ 1)p(n+ 1, t)
)
.

(S1)

However, this description isn’t complete, and we need to consider how the probability of the n = 0
state changes, since the above equation won’t work for n − 1, since we cannot have a negative
number of individuals:

dpn=0(t)

dt
= −γ (Renp(n, t) + (n+ 1)p(n+ 1, t)) . (S2)

We can encompass both equations together in one by using the unit step function Un = 1 for n ≥ 0,
while Un = 0 for n < 0:

dp(n, t)

dt
= γ

(
Un−1Re(n− 1)p(n− 1, t)

− Un(Re + 1)np(n, t) + (n+ 1)p(n+ 1, t)
)
.

(S3)
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For n < 0, as long as we have an initial condition, pn<0(t = 0) = 0, the ODEs above guarantee that
pn<0(t)∀t. Considering each value of n : 0 ≤ n <∞, we have an infinite set of coupled differential
equations. The standard way to solve this is to use probability generating functions:

G(z, t) =

∞∑
n=0

pn(t)z
n, (S4)

which is in general a complex function of a complex variable z. Using the fact that z∂G(z, t)/∂t =∑
npn(t)z

n, it is straightforward to show that the set of ODEs give the following first order partial
differential equation for G(z, t):

∂G(z, t)

∂t
= α(z)

∂G(z, t)

∂t
, (S5)

where
α(z) = γ(Rez

2 − (Re + 1)z + 1). (S6)

This PDE can be solved by using the method of characteristics, which finds a parametric path
z(s), t(s) along which our original PDE is obeyed. The rate of change of G(s) along this path in
terms of our parameterisation is:

dG(s)

ds
=

dt

ds

∂G

∂t
+

dz

ds

∂G

∂z
, (S7)

and so with reference to the original PDE (Eqn.S5), we can identify that

dt

ds
= 1

dz

ds
= −α(z). (S8)

Integrating these pair of equations gives the characteristic paths for which dG(s)/ds = 0 is a
constant:

z − 1

z − 1/Re
eγ(Re−1)t = C, (S9)

where C is a constant that represents different possible initial conditions. Integrating dG(s)/ds = 0,
gives

G(s) = φ

(
z − 1

z −R−1e
eγ(Re−1)t

)
, (S10)

where φ is an arbitrary function to be determined by consideration of the initial conditions on pn(t).
We can use the fact that at time t = 0 we assume we know the exact number of infected individuals
is n0 and hence, pn(t = 0) = δnn0 , where δnn0 = 0 for n 6= n0 and δnn0 = 1 for n = n0.
Calculating the probability generating function for the initial delta function probability mass, we get
G(z, t = 0) = zn0 , and so we need to find a function φ satisfying:

G(z, 0) = φ

(
z − 1

z −R−1e

)
= zn0 . (S11)

Substituting x = (z − 1)/(z − 1/Re), we can find φ(x), to give our solution:
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G(z, t) =

(
1 + (z − 1)eγ(Re−1) − zRe

1 +Re(z − 1)eγ(Re−1) − zRe

)n0

. (S12)

Our probability mass function pn(t), should always be normalised
∑

n pn(t) = G(z = 1, t) = 1;
substituting z = 1 we see this that the solution G(z, t) behaves correctly. Finally, the reason this
is all useful, is that we want to calculate the probability of zero individuals infected p0(t), which is
simply given by G(z = 0, t), since 00 = 1:

p0(t) = G(0, t) =

(
1− eγ(Re−1)

1−Reeγ(Re−1)

)n0

. (S13)

Substituting n0 = I0 and ρe = γ(1−Re) gives Eqn.6 in the main text.
Differentiating Eqn.S13 to obtain the extinction time distribution, we find

p†(t) =
dp0(t)

dt
= (1−Re)ρen0

(1− e−ρet)n0−1

(1−Ree−ρet)n0+1
e−ρet. (S14)

This is an exact expression, which is valid for all values of I0 and I†, as long as the original assumptions
of the model that changes in susceptible numbers are negligible (Re < R∗e) is true, where R∗e is given
by Eqn.S19. If I0 � I† then we expect there to be a strong division between the deterministic
phase and the stochastic phase, such that in Eqn.S14 the exponentials have sufficiently decayed
such that n0e

−ρet � 1, before any extinction is likely, then it is straightforward to show that the
limiting form of Eqn.S14, is the Gumbel distribution, Eqn.7 in the main text, using the fact that
(1− e−ρet)n0 ≈ (1− n0e−ρet) ≈ exp(−n0e−ρet).

Extinction for Re > R∗e

Infections decline when Re < 1. Re(t) = R0×S(t)/N is in general time-dependent, composed of two
factors, R0 = β/γ, which for simplicity we assume is time-independent and S(t)/N , which will tend
to decrease in time as more susceptibles become infected, so the rate of decline ρe = γ(1 − Re) is
in general time-dependent and increasing over time. When Re � 1, reductions in transmissions due
to NPIs dominates the decrease in infections, compared to the fractional change in the susceptible
pool and so Re ≈ R0S0/N is constant to a good approximation. However, when Re < 1 but close
to 1, this is no longer true, and the assumption that the number of susceptibles is roughly constant
S(t) ≈ S0 with respect to changes in I(t) and Re(t) is a poor one.

It is within this context that we would like to calculate the extinction time distribution. Although,
an exact solution is not easily obtainable, we can make a semi-heuristic approximation that works
very well. Initially Re is time-dependent since the changing susceptible pool has significant affect
on the decline in infections. However, once infections become sufficiently small the change in the
susceptible pool, per unit time, once again becomes relatively small compared to its current value and
S(t) → S∞ attains its asymptotic value S∞, at which point the constant Re assumption becomes
accurate again and infections decline at a constant rate. The asymptotic value S∞ cannot be
calculated via standard fixed point analysis of the SIR differential equations, since the only condition
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for a fixed point is that I = 0, and this can happen for any value of S; the final asymptotic values
depend on the initial conditions. Taking the SIR differential equations and calculating Ṡ/Ṙ we have

dS

dR
= − βS

γN
=
R0

N
S. (S15)

Integrating this equation, starting from an initial condition S(0) = S0 and R(0) to their final
asymptotic values S∞ and R∞ = N − I∞ − S∞ = N − S∞, then we arrive at the following
transcendental equation for S∞:

S∞ = S0e
R0(1−S∞/N−R(0)/N). (S16)

The solution can however, be expressed using the Lambert W function:

S∞ = − N
R0
W

(
−R0S0

N
e−R0(1−R(0)/N)

)
, (S17)

where w = W (z) is the solution to the transcendental equation wew = z. We are interested
in finding the asymptotic effective reproductive number R∞e = R0S

∞/N in terms of the initial
effective reproductive number Re = R0S0/N , for which the above expression can be rearranged to
give

R∞e = −W
(
−Ree−R0(1−R(0)/N)

)
. (S18)

We can replace Re → R∞e in Eqn.7 of the main text to calculate the distribution of extinction
times to give a good approximation of the extinction times when Re ≈ 1 and where the above
condition for constant Re is not met. However, this gives a systematic underestimate of the time to
extinction, since it effectively ignores the time it takes to attain these asymptotic values, which takes
of order 1/ρ∞e days, where ρ∞e = γ(1 − R∞e ). So finally an accurate and robust approximation to
the extinction time distribution is obtained by the replacement Re → R∞e and τ † → τ † + 1/ρ∞e , as
we can see in Fig.4b in the main text for simulations of Re = 0.99 and 1/γ = 7 days. Note that for
sufficiently small Re the correction to τ is not needed, as R∞e ≈ Re and the assumption of constant
Re is very accurate. We approximate this threshold value of Re as the value of R∞e (Re → 1):

R∗e = R∞e (Re = 1) = −W (−e−R0(1−R(0)/N)). (S19)

which is roughly the plateau value of R∞, which will robustly be close to the value of Re that
R∞e begins to deviate from Re. We can then also stitch together τ † for Re < R∗e and τ + 1/ρ∞

for Re > R∗ using a standard tanh switching function centred on R∗e and with width 0.05, which is
used in Figs. 5&6 in the main text to provide the extinction time predictions across the whole range
of 0 < Re < 1.

Invariance of extinction time distribution to population sub-division

If we imagine a single population to be divided into n equally sized sub-populations, each with a
reproductive number Re and zero-migration between, then the extinction time distribution of tk in
the kth sub-population will be given by Eqn.7 in the main text, but with I0 → I0/n. Now we want
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to calculate the extinction time distribution of the whole population. Extinction will occur when
all sub-populations have zero infected individuals. We can record the extinction times in each sub-
population: t1, t2, ..., tk, ..., tn and the extinction time of the whole population will be the maximum
of this set: t̃ = max{t1, t2, ..., tk, ..., tn}. The cumulative distribution function of the maximum time
t̃ will be the probability of the joint event that each sub-population k has an extinction time less
than t̃:

Pn(t̃) = P (t1 < t̃, t2 < t̃, ..., tk < t̃, ..., tn < t̃)

= P (t1 < t̃)P (t2 < t̃)...P (tk < t̃)...P (tn < t̃)

= (P (t̃))n
(S20)

where P (t) is the CDF for a single population given by Eqn.10 in the main text, but with I0 → I0/n.
Given the form of Eqn.10, these calculations can be performed exactly, whereas using extreme
value theory it usually required that the tails of the distribution asymptotically obey some expo-
nential form, which allows approximate calculation. Doing these calculations we find (P (t̃))n =

(exp(−e−ρe(t̃−τ
†
n)))n, where τ †n = 1

ρe
ln(I0/nI

†). It is then simple to show that the n-dependence
cancels in the final result to give

Pn(t̃) = P (t̃) = exp(−e−ρe(t̃−τ†)). (S21)

In other words, population sub-division into equal sized isolated populations does not affect the
extinction time distribution of the whole global population. In fact, it is simple to extend these argu-
ments to any population sub-division, where I0 =

∑n
k=1 Ik, where Ik is the initial infected population

in each, as long as the fraction of susceptible and Re is the same in each sub-population. This is
not surprising, as it is just a restatement of the mean-field/well-mixed approximation that infected
individuals and sub-populations all experience the same probability of encountering a susceptible
individual S0/N which is set by the global number of susceptible individuals S0.
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