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Abstract 31 

This study introduces and illustrates the potential of an integrated multi-omics approach in 32 

investigating the underlying biology of complex traits such as childhood aggressive behavior. Using 33 

multivariate statistical methods, we integrated 45 polygenic scores (PGSs) based on genome-wide 34 

SNP data, 78,772 CpGs, and 90 metabolites for 645 twins (cases=42.0%, controls=58.0%). The single-35 

omics models selected 31 PGSs, 1614 CpGs, and 90 metabolites, and the multi-omics biomarker 36 

panel comprised 44 PGSs, 746 CpGs, and 90 metabolites. The predictive accuracy in the test (N=277, 37 

cases=42.2%, controls=57.8%) and validation data (N=142 participants from a clinical cohort, 38 

cases=45.1%, controls=54.9%) ranged from 43.0% to 57.0% for the single- and multi-omics models. 39 

The average correlations across omics layers of omics traits selected for aggression in single-omics 40 

models ranged from 0.18 to 0.28. In the multi-omics model higher correlations were found and we 41 

describe five sets of correlational patterns with high absolute correlations (|r| ≥ 0.60) of aggression-42 

related omics traits selected into the multi-omics model, providing novel biological insights. 43 

Keywords: Childhood aggression; multi-omics; polygenic scores; genetic nurturing; DNA 44 

methylation; metabolomics.  45 
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Introduction 46 

Omics studies can lead to an improved understanding of the biological mechanisms contributing 47 

to mental health and disorders (Jakovljevic and Jakovljevic 2019). Different omics technologies, e.g., 48 

genomics, epigenomics, transcriptomics, or metabolomics, assess different aspects of the 49 

development and progression of complex traits and disorders. The analysis of a single omics layer 50 

provides a unique, but incomplete, picture of the underlying biology, whereas studies combining 51 

multiple omics layers may lead to more comprehensive insights into human biology, because the 52 

different omics layers are interrelated and interact (Wörheide et al. 2021). Multi-omics analyses can 53 

aid in biomarker discovery, diagnosis, patient classification or subtyping, evaluation of treatment 54 

response and uncovering novel insights into disease biology (Pinu et al. 2019; Subramanian et al. 55 

2020).  56 

Here, we present an integrative multi-omics analysis of childhood aggressive behavior. Human 57 

aggression is a complex and heterogenous behavior encompassing hostile, destructive, or injurious 58 

behavior aimed at causing physical or emotional harm to others (Anderson and Bushman 2002; 59 

Siever 2008). In several disruptive behavioral disorders, such as conduct and oppositional defiant 60 

disorders or intermittent explosive disorder, inappropriate levels of aggressive behavior are 61 

observed (Radwan and Coccaro 2020). In humans, high co-occurrence with other social, behavioral, 62 

and emotional problems is reported (Bartels et al. 2018; Whipp et al. 2021a). Childhood aggressive 63 

behavior puts a burden on children and their parents/caretakers, and is predictive of multiple 64 

adverse outcomes later in life, such as antisocial personality disorder (Whipp et al. 2019), criminal 65 

convictions (Kassing et al. 2019), lower educational attainment (Vuoksimaa et al. 2020), or negative 66 

interpersonal relationships (Fergusson et al. 2005).  67 

Large-scale genome-wide association (GWA) studies on aggression have not yet identified 68 

significant single nucleotide polymorphisms (SNPs) (Odintsova et al. 2019; Ip et al. 2021). Gene-69 

based analysis for childhood aggression yielded three significantly associated genes (ST3GAL3, 70 
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PCDH7, and IPO13) (Ip et al. 2021). The polygenic score for childhood aggression does not only 71 

significantly explain childhood aggressive behavior at age 7 (Ip et al. 2021), but it also associated 72 

with aggression at age 12 to 41 in a Dutch sample and age 38 to 48 in an Australian sample (van der 73 

Laan et al. 2021). Small-scale epigenetic studies (sample size range: 41-260) showed that DNA 74 

methylation differences in various tissues associated with aggression and related traits in children 75 

and adults (Guillemin et al. 2014; Cecil et al. 2018b, a; Mitjans et al. 2019). The first large-scale 76 

epigenome-wide association analyses (EWAS) meta-analysis across child and adult cohorts (N = 77 

15,324) reported 13 significant sites in peripheral blood for broad aggression across the lifespan (van 78 

Dongen et al. 2021). Metabolomics studies (sample size range: 77-725) detected plasma and serum 79 

metabolites associated with aggression and related traits in adults (Gulsun et al. 2016; Chen et al. 80 

2020; Whipp et al. 2021b). And a study in 1,347 twins and 183 clinical cases found significant 81 

associations of urinary metabolites with childhood aggression (Hagenbeek et al. 2020). These single 82 

omics approaches hint at potentially important biological pathways for human aggression, with most 83 

of these findings awaiting replication. 84 

In this study, we aim to integrate multiple omics layers to construct a multi-omics biomarker 85 

panel for childhood aggressive behavior and explore the correlations among the omics traits 86 

included in this panel. We collected biological samples in a subproject of ACTION (Aggression in 87 

Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies): 88 

the ACTION Biomarker Study (Boomsma 2015; Bartels et al. 2018; Hagenbeek et al. 2020). The 89 

ACTION Biomarker Study comprised a cohort of twins from the Netherlands Twin Register (NTR) 90 

(Ligthart et al. 2019) and a clinical cohort of children referred to a youth psychiatry clinic (LUMC-91 

Curium, the Netherlands). The genome-wide SNP and DNA methylation (Illumina EPIC 850K array) 92 

data, and the urinary amines and organic acids as measured in these cohorts were previously 93 

included in a genome-wide genetic and epigenetic association study and a metabolomics study of 94 

(childhood) aggression (Hagenbeek et al. 2020; van Dongen et al. 2021; Ip et al. 2021). We expand 95 

on these single-omics studies, by integrating this data with a third metabolomics dataset, focusing 96 
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on urinary steroid hormones, and calculating transmitted and non-transmitted polygenic scores 97 

(PGSs) for childhood aggression and a series of genetically correlated traits, such as Attention-Deficit 98 

Hyperactivity Disorder (ADHD), smoking, and intelligence. The non-transmitted PGSs assess the 99 

indirect effects of genetic variants that were not transmitted from parents to offspring, i.e., genetic 100 

nurture, and capture the effects of the environment created by parents beyond the genetic 101 

intergeneration transmission (Kong et al. 2018). Thus, if alleles not transmitted from parents to 102 

offspring affect offspring outcomes, this indicates that the offspring’s home-environment is 103 

influenced by parentental genotypes, and the home-environment in turn affects offspring outcomes 104 

(Branje et al. 2020). 105 

We employed an analytical design comprising three phases: 1) single-omics analyses; 2) pairwise 106 

cross-omics analyses; and 3) multi-omics analyses (Fig. 1) (Duruflé et al. 2020). First, we built single-107 

omics biomarker panels in the twin cohort, with 70% of the twin data for model training, 30% of the 108 

twin data for model testing, and the clinical cohort for model validation. Second, we examined the 109 

overall pairwise cross-omics correlations and the pairwise correlations of those omics traits selected 110 

by the single-omics models in the training data. Third, using the same data split for model training, 111 

testing and validation, we compared three multi-omics models, with different assumptions on the 112 

correlations among the omics traits and describe the multi-omics correlations of the selected omics 113 

traits.  114 

Materials and methods 115 

Study population and procedures 116 

Participants included 1,494 twins (747 complete pairs) from the Netherlands Twin Register 117 

(Ligthart et al. 2019), and 189 children referred to the LUMC-Curium youth psychiatry clinic in the 118 

Netherlands that took part in the ACTION Biomarker Study (Aggression in Children: Unraveling gene-119 

environment interplay to inform Treatment and InterventiON strategies) (Boomsma 2015; Bartels et 120 

al. 2018; Hagenbeek et al. 2020). Both cohorts collected first-morning urine samples and buccal-cell 121 
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swabs with standardized protocols (for details, see Appendix A). In the twin cohort, we also 122 

collected buccal-cell swabs from parents and siblings of the twins. The current study included 123 

participants if they had aggression status, complete omics data for all three omics layers, and all 124 

relevant covariates (Table S1). Parents provided written informed consent for their children and twin 125 

parents provided written informed consent for their own participation. Study approval was obtained 126 

from the Central Ethics Committee on Research Involving Human Subjects of the VU University 127 

Medical Center, Amsterdam (NTR 25th of May 2007 and ACTION 2013/41 and 2014.252), an 128 

Institutional Review Board certified by the U.S. Office of Human Research Protections (IRB number 129 

IRB00002991 under Federal-wide Assurance- FWA00017598; IRB/institute codes), and the Medical 130 

Ethical Committee of Leiden University Medical Center (B17.031, B17.032 and B17.040).  131 

Aggressive behavior  132 

Mothers and teachers rated aggressive behavior on the Aggressive Behavior syndrome scale of 133 

the Achenbach System of Empirically Based Assessment (ASEBA) Child Behavior Checklist (CBCL) or 134 

Teacher Report Form (TRF) (Achenbach et al. 2017). We have described selection and definition of 135 

aggression cases and controls previously (Hagenbeek et al. 2020). In brief, we selected twin pairs 136 

based on concordance (case-case or control-control) and discordance (case-control pairs) for 137 

mother- (93%) or teacher-rated (7%) aggressive behavior at ages 3, 7, and/or 10 years. We matched 138 

concordant control pairs on postal code to the case-case and case-control pairs, and collection of 139 

biological samples within regions in the Netherlands was around the same time. Cases were defined 140 

by mother- or teacher-rated sex- and age-specific T-scores of 65 or higher (subclinical levels), or on 141 

mother-rated age-specific thresholds on the item scores at age 3 (≥ 13), age 7 (≥ 5), or age 10 (≥ 4) 142 

(N = 388, Table S1). We denoted individuals with scores below these thresholds as controls (N = 534, 143 

Table S1). In the clinical cohort, children with a parent-rated sex-specific T-score of ≥ 70 (clinical 144 

levels) were classified as cases (N = 64), and children with T-scores of < 65 were classified as low 145 

scoring controls (N = 78, Table S1). We excluded children with T-scores in the subclinical range (T-146 

scores of ≥ 65 and < 70) from this study (N = 35).  147 
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Omics measurements 148 

Details on omics measurements are included in Appendix B. Genotyping was performed on 149 

Affymetrix Axiom or Illumina GSA arrays (Ehli et al. 2017; Beck et al. 2019), and genome-wide SNP 150 

data were available for 3,334 participants, including 1,702 parents and siblings of twins (AXIOM = 151 

909, GSA = 2,425). Transmitted and non-transmitted polygenetic scores (PGS) were calculated for 152 

childhood aggression and 14 other traits that showed a significant (p < 0.02) genetic correlation of ≤ 153 

-0.40 or ≥ 0.40 with childhood aggression (Ip et al. 2021) (Table 1). Thus, in total we calculated 45 154 

PGSs: a transmitted (15), non-transmitted by mother (15), and non-transmitted by father (15) PGS 155 

for each trait. The effects of sex, age at biological sample collection, genotyping platform, and the 156 

first 10 genetic principal components (PCs) were regressed on the standardized PGSs and we 157 

included residuals in the analyses. 158 

Genome-wide DNA methylation was measured on the Infinium MethylationEPIC BeadChip Kit 159 

(Illumina, San Diego, CA, USA (Moran et al. 2016)). Quality Control (QC) and normalization were 160 

carried out with pipelines developed by the Biobank-based Integrative Omics Study (BIOS) 161 

consortium (Sinke et al.). From the 787,711 autosomal methylation probes that survived QC, the top 162 

10% most variable probes were included in the analyses (Data S1). Residual methylation levels were 163 

obtained by regressing the effects of sex, age, percentages of epithelial and natural killer cells, EPIC 164 

array row, and bisulfite sample plate, from the methylation β-values. 165 

Urinary metabolomics data were generated on: 1) a liquid chromatography mass spectrometry 166 

(LC-MS) platform targeting amines; 2) a LC-MS platform targeting steroid hormones; and 3) a gas 167 

chromatography (GC) MS platform targeting organic acids. We excluded metabolites with a relative 168 

standard deviation of the QC samples larger than 15% and retain 60 amines, 10 steroids, and 20 169 

organic acids in our analyses. After QC, we normalized metabolite levels to the sample-median and 170 

inverse normal rank transformed. We analyzed residuals obtained by regressing the effects of sex 171 

and age on the normalized and transformed urinary metabolites. 172 
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Statistical analyses 173 

To define multi-omics biomarker panels capable of discriminating between cases and controls 174 

and explore the correlations among the omics traits included in these panels, we employed an 175 

analytical design comprising three phases: 1) single-omics analyses; 2) pairwise cross-omics analyses; 176 

and 3) multi-omics analyses (Fig. 1). To avoid overfitting of the single- and multi-omics models, we 177 

randomly split the twin sample at the twin pair level into two subsets: 70% of the data for model 178 

training (training data), and 30% of the data for model testing (test data; Table 2). The clinical 179 

validity of the final single- and multi-omics models was evaluated in the clinical cohort (validation 180 

data; Table 2). We carried analyses out in the mixOmics R package (version 6.12.1) implemented in 181 

the R programming language (version 4.0.2) (R Core Team; Rohart et al. 2017).  182 

Phase 1: Single-omics analyses 183 

Univariate polygenic score analyses 184 

In the training data, we first associated the transmitted- and non-transmitted PGSs with 185 

childhood aggression through generalized estimating equation (GEE) models. GEE models tested the 186 

association of each transmitted and non-transmitted PGS separately on the continuous mother-187 

rated sum scores of the ASEBA CBCL Aggressive Behavior syndrome scale as assessed at the time of 188 

biological sample collection. All models included sex, age, genotype array, and the first 10 genetic 189 

principal components as covariates. We corrected for the correlation structure within families by 190 

using the “exchangeable” correlation structure, obtaining robust variance estimators (Rogers and 191 

Stoner 2016). A False Discovery Rate (FDR) of 5% for 45 PGSs was used to correct for multiple testing 192 

(p.adjust function in R), setting the significance threshold to q ≤ 0.05, i.e., 5% of the significant 193 

results will be false positives (Benjamini and Hochberg 1995). 194 

Multivariate single-omics models 195 

To get a first insight into the dimensionality of the metabolomics data (90 variables), DNA 196 

methylation data (78,772 variables), and the PGSs (45 variables), we ran Principal Component 197 
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Analysis (PCA) within each omics layer in the training data (Table S2). To assess the ability of each of 198 

the three omics layers to correctly classify aggression status, we applied Partial Least Square 199 

Discriminant Analysis (PLS-DA) in the training data. PLS-DA involves iteratively constructing 200 

successive latent components, where each component is a linear combination of the included omics 201 

traits (Rohart et al. 2017). For each component, PLS-DA aims to maximize the covariance between 202 

the residual X matrix, containing the omics data, and the Y matrix, containing the sample 203 

classification (i.e., case-control status coded as a dummy variable). The mixOmics software requires 204 

a user-defined maximum number of components in PLS-DA models. We chose this maximum based 205 

on the number of PCs as determined by the elbow method in the PCA (Fig. S1; Table S2). To find the 206 

optimal number of components to keep in each PLS-DA model, we employed 10-fold cross-validation 207 

(CV) with 100 repeats (perf function; Table S3; Fig. S2).  208 

Next, we applied sparse PLS-DA (sPLS-DA) to reduce the number of traits in each omics layer 209 

contributing to each component. sPLS-DA includes Least Absolute Shrinkage and Selection Operator 210 

(LASSO) penalization (e.g., L1 penalization). LASSO shrinks the coefficients of less importance, often 211 

highly correlated, traits to zero, removing these traits from the model (Tibshirani 1996). Thus, for 212 

each component, sPLS-DA finds the maximum covariance between the residual X matrix containing a 213 

subset of the omics data with non-zero coefficients (variable selection) and the Y matrix (Lê Cao et 214 

al. 2011). We assessed the trait selection via 10-fold CV with 100 repeats (tune function), keeping at 215 

least two components in the final model (Table S3; Fig. S3). CV again obtained the performance of 216 

the final sPLS-DA model using the perf function (10 folds, 100 repeats; Table S3; Fig. S4).  217 

The ability of the final single-omics models to accurately predict out-of-sample case-control 218 

status was evaluated in the test and validation data (predict function). For each new observation in 219 

the test and validation data, this function calculates the predicted class (case/control) by estimating 220 

their predicted dummy variable (of the case-control status) using the maximum, Mahalanobis, or 221 

Centroids (Euclidian) distance (see Rohart et al. 2017). When using the maximum distance, the 222 
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predicted class of a new observation is the class for which we observed the largest predicted dummy 223 

value. Both the Mahalanobis and centroids distances are centroid-based distances that predict the 224 

class of a new observation, so that the distance between its centroid and predicted scores is 225 

minimal. To out-of-sample case-control status, we used the best performing prediction distance, as 226 

was determined during model training (see Table S3).  227 

The misclassification rates of the models, that combine the number of cases classified as controls 228 

(false negative rate) and the number of controls classified as cases (false positive rate), was used to 229 

evaluate how well the final models predicted case-control status. We employed a balanced 230 

misclassification rate, the balanced error rate (BER), that corrects for imbalances in the number of 231 

cases and controls. We used a confusion matrix, comparing the true cases and controls with the 232 

predicted cases and controls, to calculate the sensitivity (number of cases correctly classified as 233 

cases [true positive rate]), specificity (number of controls correctly classified as controls [true 234 

negative rate]), and accuracy (overall correct classification). As an alternative, Receiver Operating 235 

Characteristic (ROC) analysis assessed the Area Under the Curve (AUC) in both the test and 236 

validation data. We obtained the ROC curve per component. 237 

Phase 2: Pairwise cross-omics analyses 238 

To highlight pairwise cross-omics relationships (i.e., DNA methylation-metabolomics, PGSs- 239 

metabolomics, and PGSs-DNA methylation), Partial Least Squares (PLS) regression models were 240 

constructed in canonical mode in the training data. Similar to canonical correlation analysis, 241 

canonical PLS regression aims to find linear combinations of the variables (canonical variates) to 242 

reduce the dimensionality of the data while maximizing the covariance between the variates (Rohart 243 

et al. 2017). CV has not yet been implemented for PLS in canonical mode. Consequently, we kept the 244 

smallest number of components as kept in either of the respective single-omics models (Table S3). 245 

Therefore, we included 3 components for the DNA methylation-metabolomics model, and 2 246 

components for the PGS-metabolomics and PGS-DNA methylation models.  247 
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The PLS models were run with two different numbers of included omics traits, 1) a PLS model that 248 

included all 45 PGSs, 78,772 CpGs, and 90 metabolites (model 1), and 2) a PLS model that only 249 

included the 36 PGSs, 1,614 CpGs, and 90 metabolites that were selected by the single-omics sPLS-250 

DA models (model 2; Data S2). Model 1 provides insight into the correlations among all omics traits, 251 

while model 2 provides insight into the correlations of those omics traits that best contribute to 252 

aggression case-control classification in the single-omics sPLS-DA models. On the omics traits 253 

included in model 2, we performed hierarchical clustering with the Ward linkage algorithm on 254 

Euclidean distances of the PLS variates and used the ‘dendextend’ R-package (Galili 2015) to extract 255 

the two largest clusters for both of the omics layers included in the PLS models. 256 

Phase 3: Multi-omics analyses 257 

The multi-omics analysis was conducted through Data Integration Analysis for Biomarker 258 

discovery using Latent cOmponents (DIABLO) in the training data. DIABLO extends PLS-DA to multi-259 

block PLS-DA (MB-PLS-DA), that aims at identifying correlated traits from multiple omics layers that 260 

maximize the sample classification (Singh et al. 2019). The method requires a user-defined ‘design 261 

matrix’, that specifies the expected correlations among the omics layers. The symmetric design 262 

matrix has the number of rows and columns equal to the number of omics layers (i.e., 3), and 263 

contains values between 0 and 1. A ‘full’ design matrix denotes strong positive correlations among 264 

the omics layers and sets the values among omics layers close to or equal to one. A ‘null’ design 265 

matrix denotes weak or no correlations among omics layers by setting values close to or equal to 266 

zero. The full design matrix optimizes correlations among the omics layers, while the null design 267 

matrix optimizes the discrimination between samples (Rohart et al. 2017; Singh et al. 2019; Duruflé 268 

et al. 2020). We can also specify a design matrix with the empirical correlations among the omics 269 

layers.  270 

We compared a multi-omics model with an empirical design matrix (based on the correlations 271 

obtained from the model 1 pairwise cross-omics PLS models; Table S4) to models with a null or full 272 
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design matrix. Based on the results of the single-omics sPLS-DA models (Table S5), we chose the 273 

maximum number of components to include in the MB-PLS-DA models. We determined the optimal 274 

number of components to keep in the MB-PLS-DA model with 10-fold CV and 100 repeats (perf 275 

function; Fig. S5). We assessed the trait selection per component per omics layer via 5-fold CV with 276 

50 repeats (tune function; Table S5; Fig. S6). Performance of the final MB-sPLS-DA model was 277 

assessed with 5-fold CV (50 repeats; Table S5; Fig. S7). 278 

The ability of the final multi-omics models to predict out-of-sample case-control status was 279 

evaluated in the test and validation data (predict function), using the best performing prediction 280 

distance as was determined during model training (see Table S5). The final multi-omics models were 281 

evaluated by their balanced error rates, and the sensitivity, specificity, and accuracy of the models 282 

were calculated from their confusion matrices. In the multi-omics models, we calculated the ROC 283 

curves per component for each omics layer.  284 

Biological characterization 285 

To facilitate biological interpretation, we describe the correlations of the PGSs, CpGs, and 286 

metabolites, that were selected by the single-omics sPLS-DA models and those selected by the multi-287 

omics MB-sPLS-DA models. For the multi-omics MB-sPLS-DA models we also identified correlation 288 

patterns that included high absolute correlations (|r| ≥ 0.60) between omics traits of at least two 289 

omics layers. To test for enrichment of methylation sites previously associated with other traits, we 290 

performed trait enrichment analysis for all traits (619) in the EWAS atlas on the 18th of June 2021 (Li 291 

et al. 2019). CpGs served as input for the trait enrichment analysis if 20 or more unique CpGs were 292 

selected into the single-omics sPLS-DA model, the multi-omics MB-sPLS-DA models, or included in a 293 

multi-omics MB-sPLS-DA high correlation pattern. When fewer than 20 CpGs were selected, we 294 

manually retrieved the trait associations with the CpGs from the EWAS atlas. Similarly, we 295 

performed trait enrichment analysis or manual retrieval of the CpGs included in the clusters as 296 
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identified for the pairwise cross-omics analyses for all traits (618) in the EWAS atlas on the 1st of July 297 

2021.  298 

Results 299 

Polygenic prediction 300 

Transmitted and non-transmitted PGSs for childhood aggression and 13 other traits were 301 

individually not significantly associated with aggressive behavior after multiple testing correction 302 

(Data S3). The transmitted PGS for ADHD were significantly associated with aggressive behavior (β = 303 

1.16, SE = 0.26, q = 0.0003), while the non-transmitted PGSs were not (mother: β = -0.22, SE = 0.24, q 304 

= 0.83; father: β = 0.02, SE = 0.23, q = 0.98), showing that genetic liability for ADHD associates with 305 

increased levels of aggressive behavior.  306 

Single-omics models for childhood aggression 307 

We built single-omics biomarker panels for childhood aggressive behavior based on sPLS-DA 308 

models including PGSs, DNA methylation, or metabolomics data. After extensive cross-validation the 309 

optimal models included 11 transmitted and 25 non-transmitted PGSs (2-component model), across 310 

all components, 1,614 CpGs (6-component model), and all 90 metabolites (2-component model) 311 

(Table S3; Data S2). All three single-omics models showed poor separation of aggression cases and 312 

controls on all components (Fig. S8). Prediction in the test data showed that model performance was 313 

at most slightly better than random assignment of case-control status for the PGSs (BER = 0.51-0.51, 314 

range is for the different components), for the DNA methylation data (BER = 0.44-0.51), and for the 315 

metabolomics data (BER = 0.52-0.54; Table S6). In the validation data, the average classification 316 

accuracy was better for the metabolomics model (BER = 0.48-0.51), but not for the PGS (BER = 0.50-317 

0.51) and DNA methylation models (BER = 0.48-0.58; Table S6). Similarly, the single-omics models 318 

had low sensitivity and specificity in both the test and validation data and ROC curve analyses 319 

showed the AUCs ranged from 0.48 to 0.58 in the test data and from 0.39 to 0.58 in the validation 320 
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data (Table S6). As a result, we observed a low degree of separation among cases and controls in 321 

both the test and validation data (Fig. S9- S10).  322 

Out of the 36 selected PGSs, 11 transmitted and 16 non-transmitted PGSs (75%) were selected 323 

with high stability, i.e., included in 80% of the cross-validation rounds (Data S2). PGSs that were 324 

consistently included in the sPLS-DA model for childhood aggression, included the transmitted and 325 

both non-transmitted PGSs for childhood aggression and number of cigarettes per day, the 326 

transmitted and non-transmitted by mother PGSs for ADHD, age at first birth, Major Depressive 327 

Disorder (MDD), insomnia, loneliness, and Educational Attainment (EA), the transmitted and non-328 

transmitted by father PGSs for smoking initiation, both non-transmitted PGSs for self-reported 329 

health, the transmitted PGSs for wellbeing spectrum and age of smoking initiation, the non-330 

transmitted by mother PGSs for Autism Spectrum Disorder (ASD) and intelligence, and the non-331 

transmitted by father PGS for childhood IQ. The remaining PGSs included in the final sPLS-DA model 332 

had a stability ranging from 50%-78%, and included the non-transmitted by mother (childhood IQ, 333 

wellbeing spectrum, age at smoking initiation, and smoking initiation) and non-transmitted by father 334 

scores (intelligence, MDD, ADHD, wellbeing spectrum, and ASD).  335 

In contrast, only 56 out of the 1,614 CpGs (3.5%) were selected with high stability (range = 0.1%-336 

97.9%; Data S2). We performed trait enrichment analyses against all reported associations in the 337 

EWAS atlas for all selected CpGs in the sPLS-DA model. We observed the strongest enrichment for 338 

glucocorticoid exposure (i.e., administration of corticosteroid medication (Braun et al. 2019); OR = 339 

18.02, p = 5.34x10-158), and household socioeconomic status in childhood (OR = 9.88, p = 1.18x10-13; 340 

Table S7). In addition, we saw enrichment for many other traits, not obviously related to aggressive 341 

behavior. All 90 metabolites selected by the sPLS-DA model were selected with high stability (Data 342 

S2). 343 
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Pairwise cross-omics models 344 

The average correlations between each omics layer from pairwise PLS cross-omics models 345 

including all omics traits, i.e., the correlation among all PLS variates of all components 346 

simultaneously, were r = 0.18 (q = 3.19x10-15) for DNA methylation-metabolomics, r = 0.28 (q = 347 

7.97x10-24) for PGSs-metabolomics, and r = 0.29 (q = 2.30x10-26) for PGSs-DNA methylation (Table 348 

S4). We observed a decrease in the average correlations between the PGSs and CpGs (r = 0.28, q = 349 

9.57x10-24), but not between the PGSs and metabolites or the CpGs and metabolites, when including 350 

only the omics traits selected through single-omics sPLS-DA in the pairwise PLS cross-omics models 351 

(Table S4). Overall, these correlations suggest that omics traits for childhood aggression from 352 

different omics layers capture largely independent information and that childhood aggression is 353 

associated with variation across different omics layers. 354 

Pairwise DNA methylation-metabolomics correlations 355 

In the pairwise DNA methylation-metabolomics model, we used hierarchical clustering and found 356 

two clusters of CpGs and of metabolites (Fig. 2a; Data S4). The DNA methylation cluster 1 contains 357 

1,151 (71.3%) of the CpGs selected by the sPLS-DA models for childhood aggression. These CpGs 358 

located across the genome, have the largest number of CpGs on chromosome 1 (N = 112, 9.7%), and 359 

chromosome 2 (N = 93, 8.1%), and the strongest trait enrichments for these CpGs were observed for 360 

household socioeconomic status in childhood (OR = 12.48, p = 4.20x10-14), and psoriasis (OR = 3.70, p 361 

= 1.18x10-10; Table S8). The 463 (28.7%) CpGs included in cluster 2 are also located across the 362 

genome, with chromosome 3 (N = 43, 9.3%), and chromosome 4 (N = 39, 8.4%) containing the 363 

largest amount of cluster 2 CpGs, that show the strongest trait enrichment for glucocorticoid 364 

exposure (OR = 51.25, p ≤ 1.00x10-308; Table S8). Metabolite cluster 1 contains 69 (76.7%) of the 365 

metabolites, including 55 amines, 7 organic acids and 7 steroids, while metabolite cluster 2 contains 366 

21 metabolites (23.3%), including 5 amines, 13 organic acids, and 3 steroids.  367 
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The correlation of the CpGs included in cluster 1 with metabolites ranges from -0.20 to 0.19 (r M 368 

= -0.001, r SD = 0.02; Fig. 2a; Data S4-S5). The correlations of the cluster 1 CpGs with the cluster 1 369 

metabolites are lower (r M = -0.005, r SD = 0.02, r range = -0.19-0.19) than those observed with the 370 

cluster 2 metabolites (r M = 0.01, r SD = 0.01 r range = -0.20-0.19). The CpGs included in cluster 2 371 

have correlations ranging from -0.23 to 0.18 with metabolites (r M = -0.05, r SD = 0.01), with 372 

predominantly negative correlations observed between these CpGs and the amines included in 373 

metabolite cluster 1 (r M = -0.095, r SD = 0.01, r range = -0.23-0.18; Fig. 2a; Data S4-S5). We 374 

observed the highest absolute correlations (|r| ≥ 0.20) between metabolites of cluster 1 and CpGs 375 

included in cluster 2, specifically, the amines 3-methoxytyramine (r M = -0.21, r SD = 0.01, r range: -376 

0.23 to 0.20), asymmetric dimethylarginine (ADMA, r M = -0.20, r SD = 0.002, r range: -0.21 to -0.20), 377 

L-glutamic acid (r = -0.20), L-phenylalanine (r M = -0.20, r SD = 0.003, r range: -0.21 to -0.20), O-378 

acetyl-L-serine (r = -0.20), and symmetric dimethylarginine (SDMA, r M = -0.21, r SD = 0.004, r range: 379 

-0.22 to -0.20) show negative correlations with these CpGs (Fig. 2a; Data S4-S5), showing that 380 

increased levels of these urinary metabolites associated with hypomethylation at cluster 2 CpG sites. 381 

Pairwise PGSs-metabolomics correlations 382 

Hierarchical cluster of the pairwise PGSs-metabolomics model identified two clusters of PGSs and 383 

two clusters of metabolites (Fig. 2b; Table S9). The PGS cluster 1 contains 23 of the PGSs (63.9%) 384 

selected by the sPLS-DA model for childhood aggression (Fig. 2b; Table S9). This cluster contains 8 385 

transmitted PGSs, 9 PGSs non-transmitted by mother and 6 non-transmitted by father, including the 386 

transmitted and both non-transmitted PGSs for ADHD, childhood aggression, number of cigarettes 387 

per day, and MDD, the transmitted and non-transmitted by mother PGSs for insomnia, both non-388 

transmitted PGSs for smoking initiation and ASD, the transmitted PGSs for age at first birth, EA, and 389 

wellbeing spectrum, and the non-transmitted by mother PGSs for age at smoking initiation and 390 

loneliness. The 13 PGSs (36.1%) included in cluster 2 include 3 transmitted PGSs, 6 PGSs non-391 

transmitted by mother, and 4 by father (Fig. 2b; Table S9). This cluster encompasses the transmitted 392 

PGSs for age of smoking initiation, loneliness, and smoking initiation, both the non-transmitted PGSs 393 
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for childhood IQ, intelligence, self-reported health, and wellbeing spectrum, and the non-394 

transmitted by mother PGSs of age at first birth and EA. We observed that the PGSs for wellbeing 395 

spectrum, smoking initiation, age at first birth, and age at smoking initiation are not assigned to the 396 

same cluster, but included across clusters 1 and 2 (Fig. 2b; Table S9). For these four traits, we 397 

observed a high number of opposite directions in the correlations among the metabolites and the 398 

transmitted and non-transmitted PGSs, i.e., 66.7%, 100%, 76.7%, and 62.2%, respectively (Fig. 2b; 399 

Data S6; Table S10).  400 

The metabolite cluster 1 contains 46 metabolites (51.1%), all amines (76.7% of all amines) (Fig. 401 

2b; Table S9). The remaining 14 amines, as well as all steroids and organic acids, are included in 402 

metabolite cluster 2 (N = 44, 48.9%, Fig. 2b; Table S9). Despite these differences, these clusters are 403 

still similar to those observed in the DNA methylation-metabolomics model, with 46 (66.7%) and 21 404 

(47.7%) overlapping metabolites included in cluster 1 and 2, respectively.  405 

Overall, we observed correlations ranging from -0.18 to 0.26 for the PGSs in cluster 1 with 406 

metabolites (r M = 0.015, r SD = 0.02), and from -0.24 to 0.19 for the cluster 2 PGSs with metabolites 407 

(r M = -0.03, r SD = 0.02; Fig. 2b; Data S6; Table S9). We observed the highest positive correlations (r 408 

≥ 0.20) between the non-transmitted by father ADHD (ADHD_NTf) and smoking initiation PGSs 409 

(smokinginitiation_NTf) with both essential and non-essential amino acids, such as L-leucine or L-410 

alanine (ADHD_NTf r M = 0.21, r SD = 0.01, r range: 0.21-0.22, smokinginitiation_NTf r M = 0.22, r SD 411 

= 0.02, r range: 0.20-0.26). Similarly, the most negative correlations (r ≤ -0.20) were observed 412 

between amino acids and the non-transmitted by father PGSs for intelligence (intelligence_NTf) and 413 

self-reported health (selfreportedhealth_NTf, intelligence_NTf r M = -0.21, r SD = 0.01, r range: -0.22 414 

to -0.21, selfreportedhealth_NTf r M = -0.21, r SD = 0.01, r range: -0.22 to -0.20). This shows that 415 

characteristics tagged by ADHD, smoking initiation, intelligence, and self-reported health correlated 416 

to parental construction of environments influencing offspring urinary amino acid levels.  417 
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Pairwise PGSs-DNA methylation correlations 418 

For the pairwise PGSs-DNA methylation model, we again applied hierarchical clustering to find 419 

two clusters for the PGSs and DNA methylation data (Fig. 2c; Data S7). PGS cluster 1 contains 22 of 420 

the PGSs (61.1%) selected by the sPLS-DA model for childhood aggression (Fig. 2c; Data S7). This 421 

cluster contains 6 transmitted PGSs, 9 PGSs non-transmitted by mother and 7 non-transmitted by 422 

father, including the transmitted and both non-transmitted PGSs for ADHD, and MDD, the 423 

transmitted and the non-transmitted by mother PGSs for smoking initiation, and wellbeing 424 

spectrum, both the non-transmitted PGSs for aggression, and number of cigarettes per day, the 425 

transmitted PGSs for age at first birth, and EA, the non-transmitted by mother PGSs for age of 426 

smoking initiation, insomnia, and loneliness, and the non-transmitted by father PGSs for ASD, 427 

childhood IQ, and intelligence. The 14 PGSs (38.9%) included in cluster 2 include 5 transmitted PGSs, 428 

6 PGSs non-transmitted by mother, and 3 by father. This cluster encompasses both the non-429 

transmitted PGSs for self-reported health, the transmitted PGSs for age smoking initiation, 430 

aggression, number of cigarettes per day, insomnia, and loneliness, the non-transmitted by mother 431 

PGSs for age at first birth, ASD, childhood IQ, EA, and intelligence, and the non-transmitted by father 432 

PGSs for smoking initiation, and wellbeing spectrum. The clusters as identified in this model are 433 

highly similar to those observed in the PGSs-metabolomics model, with 16 (69.6%) and 9 (69.2%) 434 

overlapping PGSs included in cluster 1 and 2, respectively (Table S9; Data S7). Although the PGSs-435 

metabolomics and PGSs-DNA methylation models produce very similar clusters for the PGSs, we 436 

observe that only the PGSs for self-reported health, ADHD, and MDD were assigned to the same 437 

cluster, while the PGSs of only four traits had not been assigned the same cluster in the PGSs-438 

metabolomics model (Table S9; Data S7).  439 

The DNA methylation cluster 1 contains 1,142 (70.8%) of the CpGs selected by the sPLS-DA 440 

models for childhood aggression, and shows the strongest trait enrichments for household 441 

socioeconomic status in childhood (OR = 12.58, p = 3.68x10-14), and psoriasis (OR = 3.73, p = 9.55x10-442 

11; Table S11). The 472 (29.2%) CpGs included in cluster 2 show the strongest trait enrichment for 443 
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glucocorticoid exposure (OR = 50.00, p ≤ 1.00x10-308; Table S11). The clusters as identified in this 444 

model are nearly identical to those observed in the DNA methylation-metabolomics model, with 445 

1,142 (99.2%) and 463 (98.1%) overlapping CpGs included in cluster 1 and 2, respectively (Data S4; 446 

Data S7).  447 

The correlations of PGSs in cluster 1 and 2 with the CpGs ranged from -0.10 to 0.15 (r M = 0.02, r 448 

SD = 0.02) and from -0.19 to 0.11 (r M = -0.03, r SD = 0.02), respectively, and the correlations of the 449 

CpGs in cluster 1 and 2 with the PGSs ranged from -0.15 to 0.13 (r M = 0.0002, r SD = 0.01) and from 450 

-0.19 to 0.15 (r M = -0.005, r SD = 0.004), respectively (Fig. 2c; Data S7-S8). We observed a high 451 

number of near zero correlations among the PGSs and CpGs, that likely contribute to the high 452 

number of opposite direction correlations among the CpGs and the transmitted and non-transmitted 453 

PGSs (N M = 906, N SD = 499, N range: 38-1614; Fig. 2c; Data S8; Table S12). The most negative 454 

correlations (r ≤ -0.15) were observed between the non-transmitted by father self-reported health 455 

PGS with CpGs of cluster 2 (r M = -0.18, r SD = 0.01, r range: -0.19 to -0.15), and the highest positive 456 

correlations (r ≥ 0.15) between the cluster 2 CpGs and the non-transmitted by father ASD PGS (r M = 457 

0.151, r SD = 0.001, r range: 0.150-0.154; Fig. 2c; Data S8). This shows that characteristics tagged by 458 

ASD and self-reported health correlated to paternal construction of environments influencing 459 

offspring buccal DNA methylation levels. 460 

Multi-omics model for childhood aggression 461 

We built multi-omics panels for childhood aggressive behavior based on multi-block sPLS-DA 462 

(MB-sPLS-DA) models, including PGSs, DNA methylation, and metabolomics data. Here, we report 463 

the multi-omics model with an empirical design matrix and  results for the null and full design 464 

matrices can be found in Appendices C and D, respectively. After cross-validation, the optimal 5-465 

component model included 14 transmitted and 30 non-transmitted PGSs, 746 CpGs, and all 90 466 

metabolites, across all components (Table S5; Data S9). The multi-omics model showed poor 467 

separation of aggression cases and controls both across omics blocks and within omics blocks (Fig. 468 
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S11). Multi-omics prediction of aggression case-control status in the test data showed an 469 

improvement in the prediction (BER = 0.47-0.52; Table S13) as compared to single-omics models 470 

including only the PGSs or metabolomics data, but not as compared to the model including only the 471 

DNA methylation data (Table S6). In contrast, in the clinical cohort, the average classification 472 

accuracy was poorer in the multi-omics model (BER = 0.53-0.57; Table S13) than for the single-omics 473 

models (Table S6). While the sensitivity and specificity of the multi-omics model was low, ROC curve 474 

analyses showed the AUCs ranged from 0.63 to 0.76 in the test data and the clinical cohort (Table 475 

S13), which is an improvement in comparison to  the single-omics models (Table S6). As for the 476 

single-omics models, we observed a low degree of separation among cases and controls in both the 477 

test data and in the clinical cohort for the multi-omics model (Fig. S12-S13).  478 

The multi-omics model selected all 30 non-transmitted PGS, and except for the transmitted PGS 479 

for childhood IQ, also all the transmitted PGSs (Data S9). Nine of the transmitted and 20 of the non-480 

transmitted PGSs had high average stability, i.e., average of how often the trait was selected across 481 

repetitions of the cross-validation folds, to be selected to at least one of the components. The PGSs 482 

with high stability included the transmitted and both non-transmitted PGSs for childhood 483 

aggression, age at first birth, number of cigarettes per day, intelligence and smoking initiation, the 484 

transmitted and non-transmitted by father PGSs for ADHD and insomnia, both the non-transmitted 485 

PGSs for age at smoking initiation, EA, and self-reported health, the transmitted PGSs for MDD and 486 

wellbeing spectrum, and the non-transmitted by mother PGSs for ASD and childhood IQ.  487 

Out of the 746 CpGs selected by the multi-omics model 204 (27.3%) were also selected by the 488 

single-omics DNA methylation model, and only cg03469862 (chr11: 68924853) was selected with 489 

high stability to any of the components in the multi-omics model (range = 0.10-0.92; Data S2; Data 490 

S9). We performed trait enrichment analyses against all reported associations in the EWAS atlas for 491 

all selected CpGs in the MB-sPLS-DA model. We observed the strongest enrichment for gender (OR = 492 

3.90, p = 3.97x10-31), and breast cancer risk (OR = 342.60, p = 1.44x10-21; Table S14). These CpGs also 493 
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showed enrichment for e.g., neurological and developmental disorders, such as ASD and Parkinson’s 494 

disease, cardiometabolic traits, such as obesity and Type II Diabetes, inflammatory disorders, such as 495 

respiratory allergies and ankylosis spondylitis, pre- and perinatal risk factors, such as preterm birth 496 

and maternal stress, and environmental exposures, such as organophosphate exposure (Table S14). 497 

All 90 metabolites selected by the MB-sPLS-DA model were selected with high average stability to at 498 

least one of the components, and only 11 metabolites showed low stability for selection in any 499 

specific component (Data S9). 500 

Correlations of omics traits selected for childhood aggression in the multi-omics model 501 

The average correlations between each omics layer in the multi-omics model, i.e., the 502 

correlation among all PLS variates of all components simultaneously, were r = 0.19 (q = 2.13x10-27) 503 

for PGSs-DNA methylation, r = 0.13 (q = 1.78x10-12) for PGSs-metabolomics, and  r = 0.15 (q = 504 

3.76x10
-16

) for DNA methylation-metabolomics. These correlations are lower than those observed 505 

for the cross-omics models on which the design matrix was based (Table S4), thus, this gives a 506 

stronger indication that omics traits from different omics levels capture largely independent 507 

information for childhood aggression. We observed high absolute correlations (|r| ≥ 0.60) between 508 

2 selected PGSs, 14 CpGs, and 13 metabolite, that we summarize in five sets of correlational patterns 509 

(Fig. 3; Data S10; Table S15).  510 

Correlation pattern 1 comprises high negative correlations of citric and fumaric acid with 511 

cg12886033 (chr1:65449013, r citrate = -0.61, r fumarate = -0.62), cg14508705 (chr1:172360182, r 512 

citrate = -0.61, r fumarate = -0.62), and cg11710553 (chr4:105892960, r citrate = -0.60, r fumarate = -513 

0.61), and high negative correlations of fumaric acid with cg21432062 (chr3:4908643, r = -0.60), 514 

cg22848658 (chr6:135354586, r = -0.60), and cg15841349 (chr12:129348564, r = -0.60; Fig. 3; Data 515 

S10; Table S15). Both citric and fumaric acid are intermediates of the tricarboxylic acid (TCA) cycle. 516 

TCA cycle metabolites play a role in histone acetylation, and histone and DNA demethylation 517 

(Martínez-Reyes and Chandel 2020). The EWAs atlas only included cg21432062 (Table S15), where 518 
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hypermethylation of this CpG associates with inflammatory bowel disease (IBD). This is in line with 519 

studies that report decreased levels of citric and fumaric acid, and other TCA cycle-related 520 

metabolites, in the serum, urine, and lesion tissue samples of patients with IBD and related disorders 521 

(Ooi et al. 2011; Schicho et al. 2012; Dawiskiba et al. 2014). Thus, our negative correlational pattern 522 

seems in line with the observed hypermethylation for cg21432062 and decreased levels of citric and 523 

fumaric acid. The CpGs cg12886033, cg14508705, cg15841349, and cg22848658 are in the gene 524 

bodies of Long Intergenic Non-Protein Coding RNA 1359 (LINC01359), Dynamin 3 (DNM3), 525 

Glycosyltransferase 1 Domain Containing 1 (GLT1D1), and HBS1 Like Translational GTPase (HBS1L), 526 

respectively. CpGs in these genes associate with traits such as smoking, aging, down syndrome, and 527 

various types of cancers (Table S15). 528 

The second correlational pattern is characterized by high negative correlations between 529 

isocitrate with cg05056638 (chr8:24800824, r = -0.60), cg08415582 (chr8:57030523, r = -0.60), 530 

cg11206167 (chr5:42924367, r = -0.60), and cg20704654 (chr20:30072118, r = -0.61; Fig. 3; Data 531 

S10; Table S15). All four CpGs associate with gender, with additional associations observed for 532 

cg05056638 with arsenic exposure (in utero) and Leukoaraiosis, and of cg20704654 with ageing 533 

(Table S15). The observation that these CpGs correlated highly with isocitrate is in line with research 534 

that reported inclusion of plasma isocitrate in the metabolomics profile that predicts chronological 535 

age in males and shows higher concentrations in older males (Rist et al. 2017).  536 

Correlation pattern 3 contains the high positive correlation of homocysteine with cg13784456 537 

(chr10:132970405, r = 0.84) and cg06144718 (chr10:133048392, r = 0.75; Fig. 3; Data S10; Table 538 

S15). These CpGs are included in the gene body of Transcription Elongation Regulator 1 Like 539 

(TCERG1L) and the EWAS atlas reported associations of CpGs in this gene with traits such as smoking, 540 

infertility, and various types of cancer (Table S15). We hypothesize that correlation pattern 3 may 541 

reflect the DNA methylation process itself, as homocysteine is involved in the methionine cycle that 542 

transfers the methionine methyl group to DNA methyltransferase (Selhub 1999).  543 
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The fourth correlational pattern includes high positive correlations between cg03469862 544 

(chr11:68924853) with the transmitted PGS for ADHD (r = 0.61), 3-methoxytyrosine (r = 0.63), L-545 

isoleucine (r = 0.66), L-leucine (r = 0.65), L-phenylalanine (r = 0.70), L-tryptophan (r = 0.60), L-valine (r 546 

= 0.69), L-glutamine (r = 0.70), L-tyrosine (r = 0.63), and L-serine (r = 0.69; Fig. 3; Data S10; Table 547 

S15). Look-up in the EWAS atlas showed that cg03469862 associates with prostate cancer and pre- 548 

and post-lenalidomide treatment in patients with Myelodysplastic syndrome with isolated deletion 549 

(5q) (Table S15). That higher DNA methylation of a CpG associated with prostate cancer and 550 

Myelodysplastic syndrome is associated with higher metabolite levels, and specifically higher amino 551 

acid levels, is corroborated by urinary metabolomics studies that report altered levels of 15 552 

metabolites in patients with prostate cancer, including increased levels of valine (Lima et al. 2021), 553 

and of 29 metabolites in Myelodysplastic syndrome patients, including increased levels of valine 554 

(Yuan et al. 2021). In contrast, prostate cancer patients had decreased urinary levels of serine, 555 

leucine, glutamine, and tyrosine (Lima et al. 2021). 556 

The final correlation pattern comprises a high negative correlation between the non-557 

transmitted by father PGS for EA and cg09674340 (chr1:202509286, r = -0.65; Fig. 3; Data S10; Table 558 

S15). This CpG is located in the 1
st
 exon of the Protein Phosphatase 1 Regulatory Subunit 12B 559 

(PPP1R12B) gene. CpGs in this gene associate with traits such as gender, smoking, and low birth 560 

weight (Table S15). The negative association of a smoking-related CpG with indirect genetic effects 561 

for EA is in line with a previous study that reported significant negative genetic correlations of 562 

indirect parental EA effect with smoking initiation, number of cigarettes per day, and smoking 563 

cessation (Wu et al. 2021). Similarly, the phenotypic association of low paternal educational 564 

attainment with low offspring birth weight is well-established (e.g., Meng and Groth 2018).  565 

Discussion 566 

This study comprised an integrative multi-omics analysis of childhood aggressive behavior to 567 

identify a multi-omics biomarker panel and to investigate the correlations among the omics traits 568 
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included in this panel. In our training data comprising 645 twins (cases = 42.0%, controls = 58.0%) we 569 

applied multivariate statistical methods to analyze and integrate transmitted and paternal and 570 

maternal non-transmitted PGSs for childhood aggression and for 14 traits genetically correlated with 571 

aggression (45 PGSs total), 78,772 CpGs, and 90 metabolites (Fig. 1). We build single-omics 572 

biomarker panels for each of the omics layers, that selected 31 PGSs, 1,614 CpGs, and 90 573 

metabolites to discriminate between aggression cases and controls. The markers selected in single-574 

omics models had poor predictive performance in our test (N = 277, cases = 42.2%, controls = 57.8%) 575 

and validation data (N = 142, cases = 45.1%, controls = 54.9%). The multi-omics panel selected 44 576 

PGSs, 746 CpGs, and 90 metabolites, which also had poor predictive performance in our test and 577 

validation data.  578 

We explored the pairwise correlations of the omics traits selected by the single-omics models. 579 

The average correlations between omics layers ranged from r = 0.18 to r = 0.28. Clustering analyses 580 

of each omics layer included in the pairwise correlations showed high overlap in the traits included 581 

in each cluster for the same omics layers. We frequently observed that transmitted and non-582 

transmitted PGSs for the same traits were assigned to different clusters, though does not seem 583 

related to opposite correlations when comparing transmitted and non-transmitted PGSs, as all PGS 584 

traits show such patterns (N M = 49, N SD = 23, N range: 10-90). We showed that indirect genetic 585 

effects for ADHD, ASD, intelligence, smoking initiation, and self-reported health, correlate most 586 

strongly with buccal DNA methylation and urinary amino acid levels in children and that higher 587 

amino acid levels associate with hypomethylation in a cluster of CpG sites. We described five sets of 588 

correlational patterns with high absolute correlations (|r| ≥ 0.60) of aggression-related omics traits 589 

selected by the multi-omics model. These multi-omics correlational patterns associate with a range 590 

of traits that link aggression-related omics traits to biological processes related to inflammation, 591 

carcinogens, ageing, sex differentiation, intelligence, and smoking. 592 
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This is the first multi-omics study that includes DNA methylation profiles from buccal and 593 

metabolomics in urine. Most of the earlier large-scale omics studies were conducted in blood 594 

samples. By obtaining omics measurements in easily accessible peripheral tissues (urine and buccal-595 

cells) we could obtain multi-omics data for more individuals than most previous multi-omics studies 596 

for psychiatric traits, such as depression and suicide risk (Bhak et al. 2019) or post-traumatic stress 597 

disorder (Dean et al. 2019), that relied on small training samples (range: 126-165). In evaluating the 598 

validity of the PGS and multi-omics models in the clinical cohort, the non-transmitted PGSs could not 599 

be assessed, as no parental genotypes were available in the clinical cohort. Additional validation in 600 

cohorts with complete omics data that applied the same metabolomics and DNA methylation 601 

platforms are of large interest, but currently do not exist. Our design is optimal in nearly all other 602 

aspects, as the population and clinical cohorts collected all data, including biomarkers, at the same 603 

time, using the same arrays and platforms and with similar protocols. 604 

The single- and multi-omics models also selected nearly all the PGSs, with only the transmitted 605 

PGSs for ASD, intelligence, childhood IQ, and self-reported health, and the non-transmitted by father 606 

PGSs for age at first birth, EA, insomnia, and loneliness not selected to the single-omics model, and 607 

the transmitted PGS for childhood IQ not selected to the multi-omics model (empirical design 608 

matrix). The high selection of transmitted PGSs to the biomarker panels likely reflect the genetic 609 

correlations of these traits with childhood aggression on which basis we included them in the 610 

current study (Ip et al. 2021). By including both transmitted and non-transmitted PGSs in the 611 

genomics block, this block captures the effect of parental genotypes on their offspring’s rearing 612 

environment. The non-transmitted PGSs for various traits, including childhood aggression, were 613 

consistently retained in the single- and multi-omics models, which is in line with research that shows 614 

associations of parenting styles with childhood aggression (Masud et al. 2019). Previous research 615 

reported significant genetic correlations of indirect genetic EA effects with other complex traits (Wu 616 

et al. 2021), thus the high selection of non-transmitted PGSs in our model may also reflect their 617 

genetic correlations with childhood aggression. 618 
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In general, CpGs selected in the single- and multi-omics models were selected with low stability, 619 

i.e., the same CpGs was infrequently selected to the models across cross-validation folds and 620 

repeats. This low selection stability compared to the stability of PGSs and metabolites, might be 621 

explained by the large number of CpGs tested for inclusion in the models as compared to the 622 

number of metabolites or PGSs. The CpGs in the single- or multi-omics models did not overlap with 623 

the top differentially methylated CpGs for physical aggression as observed in buccal-cells (Cecil et al. 624 

2018b), and were not significantly associated with aggression in a recent blood-based EWAS meta-625 

analysis (van Dongen et al. 2021). Trait enrichment of the CpGs selected by the single- and multi-626 

omics models reported enrichment of known aggression risk factors, such as socioeconomic status 627 

(Miller and Tolan 2019; Bellair et al. 2019; Hendriks et al. 2020), childhood malnutrition (Liu 2004; 628 

Vaughn et al. 2016), and pre- and perinatal risk factors (Van Adrichem et al. 2020). Also of interest is 629 

the enrichment of glucocorticoid exposure in CpGs selected by the single-omics model and the high 630 

correlation between cortisol and cg05153029 (chr20:19769815, r = 0.61), that associates with 631 

glucocorticoid exposure in the EWAS atlas (null design matrix MB-sPLS-DA model). Cortisol and other 632 

hypothalamus-pituitary-adrenal (HPA)-axis molecules have been implicated in aggressive behavior, 633 

suggesting a role of the stress response system in aggressive behavior (Hagenbeek et al. 2016). 634 

Epigenetic programming of the HPA-axis is influenced by pre- and perinatal factors, such as maternal 635 

behavior as observed in rats (Weaver et al. 2004), and maternal stress and early life adversity 636 

(Mulligan et al. 2012; Hompes et al. 2013; Jiang et al. 2019), and lower average global DNA 637 

methylation levels were reported in patients with Cushing’s Syndrome (CS) in remission, a model for 638 

long-standing excessive glucocorticoid (cortisol) exposure (Glad et al. 2017). Thus, epigenetic 639 

mechanisms may mediate the association between cortisol and childhood aggression, similarly as 640 

the DNA methylation mediates the association between cortisol stress reactivity and childhood 641 

trauma (Wrigglesworth et al. 2019).   642 

The single- and multi-omics models selected all 90 LC- and GC-MS metabolites for inclusion, 643 

which might be explained by the low expression differences between aggression cases and controls 644 
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of the urinary amines and organic acids in this sample (Hagenbeek et al. 2020). Another plausible 645 

explanation regards the fact that we generated the metabolomics data on three targeted platforms, 646 

chosen because they cover relevant metabolites involved in neurotransmitter, inflammation, and 647 

steroid hormone pathways that associate with aggression (Hagenbeek et al. 2016). To date, no 648 

metabolomics platform can capture the entire metabolome. In addition, within a platform, technical 649 

challenges may cause compounds becoming undetectable or not quantifiable. This was the case for 650 

the steroid platform being less successful in quantifying (conjugated) sex hormones. Coverage could 651 

also be extended to include other metabolite classes, preferably in a hypothesis-free manner by 652 

employing non-targeted metabolomics platforms. The five sets of omics traits with high cross-omics 653 

correlations in the multi-omics model contained 13 metabolites. These metabolites comprised 8 654 

amino acids (L-glutamine, L-isoleucine, L-leucine, L-phenylalanine, L-serine, L-tryptophan, L-tyrosine, 655 

and L-valine), 3 metabolites involved in the TCA cycle (citric acid, fumaric acid, and isocitrate), the 656 

dopaminergic trace amine 3-methoxytyrosine, and homocysteine, which is involved in cysteine and 657 

methionine metabolism. This is in line with previous studies reporting association of metabolites 658 

with aggressive behavior (Gulsun et al. 2016; Hagenbeek et al. 2016, 2020; Chen et al. 2020).  659 

We explored how sensitive our results are to different specifications of the design matrices and 660 

found that these resulted in similar predictive abilities, but selected different numbers of only 661 

partially overlapping PGSs and CpGs (Appendices C and D). In line with expectations, the predictive 662 

ability of the null design matrix was slightly better than for the empirical design matrix, reflecting 663 

that such a model focuses on selecting discriminatory variables (Singh et al. 2019; Duruflé et al. 664 

2020). We expected that the model with the full design model sacrificed predictive accuracy to 665 

select discriminatory variables that are also highly correlated, but this model had the lowest 666 

classification error rate as compared to the models with an empirical or null design matrix in the test 667 

and clinical data. Multi-omics models with differently specified design matrices differed not only in 668 

how many and which PGSs and CpGs were selected, but each multi-omics model provided unique 669 

insight into the correlations among the omics traits selected for their association with childhood 670 
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aggression. In the current study, we relied on the cross-validation results to select the number of 671 

traits and components in the model. However, to aid in biological interpretation, other choices can 672 

be made. 673 

The low predictive accuracy of our single- and multi-omics models does not preclude the 674 

potential utility of these panels for, e.g. drug target identification; while common SNPs near drug 675 

targets often explain only small amounts of the phenotypic variance, pharmacological manipulations 676 

can be highly effective (Timpson et al. 2018). Thus, our description of the correlations of the PGSs, 677 

CpGs, and metabolites advances our understanding how childhood aggression-related omics traits 678 

are interrelated and could lead to clues for potential drug targets, despite the low predictive 679 

accuracy of childhood aggression. 680 

By adding a fourth broad exposome block, capturing known risk factors for childhood 681 

aggression, such as neighborhood variables (Miller and Tolan 2019), to the multi-omics model, the 682 

influence of environmental influences can be explored. Inclusion of other omics layers, such as the 683 

transcriptome, proteome, or a microbiome, may give other insights into the biological mechanisms 684 

of complex traits like childhood aggression. It should be noted that with the current method, 685 

inclusion of additional omics layers will cause an increase in the computational burden. Therefore, a 686 

different method to integrate multi-omics data or reduction of the computational burden might be 687 

considered. Future studies could consider reducing the number of parameters by including a smaller 688 

number of CpGs, by for example including only the top 1% or 5% most variable probes, or by 689 

selecting CpGs based on their known association with aggressive behavior, such as the top CpGs 690 

from the EWAS meta-analysis for aggressive behavior (van Dongen et al. 2021).  691 

Conclusions 692 

Our work entails one of the first applications of multi-omics approaches to childhood 693 

psychopathology. The approach we used was developed for dichotomous traits and classification 694 
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purposes but also gives insight into the how different omics levels associate with each other. 695 

Classification was poor, whereas the multi-omics associations confirm well known associations 696 

between childhood aggression and known risk factors as well as provide novel insight into the 697 

correlational structure among omics traits from different omics levels. 698 
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Figures 987 

Fig. 1. Overview of the biomarker identification approach for childhood aggression—details of 988 

statistical analyses and data included in each analysis.   989 

We employed an analytical design comprising three phases: 1) single-omics analyses; 2) pairwise 990 

cross-omics analyses; and 3) multi-omics analyses. First, we performed univariate polygenic score 991 

(PGS) analysis in 70% of the twin data and built multivariate single-omics biomarker panels in the 992 

twin cohort, with 70% of the twin data for model training (training data), 30% of the twin data for 993 

model testing (test data), and the clinical cohort for model validation (validation data). Second, we 994 

examined the overall pairwise cross-omics correlations and the pairwise correlations of those omics 995 

traits selected by the single-omics models in the training data. Third, using the same data split for 996 

model training, testing and validation, we compared three multi-omics models, with different 997 

assumptions of the correlations among the omics traits, and describe the multi-omics correlations of 998 

the selected omics traits. We offer the analytical details in the Methods section. 999 
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Fig. 2. Clustered heatmaps of the correlations obtained by the pairwise cross-omics Partial Least 1001 

Squares (PLS) regression models including only the omics traits as selected by the single-omics 1002 

sparse Partial Least Squares Discriminant Analyses (sPLS-DA). 1003 

We generated the hierarchical clustering using the Ward linkage algorithm on Euclidean distances of 1004 

the PLS variates. For each dendrogram we identified two clusters (cluster 1 = pink, cluster 2 = blue). 1005 

We have depicted positive correlations among the omics traits in red and negative correlations in 1006 

blue. For the polygenic scores (PGSs), the ‘_NTm’ suffix denotes PGSs non-transmitted by mother, 1007 

the ‘_NTf’ suffix denotes the PGSs non-transmitted by father, and childhood aggression is 1008 

abbreviated as “aggression”, Attention-Deficit Hyperactivity Disorder as “ADHD”, Major Depressive 1009 

Disorder as “MDD”, Autism Spectrum Disorder as “Autism”, Educational Attainment as “EA”, and 1010 

wellbeing spectrum as “wellbeing”. For the metabolites, the ‘amines.’ prefix shows we measured 1011 

these metabolites on the Liquid Chromatography Mass Spectrometry (LC-MS) amines platform, the 1012 

‘steroids.’ prefix shows we measured these metabolites on the LC-MS steroids platform, and the 1013 

‘OA.’ prefix shows we measured these metabolites on the Gas Chromatography (GC-) MS organic 1014 

acids platform. (a) Correlation among the 1,614 CpGs and 90 metabolites included in the 3-1015 

component DNA methylation-metabolomics PLS model, where the selected CpGs are represented in 1016 

the columns and the metabolomics traits in the rows. We included the cluster assignments and the 1017 

full correlation matrix in Data S4-S5. (b) Correlations among the 36 PGSs and 90 metabolites 1018 

included in the 2-component PGSs-metabolomics PLS model, where the selected PGSs are 1019 

represented in the columns and the metabolomics traits in the rows. We included the cluster 1020 

assignments and the full correlation matrix in Table S9 and Data S6, respectively. (c) Correlation 1021 

among the 36 PGSs and 1,614 CpGs included in the 2-component PGSs-DNA methylation PLS model, 1022 

where the selected PGSs are represented in the columns and the CpGs in the rows. We included the 1023 

cluster assignments and the full correlation matrix in Data S7-S8. 1024 
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 1025 

Fig. 3. High cross-omics correlations of the multi-omics traits identified in the 5-component multi-1026 

block sparse Partial Least Squares Discriminant Analysis (MB-sPLS-DA) model including the empirical 1027 

design matrix 1028 

The outer ring depicts the PGSs, CpGs, and metabolites in yellow, pink, and green, respectively. For 1029 

the polygenic scores (PGSs), Attention-Deficit Hyperactivity Disorder is abbreviated as “ADHD”, and 1030 

Educational Attainment as “EA”, and the ‘_NTf’ suffix denotes the PGSs non-transmitted by father. 1031 

For the metabolites, the ‘amines.’ prefix shows we measured these metabolites on the Liquid 1032 
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Chromatography Mass Spectrometry (LC-MS) amines platform, and the ‘OA.’ prefix shows we 1033 

measured these metabolites on the Gas Chromatography (GC-) MS organic acids platform. The inner 1034 

plot depicts the correlations among the omics traits. Here, we depict only high absolute correlations 1035 

(|r| ≥ 0.60) between traits of at least two omics layers, with blue lines reflecting negative 1036 

correlations and red lines positive correlations. We averaged correlations across all components in 1037 

the MB-sPLS-DA model. We included the full correlation matrix in Data S10 and the correlational 1038 

patterns in Table S15.  1039 

1040 
  1041 
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Tables 

Table 1. Overview of the discovery genome-wide association studies to calculate polygenetic scores. 

Trait 
1 

N discovery GWA Reference Source original summary statistics 

Childhood aggression
 

151,741 (Ip et al. 2021) Paper accepted, summary statistics obtained from authors 

Attention-Deficit 

Hyperactivity Disorder
 

20,183 cases & 

35,191 controls 

(Demontis et al. 2019) http://ipsych.au.dk/downloads/data-download-agreement-adhd-european-

ancestry-gwas-june-2017 

Major Depressive 

Disorder
 

135,458 cases & 

344,901 controls 

(Wray et al. 2018) https://www.med.unc.edu/pgc/results-and-downloads/  

Autism Spectrum 

Disorder
 

18,381 cases & 

27,969 controls 

(Grove et al. 2019) https://www.med.unc.edu/pgc/results-and-downloads/ 

Loneliness 355,583 http://www.nealelab.is/

uk-biobank/  

https://www.dropbox.com/s/nf4jl3mdppu1ng8/2020.gwas.imputed_v3.both_sexe

s.tsv.bgz?dl=0 

Insomnia 1,331,010 (Jansen et al. 2019) https://ctg.cncr.nl/documents/p1651/Insomnia_sumstats_Jansenetal.txt.gz 

Self-reported Health 359,681 http://www.nealelab.is/

uk-biobank/  

https://www.dropbox.com/s/aawh07hlhldbckc/2178.gwas.imputed_v3.both_sexes

.tsv.bgz?dl=0 

Smoking initiation 

(Ever/never smoked) 

1,232,091 (Liu et al. 2019) https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.

txt.gz?sequence=27&isAllowed=y 

Age of smoking 

initiation 

94,891 (Watanabe et al. 2019) https://atlas.ctglab.nl/ukb2_sumstats/f.2867.0.0_res.EUR.sumstats.MACfilt.txt.gz 

Cigarettes per day 37,334 (Liu et al. 2019) https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.t

xt.gz?sequence=17&isAllowed=y 

Childhood IQ 17,989 (Benyamin et al. 2014) http://ssgac.org/documents/CHIC_Summary_Benyamin2014.txt.gz 

Educational 

Attainment5 

1,131,881 (Lee et al. 2018) https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0 

Age at first birth 251,151 (Barban et al. 2016) http://sociogenome.com/material/GWASresults/AgeFirstBirth_Pooled.txt.gz 

Wellbeing spectrum 2,370,390 (Baselmans et al. 2019) https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%

2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum

_no23andME.txt.gz 

Intelligence 269,867 (Savage et al. 2018) https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip 
1 In the (supplementary) tables and figures childhood aggression is abbreviated as “aggression”, Attention-Deficit Hyperactivity Disorder as “ADHD”, Major 

Depressive Disorder as “MDD”, Autism Spectrum Disorder as “Autism”, Educational Attainment as “EA”, and wellbeing spectrum as “wellbeing”. 
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Table 2. Demographics of the training, test, and validation data.  

 Training data (70% twin cohort) Test data (30% twin cohort) Validation data (Clinical cohort) 

 Controls Cases Total Controls Cases Total Controls Cases Total 

N (%) 374 

(58.0%) 

271 

(42.0%) 

645 (100%) 160 

(57.8%) 

117 

(42.2%) 

277 (100%) 78 (54.9%) 64 (45.1%) 142 (100%) 

N (%) complete twin pairs 128 80 293 56 35 128 - - - 

Mean (SD) age 9.4 (1.9) 9.6 (1.8) 9.5 (1.9) 9.6 (1.9) 9.6 (1.9) 9.6 (1.9) 10.8 (1.7) 9.6 (1.7) 10.2 (1.8) 

Range age 6.1 - 12.7 6.1 - 12.9 6.1 - 12.9 5.6 - 12.6 5.8 - 12.8 5.6 - 12.8 6.5 - 13.4 6.3 - 13.3 6.3 - 13.4 

N (%) females 199 

(53.2%) 

116 

(42.8%) 

315 

(48.8%) 

81 (50.6%) 55 (47.0%) 136 

(49.1%) 

20 (25.6%) 19 (29.7%) 39 (27.5%) 

N (%) MZ twins 299 

(80.0%) 

228 

(84.1%) 

527 

(81.7%) 

118 

(73.7%) 

108 

(92.3%) 

226 

(81.6%) 

- - - 

Mean (SD) aggression score 
1
 3.3 (4.1) 7.3 (5.8) 5.0 (5.3) 3.1 (4.0) 7.6 (6.6) 5.0 (5.7) 6.1 (3.4) 21.1 (4.8) 12.9 (8.5) 

Notes: MZ, monozygotic. 
1
 Measured with the mother-rated Aggressive Behavior syndrome scale of the Achenbach System of Empirically Based Assessment (ASEBA) Child Behavior 

Checklist (CBCL). The ASEBA CBCL Aggressive Behavior scores in the clinical cohort include 90% mother report and 10% father report. 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted S
eptem

ber 16, 2021. 
; 

https://doi.org/10.1101/2021.09.13.21263063
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.09.13.21263063
http://creativecommons.org/licenses/by-nc-nd/4.0/

