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Mathematical description of the fractal spreading model

An epidemiological model to describe the spreading dynamics of COVID-19
was proposed in [1], where the fractal aspects of the virus transmission process
observed in the analysis of real data on the transmission of the disease were in-
cluded. Rather than an exponential increase, as would be expected by the SIR
model, a g-exponential behaviour is obtained, which means that the spreading
is not as fast as one could predict by using standard SIR models, and is in fact
similar to the modified model proposed in [2]. The non-exponential behaviour
is important to be considered in evaluations of the impact of different policies to
combat the epidemic spreading on the rate of contamination. Roughly speaking,
the fractal approach assumes the scale invariance of some complex structures of
the epidemic dynamics, dividing the infected population into different groups at
different scales. With such an assumption, the dynamics of the epidemic spread-
ing over a large population can be related to the process in a small group. The
number of parameters necessary to describe the complex dynamics is reduced.
The function that describes the number of new cases in the fractal model
can be written as i gy N1
T(rNiu) = (1+ ) (1)
where u is the susceptible population, 7 (assumed small) is the transmission
probability and N is the average number of close contacts of the individuals in
that population. To extend the spreading mechanisms to larger populations,
we assume that the population is formed by a set of agents, identified by the
index j, with approximately the same size, N. Following Ref. [1], we adopt the
parameter ¢ such that 1 — ¢ = N1, which leads to the differential equations of



the fractal model, given by (for t > ¢,;)
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where i, is the initial number of infected agents, which we assume to be i, = 1.
We assume that the susceptible population of the agent j is given by u;(0) = u,;,
to be determined in the data analysis, and that the rate of transmission, x;, may
vary from one agent to the other. The time of introduction of the virus in the
agent j is ¢,;, corresponding to the instant when the first individual of the group
is infected. The removed population r; corresponds to the individuals that are
placed out of the spreading dynamics because they can no longer transmit the
virus either because they have recovered or died, or because they no longer have
susceptible individuals in their neighborhood.

The expression for i(t) is known in the non-extensive statistics proposed by
Tsallis [3] as the g-exponential distribution. In this statistics, mean values are
determined by expressions as

<a>= /apq(a)da (3)

where ¢ is called entropic index, and plays a role similar to the parameter ¢ in
the fractal model , and p(a) is the probability density. . The fact that we have q-
exponential distributions and that the probability to find an infected individual
appears in powers of g, shows the close connections between the Tsallis statistics
and the spreading dynamics in a fractal structure.

Aside from the evident agent-based approach of the model described by the
equations above, a few additional remarks are necessary. The number of param-
eters used for each agent is large, with ¢, k;, u,; and t,; being undetermined.
The parameter IV, related to the agent size, can be evaluated by other means as
a general property of the network, or can be considered as a quantity that may
vary from one agent to the other. In any case we are left with a large number
of free parameters that increases linearly with the number of agents.

Observe that the term corresponding to the rate with which the removed
population increases, that appears in the first and in the third equations, can
be written as .

B it Ol ¢~ 1)i200). ()
when the second equation is used. This term is very different from its corre-
spondent in the SIR model. Here, the removed population is determined by
the epidemic process inside each agent, and takes into account the fact that




after some time of the first infection, all individuals in the group will be already
infected through one of the possible modes of infection. Another aspect that
differentiates the fractal model from the usual SIR model is the explicit time de-
pendence of the epidemics, introduced by the used of the term 7; = k;(t —to;).
Within the fractal model, the instant when the virus is transmitted to other
individuals in the agent is aleatory.

We can simplify the expression above by assuming an average contamination
rate for the term between brackets, multiplied by ;(t —t,;). Taking the average
of this term we have

Rj(t = toj) i ()us(t) = —#;(E — Loy )iy (t) ~ —(k; (L — to5)ity) (5)

which corresponds to a linear approximation (because @(t) is substituted by a
constant) of the behaviour of the susceptible population. Considering the period
during which the virus is being transmitted inside the agent, At; = t; — to5,
with ty; being the time when the new cases of infection in the agent cease, we
have, for the first two terms at the right-hand side,
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But kjAt; = 7 is constant, and (t — t,;) ~ At;/2, since the distribution is just
slightly asymmetric. Therefore, with the approximations above, we obtain

drj(t) o .q
— = K1 (t). (7)
where P
Ky = Il (8)

is completely determined by the parameters of the epidemic dynamics, with
T = Kj Atj, where At; is the time during which the virus is circulating in the
agent j.

The considerations made above show that the fractal model has a structure
that is similar, in some aspects, with the SIR model. However, contrary to
the SIR model, in the fractal model the parameter of the removed population,
T, is completely determined by the other parameters in the fractal dynamics.
This happens because we are considering that the total population, u,, will be
infected, which is an unrealistic situation since, in practice, it is observed that
part of the susceptible population will not be infected in the period the virus
is circulating in the group. We can improve the fractal model in this aspect by
including a new parameter that refers to those individuals that will be removed
from the infected population before all the individuals will be infected. Defining

Ky = (1)t (9)

we introduce the new parameter v > 0 that corresponds to the removed popu-
lation, which allow us to obtain a fractal model similar to the SIR model when



we substitute x7 by x* in Equation (7). Accordingly, the infected population
equation will be

di(t) , .
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Observe that the equation above can be obtained by considering that the

susceptible population in the group is s;(t) > w;(t) in the expression for i(t). If
v > 0, the susceptible population will be larger than the total infected popula-
tion, as it usually happens in the SIR model. The set of equations that describes
the fractal model equivalent to SIR model is

di; (t)

praaie Kjig 85 — Ky id5
ds;(t) )
dr](t) * 4

at '

for t > t,;. For ¢ = 1, the equations above reduce to the SIR model equations.
In this case, the usual notation is obtained by using the parameter 3; such that
Kj = Bj/S0j-

From the Equations 11, it is possible to understand another difference be-
tween the fractal model and the SIR model. While in the latter the number
of close contacts increases as the population size increases, in the fractal model
the two numbers are uncorrelated. This means that the number of close con-
tacts of an individual does not increase as the population increases, reflecting
the fact that the number of close contacts that an average person has does not
vary significantly if that person is in a metropolis or a small city. This model
describes many features and details of the COVID-19 dynamics [1].

While the transmission probability depends on the features exhibited by the
different virus variants and is mostly out of our control, the number of close
contacts can be reduced by social distancing and has an effective impact on the
number of new cases. Therefore social distancing will be effective to reduce the
number of new cases even for the new variants of SARS-COV-2 with higher
transmission probability.

It is important to stress that a clear separation between transmission proba-
bility and social distancing is never possible. For instance, the use of protective
devices, such as masks, is to be considered as a reduction in the transmission
probability or as social distancing? This is a question that is not even posed in
the SIR model, as it does not allow a separation between the two contributions.
The fractal model, however, does allow such a separation of the the two contri-
butions, as we will show below. Therefore, the question above becomes relevant
and has to be addressed in some way. Our approach, in this work, is to consider
as transmission probability only those features that are intrinsically related to
the virus characteristics, and attribute to social distancing all features of the



spreading dynamics that can be controlled by human action. Of course, this def-
inition is arbitrary, and still may not solve completely the problem of separating
transmission probability from social distancing. An example is the vaccination
process, which represents a human action that interferes in the virus capability
to infect individuals. However, to the present work, this aspect is irrelevant,
since no vaccination took place for the entire period of analysis.

Calculation of the distance between new cases and clusters

This analysis is performed by making 2-dimensional plots of the residence lo-
cation of the infected individual along time. The residence location is obtained
form the longitude, Lo, and latitude, La (in radians), of residence by defining
the vector

7i(x,y) = RrLoi + RyLacos(Lo) j , (12)

with ¢ indicating the North-South direction and j the East-West and Ry is the
Earth radius at the Equator line. The sum of all cases identified up to the day
t are collected in a set I, where t is the day when the individual m reported
the first symptoms. The distance to the previous cases is calculated by

dnm = (ftm - fin)Q ) (13)

where n indicates each of the individuals in the set I;. The least distance, d,,,
is the minimum value in the set of distances for the new case, ¢, that is,

dpm = gg}}{dmn}. (14)



Additional plots and graphs
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Figure 1: Epidemic evolution according to the fractal dynamics model using
the equation 7. In the top-left panel, the population size varies, with all other
parameters constant, and in the top-right panel, the transmission probability
varies. At the bottom, the dependence of the model with the parameter q.
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Figure 2: The results of the fitting procedure for (top-left) 30-day bin, (top-
right) 15-day bin, (bottom-left) 7-day bin and (bottom-right) 4-day bin analysis.
The total number of infected and the contributions of each agent are shown, as
well as the background contribution. The best parameters are shown in Table
1 in the main text.
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Figure 3: The results of the fitting procedure for (top-left) 30-day bin, (top-
right) 15-day bin, (bottom-left) 7-day bin and (bottom-right) 4-day bin analysis.
The total number of infected and the contributions of each agent are shown, as
well as the background contribution. Here s follows the power-law x = rou®
with 5 = —0.833. The best parameters are shown in Table 2 of the main text.
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Figure 4: The results of the fitting procedure for (left) 7-day bin and (right)
4-day bin analysis for second wave. The total number of infected and the contri-
butions of each agent are shown, as well as the background contribution. Here
x follows the power-law x = k,u® with 8 = —0.833.
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Figure 5: Distribution of the 7 = kAt parameter for the first wave with () =
0.03625(7) (left). Best values of ¢ as a function of agent size (right).
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Figure 6: The evolution of the virus in the city of Sao Caetano do Sul through
a heat map. The images show four moments after the first infection, starting
at 7 days (top-left), 15 days (top-right), 30 days (bottom-left) and 60 days
(bottom-right).
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Table 1: Best fit values for the parameters in Second Wave obtained with bins
of 4 and 7 days. In these cases the ¢ and kg parameter is free and & follows the
power-law k = k,u” with f = —0.833 as shown in Figure 4. The parameter c
is a constant that represents the number of individuals that were infected out of
the city limits. The Contamination period (At) is the number of days between
the first contaminated of the group until 95% of the group is contaminated and
T = KAL.

Ko u q At T X*/Ndot
A-day bin 114(11)  0.429(4) 15(1)  0.14(1)
Ko = 0.0.48071(15)  67(1)  0.756(8) 9(1)  0.1370(7)  14/3
c=13 +1 376(1)  0.472(1) 24(1)  0.0819(2)
7-day bin 216(2)  0.602(1) 33(1) 0.0645(9)
Ko = 0.172520(13)  408(1) 0.9647(7) 34(1) 0.03922(4)  6/1
c=23 %1
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