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Abstract 

BACKGROUND 

Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2 and PALB2 are associated with increased 

breast cancer risk, but risks associated with missense variants in these genes are uncertain.  

METHODS 

Combining 59,639 breast cancer cases and 53,165 controls, we sampled training (80%) and 

validation (20%) sets to analyze rare missense variants in ATM (1,146 training variants), BRCA1 (644), 

BRCA2 (1,425), CHEK2 (325) and PALB2 (472). We evaluated breast cancer risks according to five in-

silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using 

logistic regression models and also mixture models in which a subset of variants was assumed to be 

risk-associated.  

RESULTS 

The most predictive in-silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). 

Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) 

and BRCA1 (RING and BRCT domains). For ATM, BRCA1 and BRCA2, data were compatible with small 

subsets (approximately 7%, 2% and 0.6%, respectively) of rare missense variants giving similar risk to 

those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a 

large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI 

(1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with 

risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. 

CONCLUSIONS 

These results will inform risk prediction models and the selection of candidate variants for functional 

assays, and could contribute to the clinical reporting of gene panel testing for breast cancer 

susceptibility. 

 

Keywords: breast cancer; genetic epidemiology; risk prediction; missense variants 
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Introduction 

Genetic testing for cancer susceptibility is now part of mainstream clinical practice. For breast cancer 

susceptibility, genetic testing generally focuses on high-risk genes, notably BRCA1, BRCA2, PALB2 

and TP53, but testing of larger panels that include so-called “moderate-risk” genes is being 

increasingly offered (1). While the evidence that many of these genes are risk associated is clear, for 

most this evidence is based on carrying a protein truncating variant (PTV). Besides PTVs, genetic 

testing also identifies missense variants for which the impact on protein function and associated 

cancer risk is generally unknown (“variants of uncertain significance” (VUS)), resulting in a major 

problem for genetic counselling.  Some missense variants have been shown to confer risk (2, 3) with 

risk estimates comparable to PTVs, and it is possible that missense variants contribute substantially 

to risk (4, 5), at least in some genes. However, defining the set of missense variants in each gene that 

may confer risk, and their associated risk estimates, presents an ongoing problem. 

Resolving this problem is complex as most variants are individually very rare, so the evidence must 

be based on combining data across multiple variants in a statistical model. To this end, efforts have 

been made to develop statistical algorithms that score missense variants according to in silico 

features that may predict pathogenicity. Here, we have compared the usefulness of five in silico 

algorithms in predicting breast cancer risk associated with missense variants using sequenced 

germline DNA from more than 59,000 cases and 53,000 controls from studies in the Breast Cancer 

Association Consortium (BCAC) (6) participating in the BRIDGES study (7). We used the most 

predictive in silico algorithm to estimate the risks of breast cancer associated with subsets of rare 

missense variants, defined by categories of the in silico score, in ATM, BRCA1, BRCA2, CHEK2 and 

PALB2.  These predictions were then validated using an independent dataset. 

 

Methods 

SUBJECTS 
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We included data from female breast cancer patients (cases) and unaffected controls from 45 

studies participating in the BRIDGES collaboration, as previously documented (7). Of these, 30 were 

population-based or hospital-based studies (hereafter: population studies) including cases and 

controls sampled independently of family history. A further 14 studies oversampled cases with a 

family history of breast cancer (hereafter: familial studies). All studies were approved by the relevant 

ethical review boards and used appropriate consent procedures. Five duplicated samples were 

identified and removed.  After quality control procedures (see below), 53,165 controls and 59,639 

cases with an invasive (53,838; 90.3%) or in situ (4,153; 7.0%) tumor, or tumor of unknown 

invasiveness (1,648; 2.7%), were included in the analyses. Of these, 50,414 controls and 48,230 

cases were from population studies.  

 

LABORATORY METHODS, VARIANT CALLING AND CLASSIFICATION  

Of the panel of 34 genes screened in BRIDGES (7), five (ATM, BRCA1, BRCA2, CHEK2, PALB2) were 

chosen for further analysis and presented here. These five genes, where the evidence for association 

with breast cancer risk is strongest, are most relevant to risk prediction and included in the current 

version of the BOADICEA/CanRisk risk prediction tool (8). Details of library preparation, sequencing, 

variant calling, quality control procedures and variant classification have been documented 

previously (7). Missense variants in the entire gene were identified using the Ensembl Variant Effect 

Predictor (VEP; version 101.0) (9). Rare variants for in silico analysis were defined as those with 

frequency <0.1% (calculated as previously described (7)); in addition, variants with frequency <0.5% 

were retained for a frequency-based analysis. Carriers of missense variants predicted to effect RNA 

splicing, according to the MaxEntScan tool (10) and SpliceAI scores (11), were removed (see 

Additional File 1: Additional Table 1). Variants were annotated for functional protein domain 

location, defined according to published literature, the UniProt Knowledgebase (12) and, for BRCA1 

and BRCA2, the ENIGMA BRCA1/2 expert panel guidelines (13) (see Additional File 2: Additional 

Table 2). Variants were also classified for disease pathogenicity assertion in ClinVar (14) with a filter 
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for no conflicting interpretations; for BRCA1 and BRCA2, variants were also reviewed against the 

ENIGMA BRCA1/2 expert panel guidelines. The ENIGMA terminology report (15) reserves use of the 

word “pathogenic” to describe variants associated with at least a twofold cancer risk; however, for 

the purpose of this article we describe any variant associated with risk as pathogenic. 

Variants were scored using five in silico prediction algorithms: Align-GVGD (16), Combined 

Annotation Dependent Depletion (CADD; version 1.4) (17), Rare Exome Variant Ensemble Learner 

(REVEL) (18), BayesDel (without allele frequency; version 1) (19) and Helix (version 4.2.0) (20). The 

first four are widely used for variant classification in cancer susceptibility genes. Align-GVGD 

classifies variants according to the level of cross-species conservation observed for a single missense 

substitution while considering the biophysical characteristics of the amino acids. CADD, BayesDel 

and REVEL are ensemble methods that integrate several different annotations, including 

conservation metrics, regulatory information, transcript information and protein-level scores, into a 

single score of deleteriousness. Helix combines structural, alignment and gene data with a strict 

training regime where circularity is actively avoided to produce a variant score and certainty 

estimate. All variants were scored using default software settings. For Align-GVGD the sequence 

alignment with the deepest phylogeny level was used. For BRCA1, we also annotated variants using 

the prediction of loss-of-function made by the Saturation Genome Editing (SGE) experiments of 

Findlay et al (21), which involved a comprehensive functional assessment of missense variants lying 

within the functional domain coding regions of BRCA1. 

 

STATISTICAL ANALYSIS 

The dataset was split into a training (80% of individuals) and a validation (20%) set. Samples for the 

validation set were selected randomly from population studies of cases unselected for family history 

of breast cancer and controls, in countries contributing a total of >5000 samples (Denmark, 

Germany, Singapore (Chinese), Sweden, UK, USA). All remaining samples were included in the 

training set. The training set included 37,211 cases from population studies, 11,409 cases from 
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familial studies and 42,334 controls.  Of these, 3,818 individuals were carriers of PTVs in one or more 

of the five genes under consideration and were excluded from all analyses except the mixture 

models (see below).  The validation set included 11,019 cases and 10,831 controls from population 

studies and did not include any carriers of PTVs. Oversampling of cases with a family history 

increases power but leads to biased effect sizes, so we chose this approach to maximize the power 

to discriminate between models in the training set, which could then be refit and tested on a dataset 

unselected for family history. All analyses were adjusted for country as a covariate; in addition, for 

Malaysia and Singapore, the three distinct ethnic groups (Chinese, Indian, Malay) were treated as 

different strata, and the UK was treated as three strata (SEARCH from East Anglia, GENSCOT from 

Scotland, and PROCAS and FHRISK from north-west England).  

 

TRAINING DATASET ANALYSIS 

An analysis flow diagram is presented in Additional Figure 1 (see Additional File 2). Analyses were 

performed in R version 4.0.3 (R: A Language and Environment for Statistical Computing; 

http://www.r-project.org). We first used logistic regression (LR) to explore which of the five in silico 

scores (Align-GVGD, BayesDel, CADD, Helix and REVEL - all analyzed as continuous variables) were 

most strongly associated with risk of breast cancer. For BRCA1, we also analyzed the SGE score. 

These analyses were restricted to carriers of a rare (frequency <0.1%) missense variant in the 

training set, with an endpoint of breast cancer occurrence (yes/no). The strongest predictors were 

used to test the association of different categories of the score(s) compared to a baseline category, 

in conjunction with functional protein domains, and hence create a set of risk categories.  LR was 

then used in the training set (carriers and non-carriers) to estimate the odds ratios (OR) associated 

with different risk categories. As an alternative approach, we fitted mixture models in which only a 

proportion of variants (α) was assumed to be risk associated in the given gene; the OR was assumed 

to be the same for all risk associated variants, but the proportion of risk associated variants varied 

by risk category (as defined in the LR models). This model is motivated by the binary variant 
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classification approach used in clinical genetics, where all variants are assumed to be either 

associated with moderate-high risk (likely pathogenic) or not (likely benign) (22). We considered two 

types of mixture model: a constrained model in which the missense OR was equal to that of PTVs, 

and an unconstrained model in which the missense OR could differ from the PTV OR. Carriers of 

PTVs in the gene under consideration were re-included in the mixture models (to allow the risk 

associated missense OR to be constrained to the PTV OR).  The mixture models were fitted using an 

expectation-maximization (EM) algorithm (23). In the expectation step, the (posterior) probability 

that each variant was risk associated, given the case control data on that variant in the training set 

and the current parameter values, was calculated. These probabilities were then used as weights in 

a logistic regression analysis in the maximization step. In a case-control dataset, the naïve 

proportions, α, will be biased because risk associated variants are more likely to be found in cases. 

For the final models, therefore, we also computed the proportions based only on variants reported 

in controls. To evaluate the overall fit of the models, we compared log-likelihoods.  

The initial model selection was based on all samples, but final parameter estimates were obtained 

from population studies only. In the results, the ORs, P-values and α presented are from population 

studies, unless indicated by the suffix “ALL”.   

We evaluated individual risk variants previously reported in literature and, in aggregate, those 

classified as “pathogenic” or “likely pathogenic” (hereafter, all termed: (likely) pathogenic) according 

to clinical guidelines. To examine whether variant frequency is associated with risk, we used a case-

only LR analysis to test frequency up to 0.5% on a continuous scale and a log scale, and to compare 

rare variants (frequency < 0.1%) with more common variants (frequency 0.1% - 0.5%). The more 

common variants were also evaluated individually.  

 

VALIDATION DATASET ANALYSIS 

To evaluate the calibration of the training models, we performed case-control analyses using the 

validation dataset. In these analyses, OR estimates were fixed according to the population estimates 
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from the training models (Table 1), but the other parameters (intercept and country covariates) 

were re-estimated, since the case-control proportions might differ between the training and 

validation datasets. From the validation model, we extracted the predicted probability that each 

individual was a case and hence derived expected numbers of cases and controls in each risk group. 

These were used to plot observed versus expected OR estimates and perform a goodness of fit chi-

squared test.  

The mixture models were assessed similarly, with the exception that both the OR parameter and the 

proportion of risk associated variants, α, were fixed. However, an adjustment to α was incorporated 

to allow for the different distribution of cases and controls within the validation set compared to the 

training set. To do this, the proportions of cases and controls that were carrying a risk associated 

variant in the training set were estimated separately and α in the validation set was then computed 

as a weighted average of these two estimates. As an alternative approach, the predicted ORs in the 

validation set were computed using the posterior probabilities (PP) of each variant being risk 

associated (from the training set) as weights. This analysis was restricted to the subset of individuals 

carrying variants found in the training set or carrying no variant.  

As a final analysis, a single unconstrained logistic regression model comprising all the defined risk 

groups across the five genes, with non-carriers of any missense variant as the baseline group, was 

fitted, and the risks in the validation set were evaluated. 

 

Results 

ATM 

The analysis of ATM missense variants included 4,522 carriers of 1,146 unique variants. In the carrier 

only analysis, BayesDel (pALL=0.024), CADD (pALL=0.0022), Helix (pALL=0.0045) and REVEL (pALL=0.024) 

scores were all predictive of risk (see Additional File 1: Additional Table 3). For the most strongly 

associated score, CADD, the risk appeared to be restricted to the fifth quintile (Q5; CADD > 

3.736542; p=0.033 compared with third quintile). Functional protein domain was also predictive, 
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with increased risks associated with the FRAP-ATM-TRRAP (FAT; pALL=9.5x10
-4

) and 

Phosphatidylinositol 3-kinase and 4-kinase (PIK; pALL=0.0016) domains compared with variants 

outside a known domain. Including CADD and protein domain, only variants in the category that 

included CADD Q5 variants in the FAT or PIK domains (FAT/PIK + CADD5) were associated with risk 

relative to non-carriers (OR 1.64 (1.33-2.02), p=3.1x10-6; Table 1, Figure 1a, Figure 2a). In the most 

parsimonious mixture model, risk associated variants conferred an equivalent risk to PTVs (OR 2.16 

(1.78-2.63)); an estimated 54% (95% CI (41%-68%)) of variants in the FAT/PIK + CADD5 risk group 

were risk associated, compared to less than 6% of variants in other risk categories (Table 1, Figure 

1a, Figure 2a). There was no evidence that missense variants were associated with a different risk 

compared with PTVs (p=0.48). The mixture model was a slightly better fit to the data than the LR 

model (2 x log-likelihood difference = 0.67).  

Thirteen ATM missense variants were classified as (likely) pathogenic on the ClinVar database (see 

Additional File 2: Additional Table 4). These variants, in aggregate, were associated with an 

increased risk (OR 1.85 (0.98-3.50, p=0.060; pALL=0.00053)). However, the association of (likely) 

pathogenic variants was not present when the analysis was restricted to the five variants not in the 

FAT or PIK domains (OR=0.97 (0.19-5.08)), though the carrier numbers were small and the 

confidence interval wide. Conversely, variants in the FAT/PIK + CADD5 risk group, in aggregate, 

remained risk associated, even when variants defined as (likely) pathogenic were excluded (OR 1.60 

(1.29-1.99)).  Two of the variants classified as (likely) pathogenic were observed in controls only 

(Table S4). One of these (c.8546G>C) is located in the PIK domain, the other (c.3848T>C) is not within 

any domain; however, both have a Q5 CADD score. 

The pathogenic variants listed on ClinVar include c.7271T>G (p.Val2424Gly), previously reported as 

associated with high risk of breast cancer (24, 25). In the training dataset, c.7271T>G was identified 

in 12 cases (6 population-based) and 6 controls and was not associated with risk (p=0.37, 

pALL=0.081); its population-based OR estimate of 1.63 (0.56-4.73) was lower than previous estimates 

(for example (26)). Another variant previously reported as risk associated, c.6919C>T 
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(p.Leu2307Phe) (27), was associated with an increased population risk (OR=3.71 (1.87-7.38), 

p=0.00018). Both variants are located in the FAT domain and have a CADD score in Q5, but after 

excluding them from the model there remained a significantly increased risk for carriers in the 

FAT/PIK + CADD5 risk group (OR 1.48 (1.18-1.85), p=0.00064). 

 

BRCA1 

The analysis of BRCA1 missense variants included 2,288 carriers of 644 unique variants. For missense 

variant carriers, all five continuous in silico scores were associated with risk (Align-GVGD pALL=1.3x10
-

8, BayesDel pALL=0.0013, CADD pALL=0.011, Helix pALL=2.1x10-9, REVEL pALL=1.5x10-5). Variants in two 

protein domains were also significantly associated with risk compared with variants outside these 

domains (RING finger domain pALL=3.5x10
-4

; BRCA1 C-terminal domains (BRCT I-II) pALL=0.0030; see 

Additional File 1: Additional Table 3). The Helix tool categorizes variants with a high score (> 0.5) as 

“deleterious” and variants with a low score (< 0.5) as “benign”; hereafter we refer to these 

categories as Helix-high and Helix-low, respectively. Including Helix category and protein domain, we 

found that only variants that were inside the RING or BRCT I-II domains and also in the Helix-high 

category (RING/BRCT + Helix-high) were associated with risk (OR compared with non-carriers 4.94 

(2.83-8.61), p=1.9x10-8; pALL=2.5x10-9; Table 1, Figure 1b, Figure 2b). In a mixture model in which the 

OR for risk associated missense variants was constrained to that for PTVs (OR 10.61 (7.92-14.21)), 

the estimated proportions of risk associated variants in the RING/BRCT + Helix-high risk category was 

48% (19%-78%) and close to 0% for all other variants (Table 1, Figure 1b, Figure 2b). There was no 

evidence that the risk associated missense OR differed from the PTV OR (p=0.98). The LR and 

mixture models were similarly good fits to the data (2 x log-likelihood difference = 0.30). 

According to the ENIGMA guidelines and/or ClinVar classifications, 13 of the BRCA1 missense 

variants in the dataset (four in the RING domain and nine in the BRCT domains) would be classified 

as (likely) pathogenic (see Additional File 2: Additional Table 4). In total, the 13 variants were carried 

by 60 cases and 6 controls and were strongly associated with risk in the subset of population 
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samples (OR 16.68 (5.16-53.94), p=2.6x10
-6

). In our dataset, the most frequent of these variants was 

c.181T>G (p.Cys61Gly), carried by 29 cases and 2 controls (OR 15.06 (3.58-63.36)). After excluding all 

(likely) pathogenic variants, there also remained an increased risk associated with variants in the 

RING/BRCT + Helix-high category (OR 2.39 (1.19-4.78), p=0.014)). 

BRCA1 Saturation Genome Editing (SGE) score was available for 100 unique variants and was 

strongly associated with risk (pALL=1.5x10
-4

; see Additional File 1: Additional Table 3). Carriers of 

variants with an SGE loss of function (LOFSGE) consequence had a higher risk than carriers of variants 

with a functional (FUNCSGE) consequence (ORALL 10.79 (3.31-35.16)). Carriers of variants with an 

intermediate function (INTSGE) consequence also had, on average, a higher risk than carriers of 

FUNCSGE variants (ORALL 3.17 (0.32-31.15)) though the number of INTSGE carriers was small (total n=6). 

Since the BRCA1 SGE experiment specifically targeted the domain-coding regions of the gene, only 

four variants outside of the domains were scored. Thus, all BRCA1 missense variants were assigned 

to one of four potential risk levels, with SGE score prioritized where available: INTSGE/LOFSGE; 

RING/BRCT + Helix-high (SGE score missing); RING/BRCT + Helix-low (SGE score missing); or FUNCSGE 

or carriers of variants outside of the domains. Compared with non-carriers, there was increased risk 

for carriers of variants in the INTSGE/LOFSGE category (OR 7.22 (2.48-21.01), p=0.00029) and in the 

RING/BRCT + Helix-high category (OR 5.35 (2.48-11.57), p=2.0x10-5; see Additional File 2: Additional 

Table 5). In a mixture model in which the OR for risk associated missense variants was constrained to 

that for PTVs (OR 10.69 (7.97-14.33)), the estimated proportions of risk associated variants in the 

INTSGE /LOFSGE and the RING/BRCT + Helix-high risk categories were 75% (24%-97%) and 51% (6%-

94%), respectively (Additional File 2: Additional Table 5). The SGE LR model and SGE mixture model 

were similarly good fits to the data (2 x log-likelihood difference = 0.12) and both were better fits to 

the data compared to the Helix-only models (LR models 2 x log-likelihood difference = 3.40, mixture 

models 2 x log-likelihood difference = 3.58). 

 

BRCA2 
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The analysis of BRCA2 missense variants included 5,467 carriers of 1,425 unique variants. Align-

GVGD (pALL=0.0072), BayesDel (pALL=0.059), CADD (pALL=0.036) and Helix (pALL=0.0016) scores were 

associated with risk for carriers of BRCA2 missense variants (see Additional File 1: Additional Table 

3). Risks did not differ by protein domain (pALL=0.91). Compared with non-carriers, carriers of Helix-

high variants had a modestly increased risk of breast cancer (OR 1.28 (0.96-1.70), p=0.087; 

pALL=0.020) whereas carriers of a Helix-low variant had no increased risk (OR 0.98 (0.92-1.04), 

p=0.47; pALL=0.40; Table 1, Figure 1c, Figure 2c).  Under a mixture model in which risk associated 

missense variants conferred the same risk as PTVs (OR 5.87 (4.75-7.24)), an estimated 11% (4%-25%) 

of the Helix-high variants were associated with risk, compared with <0.1% of Helix-low variants 

(Table 1, Figure 1c, Figure 2c). A model that allowed the OR for missense variants to differ from that 

of PTVs did not converge. The constrained mixture model was a better fit to the data than the 

logistic regression model (2 x log-likelihood difference = 6.38).  

Twelve BRCA2 variants would be classified as (likely) pathogenic according to ENIGMA guidelines or 

ClinVar (see Additional File 2: Additional Table 4). In aggregate, the relative risk estimate for these 

variants was similar to that for PTVs (OR 8.91 (2.61-30.42), p=4.8x10-4). Ten of these variants were 

categorized as Helix-high and two as Helix-low. Two of the variants categorized as (likely) pathogenic 

and Helix-high were observed in controls only (see Additional File 2: Additional Table 4). After 

excluding the (likely) pathogenic variants from the LR model, there remained no increased risk 

associated with variants classified as Helix-high (OR 0.60 (0.27-1.34)).   

 

CHEK2 

The analysis of CHEK2 missense variants included 1,552 carriers of 325 unique variants. In the 

carrier-only analysis, BayesDel (pALL=0.0091), CADD (pALL=0.0073), Helix (pALL=0.0021) and REVEL 

(pALL=0.016) scores were associated with risk (see Additional File 1: Additional Table 3). Compared 

with non-carriers, carriers of a Helix-high variant had a larger increased risk (OR 1.73 (1.42-2.11), 

p=4.7x10-8) than carriers of Helix-low variants, but the latter were also associated with an increased 
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risk (OR 1.26 (1.08-1.46), p=0.0025; see Table 1, Figure 1d, Figure 2d). There was no significant 

association with protein domain (pALL=0.98). 

In the mixture model analysis, the constrained model in which risk associated missense variants 

conferred the same risk as PTVs could be rejected (p=0.027). Under the best fitting model, the OR 

for missense variants was 1.75 (1.47-2.08), with 95% (86%-98%) of Helix-high variants and 33% 

(25%-43%) of Helix-low variants being risk associated (see Table 1, Figure 1d, Figure 2d). The mixture 

model was a similar fit to the LR model (2 x log-likelihood difference = 0.52). We also explored 

mixture models with two levels of risk variant: one with an OR equal to that of PTVs and another 

conferring a lower risk compared to that of PTVs. The two-level model fitted slightly better in the full 

training dataset (2 x log-likelihood difference = 1.10) but not in the population-based studies (two-

level model converged to the one-level model).  

Two variants, c.470T>G (p.Ile157Ser) and c.433C>T (p.Arg145Trp), were listed as (likely) pathogenic 

on ClinVar; both variants have high Helix scores but the number of carriers in our population-based 

sample was too small to evaluate their association with risk (see Additional File 2: Additional Table 

4).  One rare variant, c.349A>G (p.Arg117Gly), was previously identified as risk associated in BCAC 

samples, as part of the OncoArray genome-wide association study (GWAS) project (26). In the 

current dataset, this variant, which is in the Helix-high category, had an OR 2.69 (1.46-4.94). After 

excluding the BCAC GWAS samples from the current dataset, the OR was 3.40 (1.52-7.61). Excluding 

c.349A>G from the LR model did not change the overall relative risk associated with the Helix-high 

category (OR 1.64 (1.33-2.02)).   

 

PALB2 

The analysis of PALB2 missense variants included 1,659 carriers of 472 unique variants. We found no 

overall evidence of risk associated with missense variants in PALB2 (OR 0.95 (0.85-1.06), p=0.34; 

pALL=0.98). In the carrier-only analysis, CADD was the only score associated with risk (pALL=0.020; see 

Additional File 1: Additional Table 3); however, there was no significant difference in risk between 
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CADD quintiles (pALL=0.16). There was no evidence for a difference in risk for carriers of variants 

inside any protein domain versus those outside (pALL=0.25). In a mixture model in which the 

missense variant risk was constrained to that for PTVs (OR 4.87 (3.50-6.77)), the estimated 

proportion of risk associated variants was 0.011% (95% CI 0%-88%; Table 1, Figure 1e, Figure 2e). 

The log-likelihoods for the mixture model and logistic regression model were similar (2 x log-

likelihood difference = 1.01).  

Three (likely) pathogenic variants were listed on ClinVar but none of these were present in our 

samples. Another variant, c.104T>C (p.Leu35Pro), has been suggested to be pathogenic based on 

evidence from one family and tumor genomic analysis (28), but this variant was also not found in our 

samples.   

 

FREQUENCY ANALYSIS 

In the analysis of variant frequency (up to 0.5%) there was no association between risk and 

frequency, either on a continuous scale or as the difference in risk between rare (<0.1%) and more 

common (0.1%-0.5%) variant carriers, for ATM, BRCA2, CHEK2 or PALB2 (see Additional File 2: 

Additional Table 6). For BRCA1, we found frequency inversely associated with risk (continuous 

pALL=0.022) and a significantly higher risk for rare (<0.1%) compared with more common (0.1%-0.5%) 

variants (pALL=0.0066). However, after adjusting for the Helix and domain risk groups, neither of 

these associations remained statistically significant (pALL=0.36 and pALL=0.39, respectively).  

We evaluated the risks for individual missense variants with frequency between 0.1% and 0.5% (see 

Additional File 2: Additional Table 7). In ATM, one variant, c.5312G>A (p.Arg1771Lys), was associated 

with a modest increase in risk (OR=1.33 (0.92-1.93), p=0.13; pALL=0.0070). In BRCA1, one variant, 

c.2521C>T (p.Arg841Trp), was associated with a decreased risk of breast cancer (OR 0.67 (0.52-0.87), 

p=0.0027). Two previously-reported variants in CHEK2 were identified: c.470T>C (p.Ile157Thr) and 

c.538C>T (p.Arg180Cys) (29). c.470T>C was associated with an OR of 1.24 (1.09-1.42), consistent 
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with the estimate for the Helix-low risk category, while c.538C>T was associated with a higher OR 

1.44 (1.12-1.84). No BRCA2 or PALB2 missense variants were individually associated with risk. 

 

MODEL VALIDATION 

We evaluated the calibration of the best fitting models from the training set, for each gene, in the 

validation set: these included the LR models, the mixture model using the estimated proportions (α) 

from the training set, and the mixture model using the posterior probabilities derived from the 

training set. For each gene and each model, carriers of variants in the predicted risk groups were 

associated with an increased risk, and there were no differences between the observed and 

predicted ORs (see Additional File 2: Additional Table 8 and Additional Figures 2-6). In-silico scores, 

likelihood ratios and posterior probabilities for every variant included in the population training 

dataset are given in Additional File 1: Additional Tables 9-13. 

 

Using a composite five gene model, we estimated ORs for eleven risk categories (Figure 3). 184 

samples carried a missense variant in more than one of the five genes and were excluded from this 

analysis. Four categories were significantly associated with an increased risk relative to non-carriers, 

consistent with the estimates derived from the training set: ATM FAT/PIK + CADD5 (OR 1.76 (1.16-

2.68), p=0.0078), CHEK2 Helix-low (OR 1.40 (1.04-1.88), p=0.025), CHEK2 Helix-high (OR=1.89 (1.27-

2.81), p=0.0017) and BRCA1 within domain and Helix-high (OR 4.44 (1.45-13.59), p=0.0089) risk 

groups. The OR estimate for BRCA2 Helix-high variant carriers was higher than that in the training 

dataset, but the confidence interval was considerably wider (OR 1.54 (0.88-2.68)). As predicted, 

variants in the remaining categories were not associated with risk. 

 

Discussion 

To date, the risks associated with missense variants in breast cancer predisposition genes have been 

largely unclear. In this study of over 112,000 women, we were able to use a range of in silico scores 
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produced by statistical algorithms and knowledge of functional protein domains to determine the 

risks associated with subsets of rare missense variants. We identified groups of missense variants 

conferring increased risks of breast cancer in ATM, BRCA1, BRCA2 and CHEK2, but not in PALB2. 

Under the best fitting mixture models, for ATM, BRCA1 and BRCA2, a small proportion of rare 

missense variants were associated with risks comparable to those for PTVs. In contrast, for CHEK2, a 

high proportion of CHEK2 missense variants were risk associated and the estimated risk was 

markedly lower than that associated with PTVs. In PALB2, the evidence for association was weak; 

the mixture model analysis indicated that the proportion of missense variants associated with a high 

risk is likely to be very small. 

We used five in silico scores to predict the pathogenicity of individual variants. Helix, BayesDel and 

CADD were all predictive for the four genes for which we were able to identify subsets of risk-

associated variants; Helix was most predictive for BRCA1, BRCA2 and CHEK2 while CADD 

outperformed all the other scores for ATM.  In addition to the in silico scores, we also tested the 

BRCA1 SGE functional assay score. We found that the SGE score slightly improved the performance 

of the model for predicting risk for BRCA1 missense variant carriers, compared with the Helix-only 

model. Variants categorized by SGE as disruptive to function, or lying within a protein domain and 

scored high by Helix, were strongly associated with increased risk. Under the mixture model, the 

proportions of risk-associated variants were also high, although the confidence intervals for the 

proportion of associated variants were wide. It is notable that 11 of the 31 variants in these 

categories have previously been identified as (likely) pathogenic by ClinVar and/or ENIGMA. 

Similarly, in ATM, the risk conferred by missense variants was confined to specific protein-coding 

domains, namely the FAT and PIK domains, consistent with previous studies (5). Variants within 

these domains could be further distinguished using the CADD score; variants in the top quintile were 

associated with risk whereas variants in the first four quintiles were not. In a mixture model, 54% of 

variants in the top CADD quintile were estimated to be associated with risk. One variant in this 

group, c.7271T>G (p.Val2424Gly), has been previously reported as a breast cancer risk variant but 
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the OR estimate for this variant, 1.63 (0.56-4.73), was markedly lower than previously estimated 

(relative risks ranging from 8.0-12.7)(24-26).  The reasons for this difference are unclear but might 

be due, in part, to previous studies oversampling for cases with a family history of breast cancer. In 

BRCA2, a small number of variants were categorized as deleterious by Helix and showed an overall 

association with risk in our study (OR 1.28 (0.96-1.70), p=0.087; pALL=0.020). Under the best fitting 

mixture model, a small proportion (11%) of these variants were estimated to be associated with risk 

equivalent to that of PTVs (OR 5.87 (4.75-7.24)). 

The results for CHEK2 were in marked contrast to those for BRCA1, BRCA2 and ATM. In the best 

fitting mixture model, the proportion of associated variants was high, and the estimated risk was 

clearly lower than for PTVs. A model in which there were two levels of risk, with the higher level 

equal to the PTV risk, fitted slightly better in the full training dataset but not in the population-only 

training studies. In addition, however, three individual CHEK2 variants were associated with differing 

levels of risk: c.470T>C (p.Ile157Thr) OR 1.24 (1.09-1.42); c.538C>T (p.Arg180Cys) OR 1.44 (1.12-

1.84); and c.349A>G (p.Arg117Gly) OR 2.69 (1.46-4.94). The c.470T>C variant was too common to be 

included in the main analyses, possibly explaining why the heterogeneity in risk was not readily 

detectable by the mixture models; however, the confidence interval for c.470T>C from the individual 

level analysis did not include the LR and mixture model OR estimates of 1.73 and 1.75, respectively, 

for the risk-associated variants. Taken together, these observations suggest that there is substantial 

variation in risk associated with CHEK2 missense variants.  

Under the best fitting mixture model, approximately 7% of all rare missense variants in ATM were 

associated with similar risk to that of PTVs.  The estimated carrier frequency of pathogenic missense 

variants in ATM was 0.0030, or approximately 89% of the PTV frequency. The corresponding 

proportion of associated rare missense variants for BRCA1 and BRCA2 was 2% and 0.6%, with an 

estimated carrier frequency of 0.00026 (~18%) and 0.00028 (~10%), respectively. Thus, missense 

variants add modestly to the contribution of BRCA1 and BRCA2 variants to breast cancer incidence, 

but make a relatively more substantial contribution for ATM. For CHEK2, approximately 60% of rare 
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missense variants were risk associated and the estimated carrier frequency of pathogenic missense 

variants in CHEK2 was comparable to the frequency of PTVs. The predicted proportion of breast 

cancer cases possessing pathogenic germline missense variants in these genes is approximately 

0.6%, 0.3%, 0.2% and 1.3% for ATM, BRCA1, BRCA2 and CHEK2, respectively. 

The task of identifying which specific individual missense variants are risk associated is a complex 

one and is difficult to resolve fully even with a large dataset, since most variants are rare and there 

are many possible models to consider. Despite the size of our study, it was difficult to distinguish, for 

any gene, between the LR models (in which all variants in a given category confer a given risk) and 

the mixture models (in which all risk-associated variants confer the same risk, but the proportion 

that are associated varies by category). This difficulty arises because the number of carriers for 

individual variants is small, and as a result the estimated risk of pathogenic missense variants and 

probability of pathogenicity (α) are strongly confounded. Further, selecting the best models and 

estimating the risks based on these models is likely to result in overfitting and biased risk estimates. 

In order to strengthen the validity of our findings, we used a training-validation study design. We 

were able to replicate the predicted OR estimates in the validation dataset, suggesting that any bias 

due to overfitting was small. Nevertheless, the validation dataset was relatively small, so further 

validation of the best models reported here in large independent datasets is critical.  

Ultimately, high-throughput functional assays may provide more precise definitions of risk 

categories. The analysis of the SGE scores for BRCA1 suggests that this approach should be useful, 

although the scores were highly concordant with the best in-silico score in this case. This study 

provides an evidence-based starting point to select candidate variants for future functional assays.  

Ultimately, however, larger population-based epidemiological datasets will be required to provide 

more precise risk estimates.  

  

Conclusions 
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This study confirms that subsets of missense variants in established breast cancer susceptibility 

genes are associated with increased risks of the disease and provides estimates of relative risks for 

those subsets, as well as probabilities for association with risk at the variant level. The pattern of risk 

varies substantially by gene. Accurately and precisely defining these risks is critical to the counselling 

and management of women in whom these variants are identified. 
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Figures  

Figure 1 title 

Odds ratios and alpha estimates for each of five genes in population training samples 

Figure 1 panel A legend 

ATM. Odds ratios for breast cancer risk from logistic regression models.  Alpha is the estimated 

proportion of risk associated variants from mixture models, based on variants in control samples.  

ATM risk categories: variants lying within the FAT or PI3K/PI4K protein domains with CADD score in 

the fifth quintile (FAT/PIK + CADD5); variants lying within the FAT or PI3K/PI4K protein domains with 

CADD score in any of the first four quintiles (FAT/PIK + CADD1-4); variants lying outside the FAT and 

PI3K/PI4K protein domains (Outside FAT/PIK). 

Figure 1 panel B legend 

BRCA1. Odds ratios for breast cancer risk from logistic regression models.  Alpha is the estimated 

proportion of risk associated variants from mixture models, based on variants in control samples.    

BRCA1 risk categories: variants lying within the RING or BRCT domains with a high Helix score 

(RING/BRCT + Helix-high); variants lying with the RING or BRCT domains with a low Helix score 

(RING/BRCT + Helix-low); variants lying outside the RING and BRCT domains (Outside RING/BRCT). 

Figure 1 panel C legend 

BRCA2. Odds ratios for breast cancer risk from logistic regression models.  Alpha is the estimated 

proportion of risk associated variants from mixture models, based on variants in control samples.    

BRCA2 risk categories: variants with a high Helix score (Helix-high); variants with a low Helix score 

(Helix-low). 

Figure 1 panel D legend 

CHEK2. Odds ratios for breast cancer risk from logistic regression models.  Alpha is the estimated 

proportion of risk associated variants from mixture models, based on variants in control samples.  
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CHEK2 risk categories: variants with a high Helix score (Helix-high); variants with a low Helix score 

(Helix-low). 

Figure 1 panel E legend 

PALB2. Odds ratios for breast cancer risk from logistic regression models.  Alpha is the estimated 

proportion of risk associated variants from mixture models, based on variants in control samples.  

PALB2 risk categories: carriers of any missense variant (Carriers) 

 

Figure 2 title 

Case and control carriers across all samples for each observed missense variant by gene 

Figure 2 panel A legend 

ATM. ATM risk categories: variants lying within the FAT or PI3K/PI4K protein domains with CADD 

score in fifth quintile (FAT/PIK + CADD5); variants lying within the FAT or PI3K/PI4K protein domains 

with CADD score in any of first four quintiles (FAT/PIK + CADD1-4); variants lying outside the FAT and 

PI3K/PI4K protein domains (Outside FAT/PIK). 

Figure 2 panel B legend 

BRCA1. BRCA1 risk categories: variants lying within the RING or BRCT domains with a high Helix 

score (RING/BRCT + Helix-high); variants lying with the RING or BRCT domains with a low Helix score 

(RING/BRCT + Helix-low); variants lying outside the RING and BRCT domains (Outside RING/BRCT). 

Figure 2 panel C legend 

BRCA2. BRCA2 risk categories: variants with a high Helix score (Helix-high); variants with a low Helix 

score (Helix-low). 

Figure 2 panel D legend 

CHEK2. CHEK2 risk categories: variants with a high Helix score (Helix-high); variants with a low Helix 

score (Helix-low). 

Figure 2 panel E legend 

PALB2. PALB2 risk categories: carriers of any missense variant (Carriers) 
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Figure 3 title 

Breast cancer risk estimates from composite gene model in validation samples.  

Figure 3 Legend 

Black marks indicate corresponding ORs from training models. Risk categories: ATM FAT/PIK + 

CADD5: ATM variants lying within the FAT or PI3K/PI4K protein domains with CADD score in fifth 

quintile; ATM FAT/PIK+CADD1-4: ATM variants lying within the FAT or PI3K/PI4K protein domains 

with CADD score in any of first four quintiles; ATM outside FAT/PIK: variants lying outside the FAT 

and PI3K/PI4K protein domains; BRCA1 RING/BRCT + Helix-high: BRCA1 variants lying within the 

RING or BRCT domains with a high Helix score; BRCA1 RING/BRCT + Helix-low: BRCA1 variants lying 

with the RING or BRCT domains with a low Helix score; BRCA1 outside RING/BRCT: BRCA1 variants 

lying outside the RING and BRCT domains; BRCA2 Helix-high: BRCA2 variants with a high Helix score; 

BRCA2 Helix-low: BRCA2 variants with a low Helix score; CHEK2 Helix-high: CHEK2 variants with a 

high Helix score; CHEK2 Helix-low: CHEK2 variants with a low Helix score; PALB2 carriers: carriers of 

any missense variant in PALB2 
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Table 1: Breast cancer risk association results from logistic regression and mixture models of population training samples 

 N Logistic regression model Mixture model 

Risk group Variants
a
 Cases Controls OR

b
 95% CI

c
 P-value Missense OR

 
(95% CI)

d
 α

e
 95% CI

f
 

ATM    Log-likelihood = -48624.97 Log-likelihood = -48624.64 

Non-carriers - 33351 37001 1 - -  0 - 

Carriers       2.16 (1.78-2.63)
h
   

Variant outside FAT and PIK domains 714 1259 1443 0.98 (0.91-1.06) 0.67  0.0041 (0.001-0.02) 

Variant inside FAT or PIK domain and 

CADD score quintiles 1-4
g
 

171 317 333 1.10 (0.94-1.29) 0.24  0.055 (0.03-0.12) 

Variant inside FAT or PIK domain and 

CADD score quintile 5
g
 

103 239 162 1.64 (1.33-2.02) 3.1x10
-6

  0.54 (0.41-0.68) 

BRCA1    Log-likelihood = -48652.14 Log-likelihood = -48652.29 

Non-carriers - 34191 37996 1 - -  0 - 

Carriers       10.61 (7.92-14.21)
h
   

Variant outside RING and BRCT domains 479 811 856 1.01 (0.92-1.12) 0.79  0.0015 (9.4x10
-5

-0.025) 

Variant inside RING or BRCT domain and 

low Helix score 

79 120 103 1.18 (0.90-1.55) 0.23  1.0x10
-11

 NA 

Variant inside RING or BRCT domain and 23 63 16 4.94 (2.83-8.61) 1.9x10
-8

  0.48 (0.19-0.78) 
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 N Logistic regression model Mixture model 

Risk group Variants
a
 Cases Controls OR

b
 95% CI

c
 P-value Missense OR

 
(95% CI)

d
 α

e
 95% CI

f
 

high Helix score 

BRCA2    Log-likelihood = -48641.97 Log-likelihood = -48638.78 

Non-carriers - 33006 36517 1 - -  0 - 

Carriers       5.87 (4.75-7.24)
h
   

Variant with low Helix score 1160 2062 2323 0.98 (0.92-1.04) 0.47  5.1x10
-5

 (2.4x10
-9

-0.52) 

Variant with high Helix score 62 114 94 1.28 (0.96-1.70) 0.087  0.11 (0.04-0.25) 

CHEK2    Log-likelihood = -48728.96 Log-likelihood = -48728.70 

Non-carriers - 34582 38480 1 - -  0 - 

Carriers       1.75 (1.47-2.08)
i
   

Variant with low Helix score 157 403 363 1.26 (1.08-1.46) 0.0025  0.33 (0.25-0.43) 

Variant with high Helix score 121 265 177 1.73 (1.42-2.11) 4.7x10
-8

  0.95 (0.86-0.98) 

PALB2    Log-likelihood = -48728.67 Log-likelihood = -48729.17 

Non-carriers - 34622 38291 1 - -  0 - 

Carriers 424 618 713 0.95 (0.85-1.06) 0.34 4.87 (3.50-6.77)
h
 1.1x10

-4
 (1.6x10

-9
-0.88) 

a
 Number of unique missense substitutions in population dataset 

b
 Logistic regression odds ratio estimate for missense variant carriers 
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c 
95% confidence interval for logistic regression OR estimate for missense variant carriers 

d
 Mixture model odds ratio and 95% confidence interval for missense variant carriers 

e
 Alpha: estimated proportion of risk associated missense variants 

f
 95% confidence interval for alpha 

g
 CADD quintiles 1-4 includes all CADD score values ≤ 3.736542; CADD quintile 5 includes all CADD score values > 3.736542 

h
 Missense variant odds ratio constrained to equal odds ratio for protein truncating variants 

i
 Missense variant odds ratio unconstrained 
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