Supplementary information

Air pollution exposure and diabetes occurrence

Maayan Yitshak Sade, Ph.D., Liuhua Shi, Sc.D., Elena Colicino, Ph.D., Heresh Amini, Ph.D., Joel D Schwartz, Ph.D., Qian Di, Ph.D., and Robert O Wright, MD MPH.

Supplementary Table 1. The correlation between the exposures and climate variables.

	PM _{2.5}	NO ₂	Ozone	Summer temperature
NO_2	0.44			
Ozone	0.27	0.18		
Summer temperature	0.1	-0.04	0.23	
Winter temperature	-0.04	-0.04	-0.07	0.62

Pollutant	Modifier	Restricted data – ZIP codes where PM _{2.5} NAAOS (33%).	Main analytical data					
1 Onutant		Strata	IRR	95% CI		IRR	95% CI	
PMar	PMa z Dru a z z	Men	1.058	1.054	1.062	1.017	1.016	1.08
By sex	by sex	Women	1.040	1.036	1.044	0.996	0.994	0.998
		White	1.043	1.040	1.046	1.008	1.006	1.010
	By race	Black	1.026	1.006	1.046	0.957	0.952	0.962
		Other	1.025	1.014	1.037	0.957	0.952	0.962
D	Drugor	Men	1.009	1.007	1.011	0.992	0.991	0.993
O ₃	O_3 By sex	Women	1.022	1.020	1.024	0.999	0.998	1.000
		White	1.014	1.012	1.016	0.994	0.993	0.995
	By race	Black	1.040	1.030	1.050	0.971	0.967	0.974
		Other	1.024	1.018	1.030	0.971	0.967	0.974
NO ₂ By sex	Men	1.037	1.032	1.042	1.163	1.161	1.165	
	by sex	Women	1.045	1.041	1.049	1.207	1.205	1.209
		White	1.040	1.037	1.043	1.192	1.190	1.194
By race	Black	1.036	1.018	1.054	1.155	1.150	1.160	
		Other	1.017	1.006	1.027	1.155	1.150	1.160

Supplementary Table 2. Results of interaction analysis.

Supplementary Table 2 shows the results of stratified analyses be sex and race. The analyses were conducted in the main analytical dataset, and in a restricted dataset including only ZIP codes in which $PM_{2.5}$ and NO_2 did not exceed the NAAQS during the study period.

IRR= incidence rate ratio; 95% CI= 95% confidence intervals.

Supplementary Table 3. Baseline characteristics of person years by status of enrollment in the fee for service, part A, and part B programs.

	Included (n=432,826,576-61%)	Excluded (n=283,734,324 - 39%)
Age, Mean (Q1; Q3)	76 (70; 82)	74 (67; 80)
Female sex, n (%)	254,446,733 (58.7%)	156990829 (55.3%)
Race, % (n)		
White	381,308,542 (88.0%)	230,692,691 (81.3%)
Black	29,667,751 (6.8%)	26,666,991 (9.3%)
Other	19,535,981 (4.5%)	23,060,733 (8.1%)
Missing	2,314,302 (0.7%)	3,313,909 (1.3%)
Medicaid eligible, % (n)	50792506 (11.7%)	37,428,498 (13.1%)
Death, % (n)	2141710 (0.4%)	28664286 (10%)

Supplementary Table 4. Comparison of results – the main analysis versus a sensitivity analysis weighted by the inverse probability of being in the cohort.

	Main analysis	Weighted population
All available data		
PM _{2.5}	1.005 (1.004; 1.006)	1.014 (1.010; 1.018)
O ₃	0.996 (0.995; 0.997)	0.985 (0.982; 0.987)
NO_2	1.185 (1.184; 1.187)	1.207 (1.203; 1.2114)
Low pollution levels		
PM _{2.5}	1.048 (1.045; 1.051)	1.046 (1.037; 1.056)
O ₃	1.016 (1.015; 1.018)	1.007 (1.002; 1.012)
NO_2	1.040 (1.037; 1.043)	1.033 (1.024; 1.042)