Table/Figure	Title	Page
Table S1	PRISMA guidelines	2-5
Table S2	Full database queries	6
Table S3	Risk of bias assessment	7
Table S4	Characteristics of included studies	8-16
Table S5	Percentage of bvFTD features and NPI items in bvAD, bvFTD and tAD	17
Table S6	Functional connectivity and white matter hyperintensities in bvAD	18
Figure S1	Funnel plots for behavorial/neuropsychiatric data in meta-analysis	19
Figure S2	Funnel plots for cognitive data in meta-analysis	20
Figure S3	Funnel plots for neuropathological data in meta-analysis	21
Figure S4	Risk of bias assessment summary	22
Figure S5	Flow chart of study inclusion	23
Figure S6	Results of meta-analysis for behavorial and neuropsychiatric seperately	24
Figure S7	Meta-analyses for neuropathological data in bvAD vs typical AD	25
References	Reference list Supplement	26-30

SUPPLEMENTAL DATA

Table of content

Table S1. PRISMA guidelines

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstract checklist.	2-4
INTRODUCT	ION		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	6
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	6& supplemental data
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	6&7
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	6&7
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	6&7

Section and Topic	Item #	Checklist item	Location where item is reported
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	6&7
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	7
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	6
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	6
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	7
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	7
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	n/a
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	n/a
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	7
Certainty assessment RESULTS	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	7
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	8 & supplementa data

3

Section and Topic	Item #	Checklist item	Location where item is reported
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	n/a
Study characteristics	17	Cite each included study and present its characteristics.	Supplemental data
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Supplemental data
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	8&9 & Figure 1&2
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	9
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	8-10
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	n/a
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	n/a
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	7 & Supplemental data
Certainty of evidence DISCUSSION	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	8-10
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	10-14
	23b	Discuss any limitations of the evidence included in the review.	14
	23c	Discuss any limitations of the review processes used.	14
	23d	Discuss implications of the results for practice, policy, and future research.	15&16

Section and Topic	Item #	Checklist item	Location where item is reported
OTHER INFO	DRMAT	ION	~
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	6
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	6
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	n/a
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	13
Competing interests	26	Declare any competing interests of review authors.	13
Availability of data, code and other materials		Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	7

 Table S2. Full database queries used in the present study

Database	Search no.	Search terms	No. of studies
PubMed/medline	1	(Alzheimer*[Title]) AND (behavio* variant[Title] OR executive variant[Title] OR	492
		dysexecutive variant[Title] OR behavio*/dysexecutive AD[Title] OR frontal variant[Title]	
		OR frontal presentation[Title] OR nonamnestic[Title] OR non-amnestic[Title] OR	
		heterogene*[Title] OR atypical[Title])	
	2	(frontotemporal dementia[Title]) AND (pathology[Title] OR clinicopathologic* [Title])	73
Web of Science	1	TITLE: (Alzheimer*) AND TITLE: (behavio* variant OR executive variant OR	581
		dysexecutive variant OR behavio*/dysexecutive AD OR frontal variant OR frontal	
		presentation OR nonamnestic OR non-amnestic OR heterogene* OR atypical)	
	2	TITLE: (frontotemporal dementia) AND TITLE: (pathology OR clinicopathologic*)	111

Study	D1 Bias due to confoundin g	D2 Bias in selection of participant s into the study	D3 Bias in classificat ion of interventi ons	D4 Bias due to deviations from intended interventio ns	D5 Bias due to missing data	D6 Bias in measure ment of outcomes	D7 Bias in selection of the reported result	Overal bias
Woodward et al. 2010 ¹	Y	Y	NA	NA	PY	N	N	Serious risk of bias
Balasa et al. 2011 ²	PY	PY	NA	NA	Ν	Ν	Ν	Moderate risk of bias
de Souza et al. 2013^3	Y	PN	NA	NA	Ν	Ν	Ν	Moderate risk of bias
Mendez et al. 2013 ⁴	Y	PN	NA	NA	Ν	Ν	Ν	Moderate risk of bias
Fernández-Calvo et al. 2013 ⁵	РҮ	PY	NA	NA	РҮ	Ν	Ν	Moderate risk of bias
Blennerhassett et al. 2014 ⁶	РҮ	PN	NA	NA	PN	Ν	Ν	Moderate risk of bias
Ossenkoppele et al. 2015 ⁷	PN	PN	NA	NA	PN	Ν	Ν	Moderate risk of bias
Phillips et al. 2018 ⁸	PN	PY	NA	NA	PN	РҮ	Ν	Moderate risk of bias
Sala et al. 2020^9	Y	PN	NA	NA	PY	Ν	PY	Moderate risk of bias
Therriault et al. 2020 ¹⁰	PN	PY	NA	NA	РҮ	Ν	Ν	Moderate risk of bias
Bergeron et al. 2020 ¹¹	PY	Y	NA	NA	PY	PN	PY	Moderate risk of bias
Singleton et al. 2021 ¹²	PN	PN	NA	NA	PN	PY	Ν	Moderate risk of bias
Lehingue et al. 2021 ¹³	PY	Y	NA	NA	PY	PN	Ν	Serious risk of bias

Table S3. Risk of bias assessment per domain according to the ROBINS-I tool per study included in the meta-analyses.

 $\overline{Y=\text{yes}, N=\text{no}, PY=\text{possible yes}, PN=\text{possible no.}}$

Study	Design	Country	N	Partic ipants	Controls	Age	Sex	MMSE	Confirma tion of AD	Main topic of group study	Type of case st	udies	6
											LO	0 I	
Brun et al. 1976 ¹⁴	Case study	Sweden	5	bvAD	-	56 (5.69)	60	n/a	Autopsy		Х		Х
Shibaya ma et al. 1978 ¹⁵	Case study	Japan	1	bvAD	-	70	0	n/a	Autopsy		Х		X
Shuttlew orth 1984 ¹⁶	Case study	US	2	bvAD	-	49 (3)	0	n/a	No		ХХ	Х	
Brun 1987 ¹⁷	Case study	Sweden	2	bvAD	-	75 (6)	100	n/a	Autopsy		Х		Х
Perani et al. 1988 ¹⁸	Case study (within a cross-sectional observational study)	Italy	1	bvAD	-	56	100	n/a	No		XX	X	
Bird et al. 1989 ¹⁹	Cross-sectional observational study	US	2	bvAD	-	66 (1)	0	n/a	Autopsy		Х		XX
Grady et al. 1990 ²⁰	Cross-sectional observational study	US		bvAD	Subgroups of AD	71.5	20	8 (7)	No	Neuroimaging			
Molchan et al. 1990 ²¹	Case study	US	2	bvAD	-	58 (3)	50	12.5 (0.5)	No		ХХ		

Table S4. Characteristics of included studies in chronological order

Raux et al. 2000 ²²	Case series	France	3	bvAD	-	49.3 (10.4)	100	n/a	Genetic				
Rippon et al. 2003 ²³	Case study	US	2	bvAD	-	43.5 (1.5)	0	18.5 (5.5)			ХХ	X X	X
Yokota et al. 2003 ²⁴	Case study	Japan	3	bvAD	-	33.7 (4.5)	66.7	n/a	Autopsy		Х	Х	X
Doran & Larner 2004 ²⁵	Case study		2	bvAD	-	49 (0)	50	n/a	Genetic		Х	Х	X
Kertesz et al. 2005 ²⁶	Cross-sectional observational cohort study	Canada	1	bvAD	-	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Shi et al. 2005 ²⁷	Cross-sectional cohort study	China	1	bvAD	-	59	0	n/a	Autopsy	Clinicopatholo gical			
Forman et al. 2006 ²⁸	Cohorts study	US	1 9	bvAD	FTLD	60.3	47	20.1 (2-29)	Autopsy	Clinicopatholo gical			
Larner 2006 ²⁹	Case study	UK	2	bvAD	-	54 (2)	0	16.5 (0.5)	No		ХХ	Х	Х
Alladi et al. 2007 ³⁰	Corss-sectional observational cohort study	UK	2	bvAD	atypical AD	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Rabinovi ci et al. 2007 ³¹	Cross-sectional observational study	US	2	bvAD	-	54 (1)	50	22.5 2.5	Amyloid PET	Neuroimaging			
Snowden et al. 2007 ³²	Cross-sectional observational cohort study	UK	1 2	bvAD	AD & atypical AD	49 (8)	25	n/a	No	Cognitive & Genetic			

Taylor et	Case study	UK	1	bvAD	-	66	0	28	Autopsy		ХХ	X X	<u> </u>
al. 2008 ³³													
Kile et	Case study	US	1	bvAD	-	n/a	0	30	Autopsy				
al. 2009 ³⁴													
Bigio et	Cross-sectional	US	1	bvAD	AD & FTD	58	30	n/a	Autopsy		Х	Х	
al. 2010 ³⁵	observational study		0			(6.5)							
Habek et	Case study	Croatia	1	bvAD	-	56	0	n/a	Biopsy		Х	Х	
al. 2010 ³⁶													
Lehman	Cross-sectional	UK	2	bvAD	AD & FTD	59	50	9.5	Autopsy	Clinicopatholo			
et al. 2010 ³⁷	observational study					(1.4)		(0.7)		gical & Neuroimaging			
Piscopo	Case study	Italy	1	bvAD	-	63	n/a	11	Genetic		ХХ		Х
et al. 2010 ³⁸													
Woodwa	Cross-sectional	Canada	1	bvAD	AD & FTD	74.7	44.4	18.6	No	Clinical &			
rd et al. 2010 ¹	observational cohort study		8			(7)		5.9		Genetic			
Balasa et	Cross-sectional	Spain	7	bvAD	AD &	55.6	28.6	n/a	Autopsy	Clinicopatholo			
al. 2011 ²	observational cohort study				atypical AD	(3.7)				gical & Genetic			
Rabinovi	¥	US	3	bvAD	AD, FTD &	n/a	n/a	n/a	PET	Neuroimaging			
ci et al. 2011 ³⁹					CN								
Snowden	Cross-sectional	UK	2	bvAD	-	60.5	50	n/a	Autopsy	Clinicopatholo			
et al. 2011 ⁴⁰	observational study					(6.5)				gical			

Whitwell et al. 2011 ⁴¹	Cross-sectional observational study	US	3	bvAD	AD & CN	58.33 (3.3)	33.3	n/a	Autopsy	Neuroimaging		
Borroni et al. 2012 ⁴²	Case study	Italy	1	bvAD	-	68	0	21	Genetic & CSF			
Duker et al. 2012 ⁴³	Case study	US	1	bvAD	-	58	0	n/a	No		XX	Х
Wallon et al. 2012 ⁴⁴	Case series	France	8	bvAD	-	n/a	n/a	n/a	Genetic	Genetic		
De Souza et al. 2013 ³	Case series	France	8	bvAD	AD, bvFTD & CN	63.5 (8.9)	12.5	17.6 5.6	CSF	Cognitive & Neuroimaging		
Fernande z-Calvo et al. 2013 ⁵	Cross-sectional observational study	Spain	1 3	bvAD	AD & CN	72.8 (7.6)	31	22.5 2.1	No	Cognitive & Neuropsychiatr ic		
Herrero- San Martin et al. 2013 ⁴⁵	Case study	Spain	2	bvAD	-	56 (4)	50	n/a	Autopsy		X	X
Marini et al. 2013 ⁴⁶	Case study	Italy	1	bvAD	-	59	100	n/a	Genetic			
Mendez et al. 2013 ⁴⁶	Cross-sectional observational cohort study	US	2 1	bvAD	FTLD	69.3 (8.3)	14.3	13.3 9.4	Autopsy	Clinicopatholo gical		

Blennerh assett et al. 2014 ⁶	Cross-sectional observational study	Australia	6	bvAD	AD & bvFTD	68 (14)	33.4	n/a	Autopsy	Pathological			
Leger et al. 2014 ⁴⁷	Cross-sectional observational study	US	3 1	bvAD	FTLD	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Nijgaard et al. 2014 ⁴⁸	Case study	US	1	bvAD	-	52	0	30	Genetic		ХХ	Х	X
Balasa et al. 2015 ⁴⁹	Cross-sectional observational study	Spain	1 3	bvAD	FTLD	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Ossenko ppele et al. 2015 ⁷	Cross-sectional observational study	Netherla nds & US	5 5	bvAD	AD, bvFTD & CN	64.7 (8.8)	27.3	22.5 5.4	Autopsy	Clinical, Cognitive & Neuroimaging			
Paterson et al. 2015 ⁵⁰	Cross-sectional observational study	UK	8	bvAD	AD, atypical AD & CN	61.5 (6.4)	62.5	17.4 6.1	CSF/PET/ autopsy	Cerebrospinal fluid			
Woodwa rd et al. 2015 ⁵¹	Cross-sectional observational study	NA	1 3	bvAD	AD	81.6 (4.1)	38.5	23.9	No	Neuroimaging			
Li et al. 2016 ⁵²	Case study	China	1	bvAD	bvFTD	71	100	15	PET		XX	Х	X
Ossenko ppele et al. 2016 ⁵³	Cross-sectional observational study	US	1	bvAD	AD, atypical AD & CN	59	0	21	PET				
Scialo et al. 2016 ⁵⁴	Case study	Italy	1	bvAD	-	68	100	27	PET		XX	Х	X

Dickerso	Case series	US	1	bvAD	-	62	100	n/a	CSF		ХХ	Х	
n et al. 2017 ⁵⁵													
Duclos et al. 2017 ⁵⁶	Case study	France	1	bvAD	CN	60	100	n/a	CSF		ХХУ	ΧX	
Kawakat su et al. 2017 ⁵⁷	Case series	Japan	3	bvAD	-	57.7 (1.3)	33.3	n/a	Autopsy		Х	ХХ	
Oboudiy at et al. 2017 ⁵⁸	Cross-sectional observational study	US	2	bvAD	-	n/a	n/a	n/a	CSF & autopsy	Cerebrospinal fluid			
Perry et al. 2017 ⁵⁹	Cross-sectional observational study	US	1 5	bvAD	FTLD	62.8 (43- 83)	33.3	19.8 6.9	Autopsy	Clinicopatholo gical & Neuroimaging			
Rawtaer et al. 2017 ⁶⁰	Case study	Canada	1	bvAD	-	68	0	11	No		ХХ	Х	X
Sawyer et al. 2017 ⁶¹	Case series	US	3	bvAD	-	76.3 (3.1)	33.3	n/a	Autopsy		XX	XX	
Bagyinsk zy et al. 2018 ⁶²	Case series	Korea	1	bvAD	-	41	100	24	Genetic		XX	Х	X
Boon et al. 2018 ⁶³	Cross-sectional observational study	Netherla nds	3	bvAD	AD	60.7 (1.3)	0	n/a	Autopsy	Pathological			
Phillips et al. 2018 ⁸	Observational cross-sectional study	US	2 2	b/dA D	AD, atypical AD & CN	64.3 (8.2)	50	19.6 8.4	CSF/autop sy	Neuroimaging & Pathological			

Seo et al. 2018 ⁶⁴	Retrospective observational study	US	2 3	bvAD	-	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Whitwell et al. 2018 ⁶⁵	Cross-sectional observational study	US	6	b/dA D	AD & atypical AD	n/a	n/a	n/a	PET	Neuroimaging			
De Souza et al. 2019 ⁶⁶	Case study	Brazil	1	bvAD	-	68	100	29	CSF		XXX	ΧX	
Foiani et al. 2019 ⁶⁷	Cross-sectional observational study	UK	2	bvAD	FTLD	n/a	n/a	n/a	CSF	Cerebrospinal fluid			
Monacell i et al. 2019 ⁶⁸	Case study	Italy	1	bvAD	-	60	100	25	Genetic		ХХ	Х	X
Nolan et al. 2019 ⁶⁹	Cross-sectional observational study	US	5	bvAD	AD, atypical AD & CN	66.2 (4.8)	20	n/a	Autopsy	Pathological			
Pawlows ki et al. 2019 ⁷⁰	Cross-sectional observational study	Germany	8	bvAD	AD & FTD	n/a	n/a	n/a	CSF	Clinical & Cerebrospinal fluid			
Phillips et al. 2019 ⁷¹	Cross-sectional & longitudinal observational study	US	1 2	bvAD	AD, atypical AD & CN	63.9 (59.7- 69.5)	41.7	23 (17-26)	CSF/autop sy	Neuroimaging			
Pillai et al. 2019 ⁷²	Cross-sectional observational study	US	4	b/dA D	AD & atypical AD	n/a	n/a	n/a	CSF	Cerebrospinal fluid			

Tan et al. 2019 ⁷³	Cross-sectional observational study	Australia	9	bvAD	AD	65 (10)	22	n/a	Autopsy	Pathological			
Wang et al. 2019 ⁷⁴	Cross-sectional obersational study	China	1 3	b/dA D	AD, atypical AD & CN	68 (3.4)	69.2	17 (5.6)	PET	Neuroimaging			
Wong et al. 2019 ⁷⁵	Case study	Australia	1	bvAD	AD, bvFTD & CN	57	0	n/a	PET		XXX	ХХ	
Bergeron et al. 2020 ¹¹	Cross-sectional observational study	Canada	8	b/dA D	Atypical AD & FTD	61.6	n/a	20.7	CSF/PET	Neuroimaging			
Cai et al. 2020 ⁷⁶	Case study	China	1	bvAD	-	52	100	n/a	PET		ХХ	Х	Χ
Cousins et al. 2020 ⁷⁷	Cross-sectional observational study	US	2	bvAD	AD, atypical AD, FTD & CN	n/a	n/a	n/a		Clinicopatholo gical & Cerebrospinal fluid			
Li et al. 2020 ⁷⁸	Case study	Taiwan	1	bvAD	-	66	0	10	PET		XX	Х	Χ
Paquin et al. 2020 ⁷⁹	Case study	Canada	1	bvAD	-	60	100	28	Tau and amyloid PET		X X X		
Sala et al. 2020 ⁹	Cross-sectional observational study	Italy	1 5	b/dA D	AD & atypical AD	62.47 (5.7)	33.3	16.5 (5.2)	CSF	Neuroimaging			
Scarioni et al. 2020 ⁸⁰	Cross-sectional observational study	Netherla nds	3 5	bvAD	FTLD	n/a	n/a	n/a	Autopsy	Clinicopatholo gical			
Singleto n et al. 2020 ⁸¹	Cross-sectional observational study	US	2 9	bvAD	AD, bvFTD & CN	64.4 (9.4)	41	22 (5.9)	CSF/PET/ autopsy	Neuroimaging			

Therriaul t et al. 2020^{10}	Cross-sectional observational study	Canada	1 5	b/dA D	AD & CN	65.93 (8.8)	60	19.6 (5.3)	Tau & amyloid PET	Neuroimaging			
$\frac{2020}{\text{Bergeron}}$ et al. 2021 ⁸²	Case series	Canada	8	bvAD	AD & bvFTD	59.5 (7.9)	25	22.3 (5.9)	CSF/PET	Cognivite & Neuropsychiatr ic & Neuroimaging			
Lehingue et al. 2021 ¹³	Cross-sectional prospective observational study	France	2 0	bvAD	AD & bvFTD	71.5 (66- 76)	35	25 (21-26)	CSF	Cognitive & Neuropsychiatr ic & Neuroimaging			
Singleto n et al. 2021 ¹²	Cross-sectional observational study	Netherla nds, Sweden & US	7 & 8	bvAD	AD	69.1 (8.4) & 66.6 (6.0)	14.3 & 50.0	21.7 (2.8)	CSF/PET and autopsy	Neuroimaging & Pathological			
Zhu et al. 2021 ⁸³	Case study	China	1	bvAD	-	63	0	3	CSF & PET		ХХ	Х	X

Numbers are depicted as mean (sd). *CL*=clinical, *COG*=cognition, *SOC*=social cognition, *NI*=neuroimaging, *PA*=pathological, *GEN*=genetic, *CSF*=cerebrospinal fluid, *PET*=positron emission tomography, AD=Alzheimer's disease, *bvAD*=behavioral variant of Alzheimer's disease, *bvFTD*=behavioral variant frontotemporal dementia.

Diagnosis	bvAD	bvFTD	tAD	P-value of χ^2 -test	P-value of χ^2 -test
C				bvAD vs bvFTD	bvAD vs tAD
bvFTD criteria, n□	148†	313*			
Disinhibition	60.80	68.58		0.10	NA
Apathy	68.80	77.37		0.05	NA
Loss of empathy	54.64	53.64		0.83	NA
Compulsiveness	45.00	68.50		<0.00001*	NA
Hyperorality	35.89	64.11		<0.00001*	NA
NPI, n◊	52	156	1090-		
Eating changes	41.33	44.64	31.4	0.57	0.12
Night-time behaviors	39.60	40.73	20.0	0.94	0.0003*
Irritability	50.81	42.15	42.9	0.33	0.32
Euphoria	16.62	27.09	6.0	0.16	0.005*
Anxiety	54.15	43.10	31.6	0.17	0.001*
Depression	34.19	35.10	32.1	0.93	0.78
Agitation	67.85	43.42	16.2	0.003*	<0.00001*
Hallucination	28.23	9.00	4.6	0.0003*	<0.00001*
Delusions	36.62	13.42	9.3	0.0003*	<0.00001*
Motor behavior	50.38	57.10	18.9	0.38	<0.00001*

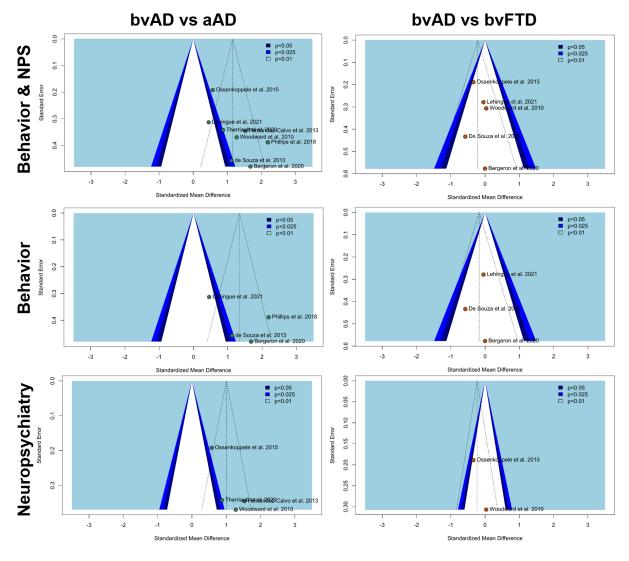
Table S5. Weighted mean percentage of patients with separate behavioral and neuropsychiatric symptoms in bvAD and bvFTD.

bvAD=behavioral variant of Alzheimer's disease, *bvFTD*=behavioral variant frontotemporal dementia, *tAD*=typical Alzheimer's disease.

[†]Based on estimates from 7 group studies(de Souza et al. 2013³, Mendez et al. 2013⁴, Blennerhassett et al. 2014⁶, Ossenkoppele et al. 2015⁷, Perry et al. 2017⁵⁹, Leger et al. 2014⁴⁷, Phillips et al. 2019⁷¹)

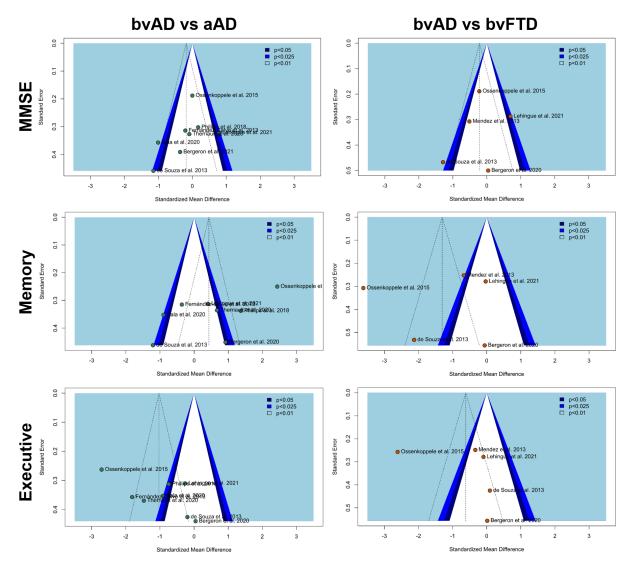
* Based on estimates from 4 group studies (Mendez et al. 2013⁴, Ossenkoppele et al. 2015⁷, Perry et al. 2017⁵⁹, Leger et al. 2014⁴⁷)

□ Percentages are based on percentage per symptoms assessed by NPI, clinical evaluation or chart reviews from studies specified above.

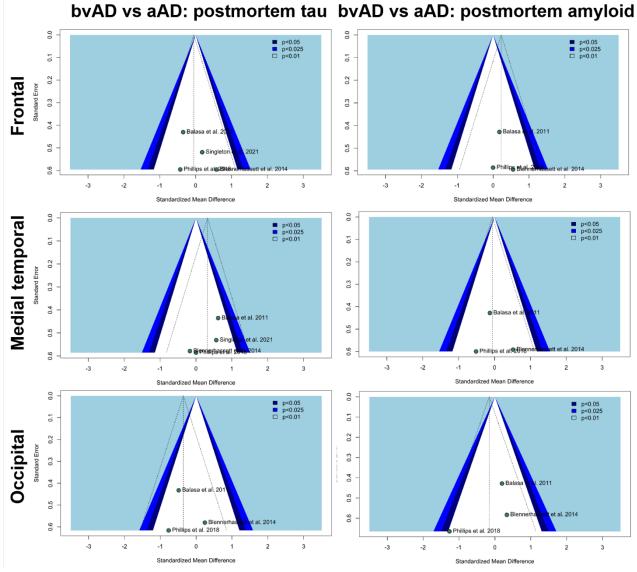

◊ Percentages are based on percentage per symptoms assessed by NPI from two studies (Mendez et al. 2013⁴, Leger et al. 2014⁴⁷).

• Based on a cohort of Aβ-positive AD dementia patients from the Amsterdam dementia cohort (Eikelboom et al.⁸⁴).

Study	Subjects	Age	Sex	MM SE	AD confirmation	Contrasts	Modality	Findings				
	Functional connectivity											
Wang et al. 2019 ⁷⁴	13 b/dAD	68.0 (3.4)	30.7 7	17.0 (5.6)	PiB PET	38 typical AD, 20 CU	FDG-PET	The left executive control network showed the highest goodness- of-fit in both b/dvAD and tAD and no differences in PiB PET uptake in network templates was observed				
Phillips et al. 2019 ⁷¹	12 bvAD	16.0 [13.5, 18.0]	58.3	23.0 [17.0, 26.0]	CSF/autopsy	17 typical AD	Diffusion MRI	Higher node degree predicted greater annualized grey matter volume loss in both bvAD and typical AD groups and bvAD showed a less negative slope of association between node degree and longitudinal atrophy than typical AD				
Singleton et al. 2020 ⁸¹	29 bvAD	64.4 (9.4)	59.0	22.0 (5.9)	CSF/PET/autops y	28 typical AD, 28 bvFTD, 34 CU	FDG-PET	The anterior default mode network showed highest goodness-of-fit in bvAD (tAD <bvad=bvftd), and="" less="" metabolic<br="" significantly="">connectivity of the posterior cingulate cortex to the (right) prefrontal cortex was observed in bvAD compared to tAD</bvad=bvftd),>				
	White matter hyperintensities											
Singleton et al. 2020 ⁸¹	29 bvAD	64.4 (9.4)	59.0	22.0 (5.9)	CSF/PET/autops y	28 typical AD, 28 bvFTD, 34 CU	FLAIR-MRI	In comparison to tAD, bvAD patients showed lower juxtacortical left temporal and subcortical WMHV and higher right temporal juxtacortical WMHV				


Table S6. Results of functional connectivity and white matter hyperintensities in bvAD

b/dAD=behavioral/dysexecutive variant of Alzheimer's disease, *bvAD*=behavioral variant of Alzheimer's disease, *bvFTD*=behavioral variant frontotemporal dementia, *tAD*=typical Alzheimer's disease, *CU*=cognitively unimpaired individuals, *CSF*=cerebrospinal fluid, *PET*=positron emission tomography, *MRI*=magnetic resonance imaging.


Figure S1. Funnel plots of meta-analyses of behavorial/neuropsychiatric data for behavioral variant AD versus typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot.. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. The current plots suggest a lower symmetrical tendency in bvAD vs tAD contrasts compared to bvAD vs bvFTD contrasts, indicating higher publication bias in the bvAD vs tAD contrasts, although the number of studies and sample sizes were small.

Figure S2. Funnel plots of meta-analyses for behavioral and neuropsychiatric symptom data separately for bvAD vs typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. The current plots suggest a higher symmetrical tendency in the MMSE contrasts than in the memory and executive domains, indicating higher publication bias in the memory and executive functioning domains than in the MMSE, although the number of studies and sample sizes were small.

Figure S3. Funnel plots of meta-analyses of neuropathological data in bvAD versus typical AD and bvFTD.

Funnel plots displaying the position of individual studies on their standardized mean difference (x-axis) relative to their standard error (y-axis). If no publication bias were present, studies would be aligned symmetrically within the dotted triangles, indicating symmetrical locations surrounding the mean effect size, with smaller studies at the lower ends of the plot and larger studies on the higher end of the plot. The dark blue, medium dark blue and light blue parts represent the locations where the effect of the individual study is significant at p<0.05, p<0.025 and p<0.01 compared to the standardized mean difference at 0, whereas the dotted lines represent the mean effect size of the specific studies included. Although few studies were included per plot, the current plots show an overall symmetrical tendency, marking marginal publication bias.

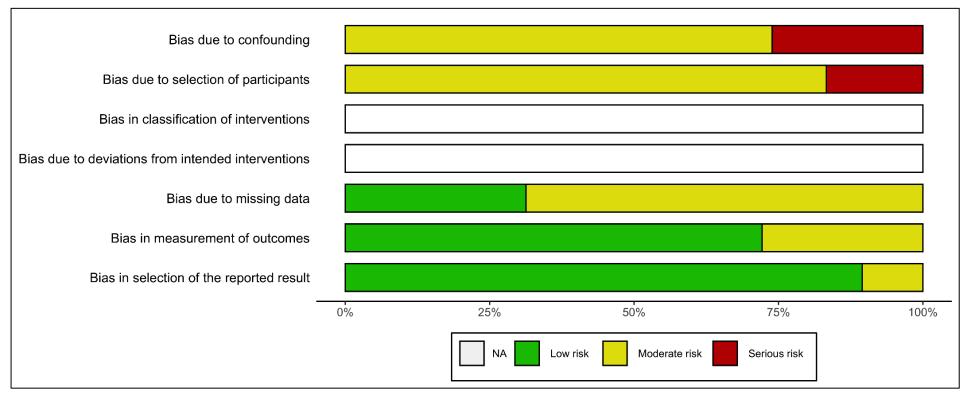
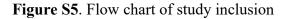
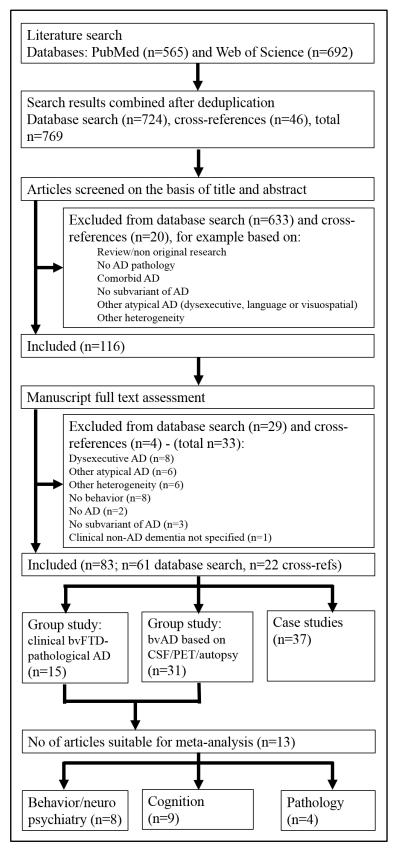




Figure S4. Summary results of Risk of Bias assessment according to the ROBINS-I tool for studies included in the meta-analyses

The ROBINS-I tool for non-randomized studies (<u>https://www.riskofbias.info/</u>) was applied to assess Risk of Bias across studies. Since the domains 'Bias in classification of interventions' and 'Bias due to deviations from intended interventions' were not applicable to the currently assessed studies, these were not filled out (*NA*=not available). See Table S3 for further details.

AD=Alzheimer's disease, *bvAD*=behavioral variant of AD, *bvFTD*=behavioral variant frontotemporal dementia, *CSF*=cerebrospinal fluid, *PET*=positron emission tomography.

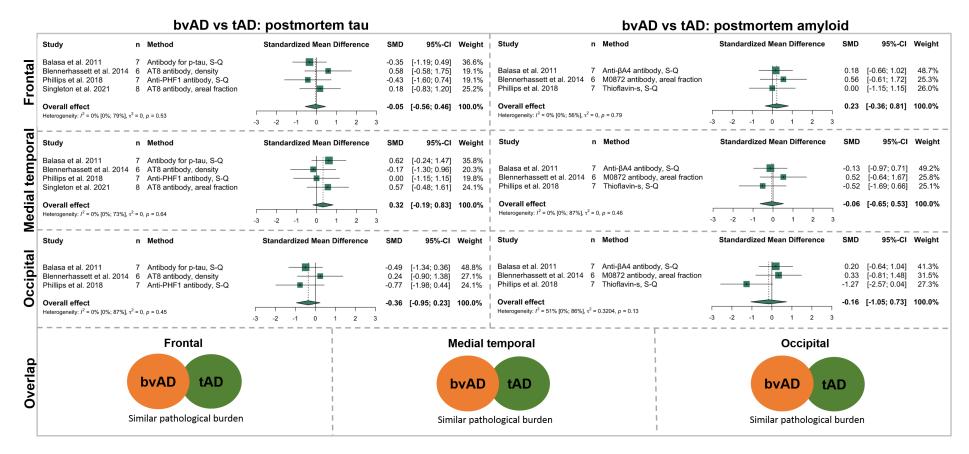



Figure S6. Meta-analyses for behavior and neuropsychiatric symptoms separately in bvAD vs typical AD and bvFTD

Plots showing meta-analysis results for behavior and neuropsychiatric symptoms separately between patient groups. These plots show similar scores in both behavioral as neuropsychiatric scales scores in bvAD versus bvFTD and a similar difference in behavioral and neuropsychiatric scale scores in bvAD versus typical AD. For all meta-analyses, positive standardized mean differences indicate a greater neuropathological burden in bvAD versus typical AD.

bvAD=behavioral variant of AD, *tAD*=typical AD, *bvFTD*=behavioral variant frontotemporal dementia, *FAB*=Frontal Assessment Battery, *PBAC*=Philadelphia Brief Assessment of Cognition, *DCQ*=Dépistage Cognitif de Québec, *SMD*=standardized mean difference.

Figure S7. Meta-analyses for neuropathological data in bvAD vs typical AD

The figure shows results of meta-analyses across frontal (top row), medial temporal (middle row) and occipital (bottom row) regional quantification of postmortem tau (left column) and amyloid- β (right column) pathology in bvAD versus typical AD. For all meta-analyses, positive standardized mean differences indicate a greater neuropathological burden in bvAD versus typical AD.

SMD=standardized mean difference, S-Q=semi-quantitative.

REFERENCES:

- 1. Woodward M, Jacova C, Black SE, et al. Differentiating the frontal variant of Alzheimer's disease. *International Journal of Geriatric Psychiatry*. 2010;25(7):732-738.
- 2. Balasa M, Gelpi E, Antonell A, et al. Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease. *Neurology*. 2011;76(20):1720-1725.
- de Souza LC, Bertoux M, Funkiewiez A, et al. Frontal presentation of Alzheimer's disease: a series of patients with biological evidence by CSF biomarkers. *Dementia & neuropsychologia*. 2013;7(1):66-74.
- 4. Mendez MF, Joshi A, Tassniyom K, Teng E, Shapira JS. Clinicopathologic differences among patients with behavioral variant frontotemporal dementia. *Neurology.* 2013;80(6):561-568.
- 5. Fernandez-Calvo B, Ramos F, de Lucena VM. Frontal variant of Alzheimer's disease and typical Alzheimer's disease: A comparative study. *Anales De Psicologia*. 2013;29(1):293-300.
- 6. Blennerhassett R, Lillo P, Halliday GM, Hodges JR, Kril JJ. Distribution of pathology in frontal variant Alzheimer's disease. *Journal of Alzheimer's disease : JAD.* 2014;39(1):63-70.
- 7. Ossenkoppele R, Pijnenburg YA, Perry DC, et al. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. *Brain : a journal of neurology.* 2015;138(Pt 9):2732-2749.
- 8. Phillips JS, Da Re F, Dratch L, et al. Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. *Neurobiol Aging.* 2018;63:75-87.
- 9. Sala A, Caprioglio C, Santangelo R, et al. Brain metabolic signatures across the Alzheimer's disease spectrum. *Eur J Nucl Med Mol Imaging.* 2020;47(2):256-269.
- Therriault J, Pascoal TA, Savard M, et al. Topographical distribution of amyloid-β, tau and atrophy in behavioral / dysexecutive AD patients. *Neurology*. 2020:10.1212/WNL.00000000011081.
- Bergeron D, Beauregard JM, Jean G, et al. Posterior Cingulate Cortex Hypometabolism in Non-Amnestic Variants of Alzheimer's Disease. *Journal of Alzheimers Disease*. 2020;77(4):1569-1577.
- 12. Singleton E, Hansson O, Pijnenburg YAL, et al. Heterogeneous distribution of tau pathology in the behavioural variant of Alzheimer's disease. *Journal of Neurology, Neurosurgery* & amp; amp; Psychiatry. 2021:jnnp-2020-325497.
- Lehingue E, Gueniat J, Jourdaa S, et al. Improving the Diagnosis of the Frontal Variant of Alzheimer's Disease with the DAPHNE Scale. *Journal of Alzheimers Disease*. 2021;79(4):1735-1745.
- 14. Brun A, Gustafson L. Distribution of cerebral degeneration in Alzheimer's disease. A clinicopathological study. *Archiv fur Psychiatrie und Nervenkrankheiten*. 1976;223(1):15-33.
- 15. Shibayama H, Kitoh J. Electron microscopic structure of the Alzheimer's neurofibrillary changes in case of atypical senile dementia. *Acta Neuropathol.* 1978;41(3):229-234.
- 16. Shuttleworth EC. Atypical presentations of dementia of the Alzheimer type. *Journal of the American Geriatrics Society.* 1984;32(7):485-490.
- 17. Brun A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. *Archives of gerontology and geriatrics*. 1987;6(3):193-208.
- 18. Perani D, Di Piero V, Vallar G, et al. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease. *J Nucl Med.* 1988;29(9):1507-1514.
- 19. Bird TD, Sumi SM, Nemens EJ, et al. Phenotypic heterogeneity in familial alzheimer's disease: A study of 24 kindreds. *Annals of Neurology*. 1989;25(1):12-25.
- 20. Grady CL, Haxby JV, Schapiro MB, et al. Subgroups in dementia of the Alzheimer type identified using positron emission tomography. *The Journal of neuropsychiatry and clinical neurosciences*. 1990;2(4):373-384.
- 21. Molchan SE, Martinez RA, Lawlor BA, Grafman JH, Sunderland T. Reflections of the self: atypical misidentification and delusional syndromes in two patients with Alzheimer's disease. *The British journal of psychiatry : the journal of mental science.* 1990;157:605-608.

- 22. Raux G, Gantier R, Thomas-Anterion C, et al. Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. *Neurology*. 2000;55(10):1577-1578.
- 23. Rippon GA, Crook R, Baker M, et al. Presenilin 1 mutation in an african american family presenting with atypical Alzheimer dementia. *Archives of neurology*. 2003;60(6):884-888.
- Yokota O, Terada S, Ishizu H, et al. Variability and heterogeneity in Alzheimer's disease with cotton wool plaques: a clinicopathological study of four autopsy cases. *Acta Neuropathol.* 2003;106(4):348-356.
- 25. Doran M, Larner AJ. Prominent behavioural and psychiatric symptoms in early-onset Alzheimer's disease in a sib pair with the presenilin-1 gene R269G mutation. *European archives of psychiatry and clinical neuroscience.* 2004;254(3):187-189.
- 26. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. *Brain.* 2005;128(Pt 9):1996-2005.
- 27. Shi J, Shaw CL, Du Plessis D, et al. Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation. *Acta Neuropathol.* 2005;110(5):501-512.
- 28. Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: Clinicopathological correlations. *Annals of Neurology*. 2006;59(6):952-962.
- 29. Larner AJ. "Frontal variant Alzheimer's disease": a reappraisal. *Clinical neurology and neurosurgery*. 2006;108(7):705-708.
- 30. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. *Brain.* 2007;130(Pt 10):2636-2645.
- 31. Rabinovici GD, Furst AJ, Neil JP, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. *Neurology*. 2007;68(15):1205.
- 32. Snowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer's disease and genetic risk. *Cortex; a journal devoted to the study of the nervous system and behavior*. 2007;43(7):835-845.
- Taylor KI, Probst A, Miserez AR, Monsch AU, Tolnay M. Clinical course of neuropathologically confirmed frontal-variant Alzheimer's disease. *Nature clinical practice Neurology*. 2008;4(4):226-232.
- 34. Kile SJ, Ellis WG, Olichney JM, Farias S, DeCarli C. Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms: an amygdaloid variant of Alzheimer disease. *Archives of neurology*. 2009;66(1):125-129.
- 35. Bigio EH, Mishra M, Hatanpaa KJ, et al. TDP-43 pathology in primary progressive aphasia and frontotemporal dementia with pathologic Alzheimer disease. *Acta Neuropathol.* 2010;120(1):43-54.
- Habek M, Hajnsek S, Zarkovic K, Chudy D, Mubrin Z. Frontal Variant of Alzheimer's Disease: Clinico-CSF-Pathological Correlation. *Canadian Journal of Neurological Sciences*. 2010;37(1):118-120.
- 37. Lehmann M, Rohrer JD, Clarkson MJ, et al. Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer's disease. *Journal of Alzheimer's disease : JAD*. 2010;20(2):587-598.
- 38. Piscopo P, Talarico G, Crestini A, et al. A novel mutation in the predicted TMIII domain of the PSEN2 gene in an Italian pedigree with atypical Alzheimer's disease. *Journal of Alzheimer's disease : JAD*. 2010;20(1):43-47.
- 39. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. *Neurology*. 2011;77(23):2034-2042.
- 40. Snowden JS, Thompson JC, Stopford CL, et al. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. *Brain.* 2011;134(Pt 9):2478-2492.
- 41. Whitwell JL, Jack CR, Przybelski SA, et al. Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. *Neurobiology of Aging.* 2011;32(9):1531-1541.
- 42. Borroni B, Pilotto A, Bonvicini C, et al. Atypical presentation of a novel Presenilin 1 R377W mutation: sporadic, late-onset Alzheimer disease with epilepsy and frontotemporal atrophy.

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2012;33(2):375-378.

- 43. Duker AP, Espay AJ, Wszolek ZK, Rademakers R, Dickson DW, Kelley BJ. Atypical motor and behavioral presentations of Alzheimer disease: a case-based approach. *The neurologist*. 2012;18(5):266-272.
- 44. Wallon D, Rousseau S, Rovelet-Lecrux A, et al. The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers. *Journal of Alzheimer's disease : JAD*. 2012;30(4):847-856.
- 45. Herrero-San Martin A, Villarejo-Galende A, Rabano-Gutierrez A, Guerrero-Marquez C, Porta-Etessam J, Bermejo-Pareja F. Frontal variant of Alzheimer's disease. Two pathologically confirmed cases and a literature review. *Revista De Neurologia*. 2013;57(12):542-548.
- 46. Marini S, Lucidi G, Tedde A, Bessi V, Nacmias B. A case of atypical early-onset Alzheimer's disease carrying the missense mutation Thr354lle in exon 10 of the PSEN1 gene. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology.* 2013;34(9):1691-1692.
- 47. Léger GC, Banks SJ. Neuropsychiatric symptom profile differs based on pathology in patients with clinically diagnosed behavioral variant frontotemporal dementia. *Dementia and geriatric cognitive disorders.* 2014;37(1-2):104-112.
- 48. Nygaard HB, Lippa CF, Mehdi D, Baehring JM. A Novel Presenilin 1 Mutation in Early-Onset Alzheimer's Disease With Prominent Frontal Features. *American journal of Alzheimer's disease and other dementias*. 2014;29(5):433-435.
- 49. Balasa M, Gelpi E, Martín I, et al. Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort. *Neuropathology and applied neurobiology*. 2015;41(7):882-892.
- 50. Paterson RW, Toombs J, Slattery CF, et al. Dissecting IWG-2 typical and atypical Alzheimer's disease: insights from cerebrospinal fluid analysis. *J Neurol.* 2015;262(12):2722-2730.
- 51. Woodward MC, Rowe CC, Jones G, Villemagne VL, Varos TA. Differentiating the frontal presentation of Alzheimer's disease with FDG-PET. *Journal of Alzheimer's disease : JAD*. 2015;44(1):233-242.
- 52. Li P, Zhou YY, Lu D, Wang Y, Zhang HH. Correlated patterns of neuropsychological and behavioral symptoms in frontal variant of Alzheimer disease and behavioral variant frontotemporal dementia: a comparative case study. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology.* 2016;37(5):797-803.
- 53. Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. *Brain : a journal of neurology.* 2016;139(Pt 5):1551-1567.
- 54. Scialò C, Ferrara M, Accardo J, et al. Frontal Variant Alzheimer Disease or Frontotemporal Lobe Degeneration With Incidental Amyloidosis? *Alzheimer Dis Assoc Disord*. 2016;30(2):183-185.
- 55. Dickerson BC, McGinnis SM, Xia C, et al. Approach to atypical Alzheimer's disease and case studies of the major subtypes. *CNS spectrums.* 2017;22(6):439-449.
- Duclos H, de La Sayette V, Bonnet AL, et al. Social Cognition in the Frontal Variant of Alzheimer's Disease: A Case Study. *Journal of Alzheimer's disease : JAD.* 2017;55(2):459-463.
- 57. Kawakatsu S, Kobayashi R, Hayashi H. Typical and atypical appearance of early-onset Alzheimer's disease: A clinical, neuroimaging and neuropathological study. *Neuropathology : official journal of the Japanese Society of Neuropathology.* 2017;37(2):150-173.
- 58. Oboudiyat C, Gefen T, Varelas E, et al. Cerebrospinal fluid markers detect Alzheimer's disease in nonamnestic dementia. *Alzheimers Dement*. 2017;13(5):598-601.
- 59. Perry DC, Brown JA, Possin KL, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. *Brain.* 2017;140(12):3329-3345.

- 60. Rawtaer I, Krishnamoorthy A. Co-occurring frontal variant Alzheimer's dementia and carrier of Huntington's disease allele with reduced penetrance. *Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society.* 2017;17(6):488-490.
- 61. Sawyer RP, Rodriguez-Porcel F, Hagen M, Shatz R, Espay AJ. Diagnosing the frontal variant of Alzheimer's disease: a clinician's yellow brick road. *Journal of clinical movement disorders*. 2017;4:2.
- 62. Bagyinszky E, Lee HM, Van Giau V, et al. PSEN1 p.Thr116lle Variant in Two Korean Families with Young Onset Alzheimer's Disease. *International journal of molecular sciences*. 2018;19(9).
- 63. Boon BDC, Hoozemans JJM, Lopuhaä B, et al. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer's disease. *Journal of Neuroinflammation.* 2018;15(1):170.
- 64. Seo SW, Thibodeau M-P, Perry DC, et al. Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. *Neurology*. 2018;90(12):e1047-e1056.
- 65. Whitwell JL, Graff-Radford J, Tosakulwong N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer's disease. *Alzheimers Dement*. 2018;14(8):1005-1014.
- 66. de Souza LC, Mariano LI, de Moraes RF, Caramelli P. Behavioral variant of frontotemporal dementia or frontal variant of Alzheimer's disease? A case study. *Dementia & neuropsychologia*. 2019;13(3):356-360.
- Foiani MS, Cicognola C, Ermann N, et al. Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest. *J Neurol Neurosurg Psychiatry*. 2019;90(7):740-746.
- 68. Monacelli F, Martella L, Parodi MN, Odetti P, Fanelli F, Tabaton M. Frontal Variant of Alzheimer's Disease: A Report of a Novel PSEN1 Mutation. *Journal of Alzheimer's disease : JAD.* 2019;70(1):11-15.
- 69. Nolan A, Resende EDF, Petersen C, et al. Astrocytic Tau Deposition Is Frequent in Typical and Atypical Alzheimer Disease Presentations. *Journal of Neuropathology and Experimental Neurology*. 2019;78(12):1112-1123.
- Pawlowski M, Joksch V, Wiendl H, Meuth SG, Duning T, Johnen A. Apraxia screening predicts Alzheimer pathology in frontotemporal dementia. *J Neurol Neurosurg Psychiatry*. 2019;90(5):562-569.
- 71. Phillips JS, Da Re F, Irwin DJ, et al. Longitudinal progression of grey matter atrophy in nonamnestic Alzheimer's disease. *Brain.* 2019;142(6):1701-1722.
- 72. Pillai JA, Bonner-Jackson A, Bekris LM, Safar J, Bena J, Leverenz JB. Highly Elevated Cerebrospinal Fluid Total Tau Level Reflects Higher Likelihood of Non-Amnestic Subtype of Alzheimer's Disease. *Journal of Alzheimer's disease : JAD.* 2019;70(4):1051-1058.
- 73. Tan RH, Yang Y, McCann H, Shepherd C, Halliday GM. Von Economo Neurons in Behavioral Variant Frontotemporal Dementia with Underlying Alzheimer's Disease. *Journal of Alzheimer's disease : JAD*. 2019;69(4):963-967.
- 74. Wang Y, Shi Z, Zhang N, et al. Spatial Patterns of Hypometabolism and Amyloid Deposition in Variants of Alzheimer's Disease Corresponding to Brain Networks: a Prospective Cohort Study. *Molecular imaging and biology*. 2019;21(1):140-148.
- 75. Wong S, Strudwick J, Devenney E, Hodges JR, Piguet O, Kumfor F. Frontal variant of Alzheimer's disease masquerading as behavioural-variant frontotemporal dementia: a case study comparison. *Neurocase*. 2019;25(1-2):48-58.
- 76. Cai H, Ning S, Li W, Li X, Xiao S, Sun L. Patient with frontal-variant syndrome in early-onset Alzheimer's disease. *General psychiatry*. 2020;33(2):e100173.
- 77. Cousins KAQ, Irwin DJ, Wolk DA, et al. ATN status in amnestic and non-amnestic Alzheimer's disease and frontotemporal lobar degeneration. *Brain.* 2020;143(7):2295-2311.
- 78. Li CH, Fan SP, Chen TF, Chiu MJ, Yen RF, Lin CH. Frontal variant of Alzheimer's disease with asymmetric presentation mimicking frontotemporal dementia: Case report and literature review. *Brain and behavior*. 2020;10(3):e01548.

- 79. Paquin V, Therriault J, Pascoal TA, Rosa-Neto P, Gauthier S. Frontal Variant of Alzheimer Disease Differentiated From Frontotemporal Dementia Using in Vivo Amyloid and Tau Imaging. *Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology*. 2020;33(4):288-293.
- 80. Scarioni M, Gami-Patel P, Timar Y, et al. Frontotemporal Dementia: Correlations Between Psychiatric Symptoms and Pathology. *Annals of Neurology*. 2020;87(6):950-961.
- 81. Singleton EH, Pijnenburg YAL, Sudre CH, et al. Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. *Alzheimers Res Ther.* 2020;12(1):148.
- Bergeron D, Sellami L, Poulin S, Verret L, Bouchard RW, Laforce R. The Behavioral/Dysexecutive Variant of Alzheimer's Disease: A Case Series with Clinical, Neuropsychological, and FDG-PET Characterization. *Dementia and Geriatric Cognitive Disorders.* 2021;49(5):518-525.
- 83. Zhu L, Sun LM, Sun L, Xiao SF. Case of early-onset Alzheimer's disease with atypical manifestation. *General Psychiatry*. 2021;34(1).
- 84. Eikelboom WS, van den Berg E, Singleton EH, et al. Neuropsychiatric and Cognitive Symptoms Across the Alzheimer Disease Clinical Spectrum: Cross-sectional and Longitudinal Associations. *Neurology*. 2021.