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Materials and Methods

Human subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.

Weiner,MD. For up-to-date information, see http://www.adni-info.org.
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The data is collected from 67 sites in the United States and Canada (48, 49, 50, 51). The

subject in the dataset aged between 54.4 and 91.4 at the first visit. The interval of the subject

follow-up is usually greater than 6 months. Generally, the longer the follow-up time is, the

longer the interval is. The first visit is marked as bl, and the other visit is marked as mxx

according to the time (For example, the visit takes place six months after the first visit is marked

as m06). Detailed characteristics of the subject are shown in Table S1,2.

Dataset

The data contains study data, image data, genetic data compiled by ADNI between 2005 and

2019. Considering the commonly used examinations and the concerned examinations in AD

diagnosis by the clinician, 13 categories of data are selected.

(1) Base information, usually obtained through consultation, includes demographics, family

history, medical history, symptoms.

(2) Cognition information, usually obtained through consultation and testing, includes Alzheimer’s

Disease Assessment Scale, Mini-Mental State Exam, Montreal Cognitive Assessment,

Clinical Dementia Rating, Cognitive Change Index.

(3) Cognition testing, usually obtained through testing, includes ANART, Boston Naming

Test, Category Fluency-Animals, Clock Drawing Test, Logical Memory-Immediate Re-

call, Logical Memory-Delayed Recall, Rey Auditory Verbal Learning Test, Trail Making

Test.

(4) Neuropsychiatric information, usually obtained through consultation, includes Geriatric

Depression Scale, Neuropsychiatric Inventory, Neuropsychiatric Inventory Questionnaire.
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(5) Function and behavior information, usually obtained through consultation, includes Func-

tion Assessment Question, Everyday Cognitive Participant Self Report, Everyday Cogni-

tion Study Partner Report.

(6) Physical, neurological examination, usually obtained through testing, includes Physical

Characteristics, Vitals, neurological examination.

The rest of the examinations include blood testing, urine testing, nuclear magnetic resonance

scan, positron emission computed tomography scan with 18-FDG, positron emission computed

tomography scan with AV45, gene analysis, and cerebral spinal fluid analysis. It is worth noting

that not all categories of information are obtained for a subject’s visit, and the information on

each type is often incomplete.

All subjects with labels containing at least one of the above categories of information are

considered in this study. Two thousand one hundred twenty-seven subjects with 9593 visits

are included in our work. A subject in a visit may require different categories of examination.

Every combination of those examinations represents a diagnosis strategy. Thus, for the subject,

443795 strategies are generated. These AD and CN subjects are randomly assigned to the

training, validation, and test set. The training set contains 1025 subjects with 3986 visits and

generates 180682 strategies. In the training set, 587 subjects with 1781 visits are AD and

develop 80022 strategies, 466 subjects with 2205 visits are CN, and generate 100660 strategies.

The validation set contains 73 subjects with 254 visits and generates 11898 strategies. In the

validation set, 44 subjects with 127 visits are AD and develop 6008 strategies, 31 subjects with

127 visits are CN, and generate 5890 strategies. The test set contains 1460 subjects with 5353

visits. In the test set, 109 subjects with 305 visits are AD, 92 subjects with 411 visits are CN,

1082 subjects with 4357 visits are MCI, 280 subjects with 280 visits are SMC. Notably, the

label of a subject may be different in other visits.
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Randomization and blinding.

AD and CN subjects as known categories of subjects are randomized into training, validation,

and test sets by applying a random function provided by the Python3 tool. The assignment is

determined by a float value generated by a random function. We assign subjects whose values

are [0,0.8) into the training set, assign subjects whose values are [0.8,0.85) into the validation

set, assign subjects whose values are [0.85,1] into the test set. The data of visits belong to the

same subject are only allowed to appear in the same set. MCI and SMC subjects as unknown

categories of subjects are directly into the test set. During the development of the AI system,

the test set is inaccessible.

Data preparation.

For each category of study data, if it contains more than one sub-category of data, concatenate

all of the sub-category data by RID (The ID of the subject) and VISCODE (The mark of the

subject’s visit). For the medical image, we first convert the data from the DICOM format to

the NIfNI format by the dcm2nii library. Second, register the image by ant library (52, 53, 54).

Third, convert the 3D image to 2D slices and convert the image from gay to RGB. Finally, a

trained model named DenseNet201 is used to extract the features of the 2D slices (34). For the

genetic data, we extract 70 single nucleotide polymorphisms (SNP), which are very relating to

the AD ( Table S5), and use one-hot code to represent each SNP (55,56,57). This work proposes

a unified data representation framework, since the different dimensions of each category of data,

the number of data categories included in each visit is different, and the number of history visits

included in each subject is also different. We present an examination category in the subject’s

visit by an array with a shape of 1× 2090. The shape of our data is n× 2090, n is the number

of categories of data for the subject ( Fig. S3).
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The propose model

Our model consists of five parts: Encoder 1,Decoder,Classifier 1,Encoder 2, andClassifier 2

( Fig. S1 ). We name the model consisting of Encoder 1, Decoder, and Classifier 1 as

sub model 1, which can identify the subject from open clinical settings (16, 58, 11). We name

the model consisting of Encoder 2, and Classifier 2 as sub model 2, which can dynamically

develop and adjust the diagnosis strategy according to the situation of subjects and existing

medical conditions.

Loss function

The sub model 1 is a multi-task learning model, which simultaneously optimizes the model’s

disease diagnosis and data reconstruction ability. The data reconstruction task can improve

the diagnosis ability of the model in the open world (58). The loss function of the model is

Loss = 0.65 ∗ lossdiagnosis + 0.35 ∗ lossreconstruction. The lossdiagnosis is categorical cross-

entropy, and the lossreconstruction is mean squared logarithmic error. The sub model 2 is also a

multi-task learning model, which simultaneously optimizes the 12 examinations whether should

be selected as the next examination for the subject. We introduce a loss function that combines

the BCE loss function and weighs losses with uncertainty (59, 14). The modified loss function

is given by equations 1:

Loss = −
k∑
i=2

1
2δ2i

(γiPy
ilogŷi + γiN(1− yi)log(1− ŷi)) + logδi

γiP = |P i|+|N i|
2|P i| γiN = |P i|+|N i|

2|N i|

(1)

where |P i| is the total number of ith examinations as the subsequent examination, |N i| is the

total number of other examinations as the following examination. δi is an observation noise

scalar of the output of ith examination (59).
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Label examination

Although researchers have made many efforts on the interpretability and internal logic of deep

learning, the current behavior of deep learning is still tricky to understand (60, 61). We do

not know whether the diagnosis strategy of the AI model needs to be consistent with human

experts. Thus, it is unnecessary to label the subsequent examination of the current examination

strategy by the clinician and train a model to simulate the clinician’s behavior. In this work, the

following examination label is labeled by the examination label algorithm ( Algorithm S1 ). The

subsequent examination for the subject is determined by whether this examination makes the

prediction model (sub model 1) obtain a greater predicted probability for the correct category

and smaller predicted probabilities for other categories.

OpenMax

OpenMax is a modified SoftMax layer that adopted the concept of Meta-Recognition (62, 11,

63). OpenMax uses the distance between the activation vector (AV) of the sample and the

mean activation vector (the mean computed over only the correctly classified training examples)

to identify the unknown categories of the subject (11). The deep learning network can be

regarded as a feature extractor, and the output of the AV layer can be regarded as characteristics

of the sample. However, the AV layer usually only retains the most relevant features to the

classification task, and the features related to the unknown category are not guaranteed to be

retained. To alleviate this problem, we replaced the output of the AV layer with the abnormal

patterns of 14 selected indicators of known categories according to the Alzheimer’s Diagnosis

guidelines to improve the performance of the AI model (64,65,66,67) ( Table S6 ). The modified

OpenMax by abnormal patterns is shown in Algorithm S2,3.
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Model training.

The training of our model consists of two stages. The first stage is training the sub model 1, in

which the Classifier 1 uses SoftMax layer as the output layer. The dimension of the output

of the sub model 1 in this training stage is 2, corresponding to AD and CN. After training the

sub model 1, a modified OpenMax layer, which estimates the probability of an input being

an unknown class, is used to replace the SoftMax layer (11). The dimension of the output of

sub model 1 in the prediction stage is 3, corresponding to AD, CN, and unknown. According

to prediction probabilities of subjects by the sub model 1, every examination strategy in the

training set and validation set is labeled by the Algorithm S1. The second stage is training the

sub model 2, the input of the sub model 2 contains raw data and the prediction probability,

the dimension of the output of the sub model 2 is 12, which respectively correspond to 12 cat-

egories of examination. The model was optimized using mini-batch stochastic gradient descent

with Adam and a base learning rate of 0.0005 (68). The experiments are conducted on a Linux

server equipped with Tesla P40 and Tesla P100 GPU.

Due to the historical information has a significant influence on the diagnosis of Alzheimer’s

disease, there is a vast difference between the diagnosis of Alzheimer’s disease at first visit with-

out historical information and other visits with historical data. Therefore, based on the above

model training method, we additionally trained a model for diagnosing Alzheimer’s disease at

the first visit based on the subject’s data at the first visit.

Prediction

Unlike the other state-of-the-art AI models, predictions of our model are dynamic. The pre-

diction algorithm comprehensively considers the situation of the subject, the condition of the

medical institution, and the ability of our model to dynamically adjust the diagnosis strategy

( Algorithm S4). Firstly, our model will generate the probability for every category (AD vs.
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CN vs. Unknown) according to the current input data of the subject. Second, if the probability

of categories exceeds thresholds (AD 0.95, CN 0.95, unknown 0.8), output the corresponding

label. Otherwise, adjust the examination strategy by selecting the subsequent examination ac-

cording to the situation of the subject and the medical institution, and go to the first step. Finally,

if all diagnostic strategies are tried, the model still cannot obtain the probability of exceeding

the threshold and then outputs unknown.

Statistical analysis

To evaluate the evaluation index of the AI model, a non-parametric bootstrap method is applied

to calculate the confidence intervals (CI) for the evaluation index (69). In this work, we calculate

95% CI for every evaluation index. We randomly sample 2500 cases from the test set and

evaluated the AI model by the sampled set for every evaluation index. 2000 repeated trials are

executed, and 2000 values of the evaluation index are generated. The 95% CI is obtained by the

2.5 and 97.5 percentiles of the distribution of the evaluation index values.
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BiLSTM Dense OpenMax Sigmoid

Fig. S 1: The open, dynamic machine learning framework of OpenClinicalAI. The
OpenClinicalAI framework contains four independent modules and one accessory module.
Encoder 1 processes the input data for the Classifier 1, and Encoder 2 processes the in-
put data for the Classifier 2. The Classifier 1 introduces the OpenMax mechanism to
identify unknown categories of subjects. The accessory module Decoder is used to help the
Classifier 1 retain features of the sample and improve the ability to identify unknown cate-
gories of subjects. The Classifier 2 is used to select the examination to be carried out in the
next step. In addition, the length of input data of the OpenClinicalAI framework is variable to
adapt to data of different subjects at different visits.
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Fig. S 2: The real-world setting of Clinical AIBench. Subjects in real-world settings are dif-
ferent with various situations. They contain different pre-known categories and unknown and
unfamiliar categories for the specific clinician or AI diagnostic system. The visit of subjects
to a particular medical institution can not be pre-specified and hence are uncertain. Medi-
cal institutions in real-world settings also are different with different executive abilities of the
examination. The executive ability of the examination in various medical institutions is very
different from small-scale country clinics to large-scale hospitals. In addition, it is difficult to
know by advance all the specific medical institutions that will deploy the AI system and their
particular executive abilities of the examination.
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Fig. S 3: Data framework for single subject. Our data representation framework comprehen-
sively considers the historical visit information and current visit information of the subject. The
data with the earlier time is farther away from the current data.
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Table S 1: Characteristics of subjects.

Data set Training set Validation set Test set

Age

54-59.9 80 36 2 59
60-69.9 596 246 10 442
70-70.9 1048 528 46 695
80-80.9 395 213 14 259
90-91.9 6 1 1 4

Gender
Female 1130 560 44 785
Male 997 465 29 675

Educate

4-7 11 4 0 8
8-10 40 18 2 23

11-13 353 176 13 243
14-16 823 403 26 558
17-20 900 424 32 628

Ethnic
category

Hisp/Latino 73 32 5 49
Not Hisp/Latino 2042 986 67 1404

Unknown 12 7 1 7

Racial
category

Asian 40 20 0 25
Black 88 41 5 57

Hawaiian/Other PI 2 0 0 2
More than one 25 10 0 18

White 1964 954 68 1350
Am Indian/Alaskan 4 0 0 4

Unknown 4 0 0 4

Marriage

Married 1618 805 59 1100
Never married 73 30 3 48

Widowed 238 114 8 165
Divorced 191 75 3 141
Unknown 7 1 0 6

Category

AD 740 587 44 109
CN 589 466 31 92
MCI 1082 0 0 1082
SMC 280 0 0 280
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Table S 2: The visit distribution of subjects.

Visit Data set Training set Validation set Test set
first visit 2126 705 53 1368

m06 1515 604 45 866
m12 1475 621 43 811
m18 329 79 5 245
m24 1217 591 32 594
m36 804 338 23 443
m48 638 311 14 313
m60 399 178 13 208
m72 395 207 14 174
m84 268 128 6 134
m96 146 74 3 69

m108 100 55 1 44
m120 75 39 1 35
m132 55 33 0 22
m144 39 19 1 19
m156 12 4 0 8
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Table S 3: The diagnosis strategies for the test set.

Diagnosis strategies Visit number of subject
Base Cog CE Neur FB PE Blood Urine MRI FDG AV45 Gene CSF AD CN Unknown Total

1 1 1 0 0 0 0 0 0 0 0 0 0 0 244 280 2680 3204
2 1 1 1 1 1 1 0 0 1 0 0 0 0 16 23 697 736
3 1 1 1 1 1 1 0 0 1 0 1 0 0 3 10 81 94
4 1 1 1 1 1 1 0 0 1 1 1 0 0 6 8 124 138
5 1 1 1 0 0 0 0 0 0 0 0 0 0 8 47 43 98
6 1 1 1 1 1 1 0 0 0 0 0 0 0 10 6 183 199
7 1 1 1 1 0 0 0 0 0 0 0 0 0 1 2 27 30
8 1 1 1 1 1 1 0 0 0 1 0 0 0 1 2 11 14
9 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 16 18

10 1 1 1 1 1 1 0 0 1 1 0 0 0 2 6 232 240
11 1 1 1 1 1 1 0 0 0 1 1 0 0 0 3 16 19
12 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1
13 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 33 34
14 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 2 2
15 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1
16 1 1 1 1 1 1 1 0 1 1 1 1 1 2 0 113 115
17 1 1 1 1 1 1 1 1 0 0 0 0 0 5 14 10 29
18 1 1 1 1 1 1 0 0 1 0 0 1 0 0 3 21 24
19 1 1 1 1 1 1 1 0 1 1 1 1 0 3 0 13 16
20 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 42 43
21 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 2 3
22 1 1 1 1 1 1 0 0 1 0 1 1 0 0 5 21 26
23 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 9 10
24 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 54 54
25 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 60 60
26 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 67 67
27 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 55 55
28 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1
29 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 3 3
30 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 2 2
31 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 13 13
32 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1
33 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1
34 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1
35 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1

14



Table S 4: Medical institutions with different examination abilities in the test set.

Medical institution
without examination capabilities1

Visit number of subject in the
condition of medical institution

Base Cog CE Neur FB PE Blood Urine MRI FDG AV45 Gene CSF AD CN Unknown Total
1 0 0 0 0 0 0 1 1 0 0 0 0 0 23 35 952 1010
2 0 0 0 0 0 0 1 1 0 1 0 1 1 0 2 11 13
3 0 0 0 0 0 0 1 1 0 1 0 0 0 3 8 63 74
4 0 0 0 0 0 0 1 1 1 0 0 0 0 1 4 23 28
5 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 2
6 0 0 0 0 0 0 1 1 0 1 1 1 1 0 2 39 41
7 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 4 5
8 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 19 22
9 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 4
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 11 13
11 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 13 14
12 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 26 26
13 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1
14 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 69 69
15 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
16 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 19 19
17 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 6 7
18 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1
19 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 2 2
20 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 5 5
21 0 0 0 0 0 0 0 1 0 0 0 0 0 12 45 85 142
22 0 0 0 0 0 0 1 1 0 1 1 0 1 0 3 21 24
23 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
24 0 0 0 0 0 0 1 1 0 1 0 0 1 0 4 10 14
25 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 9 10
26 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 60 60
27 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 54 54
28 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1
29 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 3 3
30 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 5 5
31 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 9 9
32 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1
33 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1
34 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 2 2
35 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 5 5
36 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
37 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1
38 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
39 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1
40 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

1 The examination is marked as 1, meaning that the medical institution cannot perform this examination
for the subject. The examination is marked as 0, indicating that (1) the medical institution can perform
this examination for the subject, or (2) OpenClinicalAI does not request for performing this examination
during the diagnosis of the subject though the medical institution may not be able to perform this
examination for the subject. It is worth noting that the examination ability in the test set may be
different from other AI systems since 0 may mean that OpenClinicalAI does not request for performing
this examination during the diagnosis of the subject. However, the medical institution may not be able
to perform this examination for the subject.
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Table S 5: SNPs relate to AD.

SNP NAME SNP NAME SNP NAME SNP NAME
rs429358 rs7412 rs10948363 rs7274581

rs17125944 rs4147929 rs6656401 rs11771145
rs6733839 rs983392 rs10498633 rs28834970
rs9271192 rs35349669 rs9331896 rs1476679

rs10792832 rs2718058 rs190982 rs10838725
rs11218343 rs4844610 rs10933431 rs9271058
rs75932628 rs9473117 rs12539172 rs10808026
rs73223431 rs3740688 rs7933202 rs3851179
rs17125924 rs12881735 rs3752246 rs6024870
rs7920721 rs138190086 rs4723711 rs4266886

rs61822977 rs6733839 rs10202748 rs115124923
rs115675626 rs1109581 rs17265593 rs2597283
rs1476679 rs78571833 rs12679874 rs2741342
rs7831810 rs1532277 rs9331888 rs7920721
rs3740688 rs7116190 rs526904 rs543293

rs11218343 rs6572869 rs12590273 rs7145100
rs74615166 rs2526378 rs117481827 rs7408475
rs3752246 rs7274581
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Table S 6: The normal range of indicators.

AD Normal CN Normal
Low High Low High

Medical
history

Psychiatric 0 0 0 0
Neurologic

(other than AD) 0 0 0 0

Symptoms1 Present count 212 0 6 0 6
Present count 283 0 8 0 8

Cognitive
Change Index4

Score 125 32.2188 60 12 13.5634
Score 206 50.3438 100 20 22.0845

CDRSB7 2 18 0 0

Alzheimer’s Disease
Assessment Scale8

ADAS119 10 70 0 11.264
ADAS1310 18 85 0 17.67
ADASQ4 5 10 0 6

MMSE11 0 27 25 30
MOCA12 0 23 26 30

Preclinical Alzheimer’s
Cognitive Composite13

mPACCdigit -30.0745 -7.6955 -5.1733 4.7304
mPACCtrailsB -29.7277 -6.7798 -4.8523 4.3338

1 Nausea, Vomiting, Diarrhea, Constipation, Abdominal discomfort, Sweating, Dizziness, Low energy,
Drowsiness, Blurred vision, Headache, Dry mouth, Shortness of breath, Coughing, Palpitations, Chest
pain, Urinary discomfort (e.g., burning), Urinary frequency, Ankle swelling, Muscloskeletal pain,
Rash, Insomnia, Depressed mood, Crying, Elevated mood, Wandering, Fall, Other.

2 Nausea to Rash
3 Nausea to Other
4 The CCI scale is in https://adni.bitbucket.io/reference/cci.html.
5 CCI1 to CCI12
6 CCI1 to CCI20
7 The CDR scale is in https://adni.bitbucket.io/reference/cdr.html.
8 The Alzheimer’s Disease Assessment Scale-Cognitive scale is in https://adni.bitbucket.i
o/reference/adas.html.

9 Q1 to Q11
10 Q1 to Q13
11 The Mini Mental State Exam scale is in https://adni.bitbucket.io/reference/mmse
.html.

12 The Montreal Cognitive Assessment scale is in https://adni.bitbucket.io/reference/
moca.html.

13 The calculation method of Preclinical Alzheimer’s Cognitive Composite is in https://ida.loni
.usc.edu/pages/access/studyData.jsp?categoryId=16&subCategoryId=43.

17

https://adni.bitbucket.io/reference/cci.html
https://adni.bitbucket.io/reference/cdr.html
https://adni.bitbucket.io/reference/adas.html
https://adni.bitbucket.io/reference/adas.html
https://adni.bitbucket.io/reference/mmse.html
https://adni.bitbucket.io/reference/mmse.html
https://adni.bitbucket.io/reference/moca.html
https://adni.bitbucket.io/reference/moca.html
https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=16&subCategoryId=43
https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=16&subCategoryId=43


Algorithm S 1 The examination label algorithm.
Input: The label set ytrue, the prediction set ypred, diagnosis strategy set exam strategy for a

subject in a visit.
Output: Next examination set next exam

1: Sort the exam strategy by the number of examinations in a diagnosis strategy.
2: for i = 0 to len(exam strategy) do
3: for j = i+ 1 to len(exam strategy) do
4: if exam strategy[i]⊂exam strategy[j] then
5: gain = sum(ytrue[j]× ypred[j]− ytrue[i]× ypred[i])+ sum(∼ ytrue[i]× ypred[i]− ∼

ytrue[j]× ypred[j])
6: if gain > 0 then
7: The next examination of current examination strategy exam strategy[i] is label

by exam strategy[j].
8: end if
9: end if

10: end for
11: end for
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Algorithm S 2 The modified OpenMax algorithm.
Input: The abnormal pattern dataset X , the FitHigh function from libMR (63), the Mini-

BatchKMeans function from scikit-learn (70), the number of the center of known categories
of subject N , quantiles Q.

Output: The centers of known categories of subject C, and libMR models Model, the thresh-
old of known categories of subject Thr.

1: X[i] is the abnormal pattern dataset of ith known categories of subject, in which every data
x ∈ X is belong to ith known categories of subject and is correctly classified by the trained
AI model. L is the number of the known categories of subject.

2: for i = 0 to (L− 1) do
3: C[i] =MiniBatchKMeans(X[i], N [i])
4: end for
5: Dist = []
6: for i = 0 to (L− 1) do
7: for x in X[i] do
8: Dist[i].add(distance(x,C[i],Cothers) // distance = sqrt(min distance(x,C[i])2 +

(1−min distance(x,Cothers))2)
9: end for

10: end for
11: for i = 0 to (L− 1) do
12: Model[i]=FitHigh(Dist[i])
13: Thr[i] is the Q[i] quantile of the Dist[i]
14: end for
15: Return C, Model, Thr
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Algorithm S 3 OpenMax probability estimation.
Input: Abnormal pattern of the subject X = {x1, x2, ..., xn}, raw data of subject Z, activation

vector V (Z) = {v1(Z), v2(Z)}, The centers of known categories of subject C, and libMR
models Model, the threshold of known categories of subject Thr, flag F , the numer of top
classes to revise α.

Output: The prediction probability P̂ .
1: L is the number of the known categories of subject.
2: Let s(i) = argsort(vj(Z))
3: Let Dist = []
4: for i = 0 to (L− 1) do
5: dist[i] = distance(X,C[i], Cothers)
6: end for
7: for i = 1 to α do
8: ωi(Z) = 1− α−i

α
∗models[i− 1].w score(dist[i− 1])

9: end for
10: Revise activation vector V̂ (Z) = V (Z) ◦ ω(Z)
11: Define v̂0(Z) =

∑
i vi(Z)(1− ωi(Z))

12: P̂ (y = j | Z) = ev̂j(Z)∑2
i=0 e

v̂i(Z)

13: if F then
14: abnor score = []
15: for j = 1 to (L− 1) do
16: diff = dist[j − 1]− thr[j − 1]
17: if diff <= 0 then
18: abnor score.append(0)
19: else
20: tmp abnor score = diff/thr[j − 1]
21: if tmp abnor score > 1 then
22: tmp abnor score = 1
23: end if
24: abnor score.append(tmp abnor score)
25: end if
26: end for
27: for j = 1 to (L− 1) do
28: P̂ (y = j | Z) = P̂ (y = j | Z) ∗ (1− abnor score[j − 1])
29: end for
30: P̂ (y = 0 | Z) = 1−

∑L−1
j=1 P̂ (y = j | Z)

31: end if
32: Return P̂
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Algorithm S 4 The prediction algorithm.
Input: The base information database and history recodes datah for a subject in a visit, the

trained model model. The threshold δ, and γ.
Output: The label of the subject.

1: datainput=datah concatenates database
2: while True do
3: resultpred, next examinationpred=model.predict(datainput)
4: for i = 0 to len(resultpred) do
5: if resultpred[i] >= δ[i] then
6: Return i // When i == len(resultpred)− 1, the result is representing unknown
7: end if
8: end for
9: is concat new data = False

10: for i = 0 to len(next examinationpred) do
11: if next examinationpred[i] >= γ[i] then
12: if The ith examination is able to execute by medical institution then
13: datainput=datainput concat dataith
14: is concat new data = True
15: end if
16: end if
17: end for
18: if not is concat new data then
19: Select a less cost and common examination jth examination which do not execute in

this visit and is able to execute by medical institution.
20: if jth examination is selected then
21: datainput=datainput concat datajth
22: is concat new data = True
23: end if
24: end if
25: if not is concat new data then
26: Return unknown
27: end if
28: end while
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