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1 Random walk percolation centrality1

In the main text we state that the random walk percolation centrality rwpv(t) of node v at time t

is given by:

rwpv(t) =
1

(n− 2)

∑
s̸=v,r ̸=v

I(s,r)v

xs(t)

[
∑

i xi(t)]− xv(t)
. (1)

This equal to the proportion of random walks, starting at s and ending at r, pass through v, averaged

over values of s and r with a weighting determined by the percolation states xi at time t. In what

follows we will show that I
(s,r)
v is given by the equation

I(s,r)v =
∑
e:v∈e

1

2
|Fes − Fer| , (2)

where the sum over values of e represents a sum over all edges in the network, and matrix F is

defined using the equation

F = BCT . (3)

B is the oriented incidence matrix of the adjacency matrix Λ, whose entries λi,j give the weight of

the edge from node i to node j. C is a matrix based on the Laplacian L of Λ:

C =

(
0 0T

0 L̃−1

)
, (4)
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where, if the Lapalacian is an n×n matrix, then the reduced Laplacian L̃ is an n− 1×n− 1 matrix2

obtained from L by omitting the first row and column.3

We follow proofs by Ulrik Brandes and Daniel Fleischer [1], and Martin Newman [2]. Suppose a

random walk in an n-node network with adjacency matrix Λ is at node v ̸= r. Then the probability

Pvu for the random walk to move to an adjacent node u is:

pvu =
λvu∑
u λvu

. (5)

We denote the n×n matrix of these quantities P . Now, if v = r, then the random walk cannot escape4

because it has reached the sink node, so pru = 0 for all u. We write Pr to denote the (n−1)×(n−1)5

matrix which excludes the row and column corresponding to node r.6

The probability that a random walk starting at node s reaches node v after a number of steps

m is given by (Pr)
m
sv. The probability that the walk then steps to an adjacent node u is given by

pvu (Pr)
m
sv. So the expected number of times Nvu for the random walk to travel from node v to node

u is given by:

Nvu =

∞∑
m=0

pvu [(Pr)
m
]sv

= pvu

[
(1− Pr)

−1
]
sv

= λvu
1∑
u λvu

[
(1− Pr)

−1
]
sv

= λvu

[
(W − Λr)

−1
]
sv

,

(6)

where 1 is the (n − 1) × (n − 1) identity matrix, Wvu = δvu∑
k λvk

, and Λr is Λ with the rth row and7

column set to zero.8

The net flow I
(s,r)
e through an edge e = {v, u} is given by the absolute difference between the

flows either way along the edge,

I(s,r)e = |Nvu −Nuv| . (7)

I
(s,r)
e can be expressed in terms of C when node 1 is the sink, since L = (W − Λ) by the definition

of the Laplacian. It cannot be expressed directly in terms of the Laplacian, because L is singular

and thus not invertible. When node 1 is the sink, Nvu = λvuCsv. When r ̸= 1, we can still express

I
(s,r)
e in terms of C if we continue to treat node 1 as a sink for the purpose of defining P1, but take

away any contribution to Nvu from paths that emanate from node r, thus setting node r as a sink

in practise. That is,

I(s,r)e = |λvuCsv − λvuCrv − λuvCsu + λuvCru| . (8)

Paths that pass first through node 1 and then along edge e on the way from node s to node r are9

now included as a negative term in Nuv, rather than as a positive term in Nvu. The contribution to10
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I
(s,r)
e is equivalent.11

The net flow I
(s,r)
v through a node v is equal to half the sum of flows along each of its connected

edges, giving

I(s,r)v =
∑
e:v∈e

1

2
|λvuCsv − λvuCrv − λuvCsu − λuvCru|

=
∑
e:v∈e

1

2
|Fes − Fer|

(9)

where F = BCT , and the oriented incidence matrix B is defined:

Bve =


λvu if e = {v, u}

−λvu if e = {u, v}

0 otherwise.

(10)

Expressing I
(s,r)
v in terms of the oriented incidence matrix and the Laplacian allows it to be12

calculated using standard matrix functions. To obtain equation 1, we use the same methodology13

as Piraveenan et al. [3], but using the current I
(s,r)
v for a weighted, directed matrix as defined in14

equation 2, rather than the current for an unweighted, symmetric matrix.15

2 The role of long-distance travel16

In figure 1 we show variations on the plots in figure 3a in the main text, with the value of the long-17

distance travel parameter a increased to 3 and 6, respectively. The broad patterns of the results are18

not greatly altered by the increase in a, but the risk-targeting strategy is overall advantaged when19

long-distance travel decreases.20

3 Non-pharmaceutical interventions21

We adapted the epidemiological model presented in section 2.1 to perform a preliminary exploration22

of spatial NPI strategies. Instead of having a fixed number of doses nd of a vaccine, we assumed23

that some fixed maximum number of individuals nr could be placed under transmission-reducing24

restrictions. We assumed that regions placed under these restrictions experience a 66% reduction25

in transmission rate. Unlike the case of vaccination, there is no change in the susceptibility of the26

population. For each strategy, we placed the entire population of the highest-priority region under27

restrictions, and continued down the priority ordering until placing the next region under restrictions28

would cause the total population under restrictions to exceed nr. This last region was not placed29

under restrictions, meaning that the total population under restrictions could be significantly below30
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(a) a = 3
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(b) a = 6
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Figure 1: Plots of the expected total number of infections due to a disease outbreak against the
number of vaccine doses administered according to one of three region prioritisation policies, for
five different values of R0 and three different overall travel rates, for two different values of the
long-distance travel parameter a. Larger a means less long-distance travel.
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nr, and producing the step-like shape of the plots in figure 2 as nr reaches integer multiples of the31

region population size.32

In general, the results illustrated in figures 2 and 3 show that the relative performance of the33

various prioritisation strategies is similar in the case of NPIs to the case of vaccine allocation. In34

particular, the conclusion that risk-targeting performs better than centrality-targeting when R0 and35

inter-region travel rates are high relative to the number of vaccine doses distributed holds out for36

the one-to-one joined grid network and the US air passenger traffic network, while risk-targeting37

almost always performs as well or better than centrality-targeting in the four corners joined grids38

network and the Northwest England commuter network.39
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(a) One-to-one joined grids network
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(b) Four corners joined grids network
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Figure 2: Plots of the expected total number of infections due to a disease outbreak against the
number of individuals placed under transmission-reducing restrictions, chosen according to one of
three NPI strategies, for five different values of R0 and three different overall travel rates, in two
variations on the ’joined grids’ network.
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(a) US air passenger traffic network.
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(b) Northwest England commuter network.
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Figure 3: Plots of the expected total number of infections due to a disease outbreak against the
number of individuals placed under transmission-reducing restrictions, chosen according to one of
three NPI strategies, for five different values of R0 and three different values of the travel scaling
factor s, in two different networks based on empirical data.
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