Supplemental Materials for:

Reduced magnitude and durability of humoral immune responses by COVID-19 mRNA vaccines among older adults

Mark A. Brockman^{1,2,3,#,*}, Francis Mwimanzi¹, Hope R. Lapointe³, Yurou Sang¹, Olga Agafitei¹, Peter Cheung^{1,3}, Siobhan Ennis¹, Kurtis Ng¹, Simran Basra^{1,2,4}, Li Yi Lim^{1,2}, Fatima Yaseen², Landon Young⁵, Gisele Umviligihozo¹, F. Harrison Omondi^{1,3}, Rebecca Kalikawe¹, Laura Burns⁵, Chanson J. Brumme^{3,6}, Victor Leung^{5,8}, Julio S.G. Montaner^{3,6}, Daniel Holmes^{7,8}, Mari DeMarco^{7,8}, Janet Simons^{7,8}, Ralph Pantophlet^{1,2}, Masahiro Niikura¹, Marc G. Romney^{5,8,#,*}, Zabrina L. Brumme^{1,3,#,*}

¹ Faculty of Health Sciences, Simon Fraser University, Burnaby BC, Canada;

² Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, Canada;

³ British Columbia Centre for Excellence in HIV/AIDS, Vancouver BC, Canada;

⁴ Department of Chemistry, Simon Fraser University, Burnaby BC, Canada;

⁵ Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver BC, Canada;

⁶ Department of Medicine, University of British Columbia, Vancouver BC, Canada;

⁷ Division of Medical Biochemistry, St. Paul's Hospital, Vancouver BC, Canada;

⁸ Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver BC, Canada

*equal contribution

[#] Address correspondence to: MAB (mark brockman@sfu.ca); MGR

(mromney@providencehealth.bc.ca); or ZLB (zbrumme@sfu.ca)

			Time	point	
Immunogenicity outcome	Variable	1 month after 1st dos	e	1 month after 2nd do	se
		β estimate (95% CI)	b	β estimate (95% CI)	p
Log10 RBD Total Ig	Age	-0.0087 (-0.015 to -0.0024)	0.007	-0.0073(-0.013 to -0.0019)	0.009
	Male Sex	-0.10 (-0.23 to 0.21)	0.9	0.026 (-0.16 to 0.21)	0.8
	White ethnicity	-0.049 (-0.27 to 0.17)	0.7	0.15 (-0.036 to 0.34)	0.1
	# Chronic health conditions	-0.14 (-0.23 to -0.043)	0.005	-0.12 (-0.21 to -0.042)	0.003
	Moderna vaccine (vs. Pfizer)	-0.23 (-0.67 to 0.19)	0.3	0.19 (-0.15 to 0.53)	0.3
	Days after vaccine dose	-0.0022 (-0.041 to 0.037)	0.9	0.015 (-0.020 to 0.050)	0.4

Supplemental Table 1. Multivariable Analyses (Roche Elecsys)

Cl, confidence interval

Supplemental Figure 1: Impact of second vaccine dose on immune responses.

Supplemental Figure 1: Impact of second vaccine dose on immune responses. *Panel A*: Increase in log10 binding IgG antibody responses to RBD in plasma after the second vaccine dose, measured by Luminex ELISA, in HCW (blue circles) and Seniors+LTC (orange circles) who were COVID-19 naive at study entry. Bars represent median and IQR. P-value computed using the Mann-Whitney U-test. *Panel B*: Same data as A, but plotted by age. Statistics and linear model (red line) computed using ordinary least-squares regression. *Panel C*: Increase in ACE2-displacement function of vaccine-induced antibodies after the second dose, in the same participants. *Panel D*: Same data as C, but plotted by age. *Panel E*: Fold-increase in viral neutralization ability of vaccine-induced antibodies after the second dose in a subset of participants who were COVID-19 naive at study entry. *Panel F*: same data as E, but plotted by age.

Supplemental Figure 2: Binding antibody responses to RBD following first and second vaccine doses, measured using a commercial assay.

Supplemental Figure 2: Binding antibody responses to RBD following first and second vaccine doses, measured using a commercial assay. Panel A: Spearman's correlation between RBD IgG responses measured in plasma by Luminex ELISA and total antibody responses measured in serum using the Roche Elecsys SARS-CoV-2 S assay. ULOQ = Upper limit of quantification in the Roche assay, which was >25,000 U/mL; 11 samples had measurements above this limit. Panel B: Binding antibody responses to the RBD as measured by the Roche assay following one vaccine dose in HCW (blue circles) and Seniors+LTC (orange circles) who were COVID-19 naive at study entry, and COVID-19 convalescent participants (Conv; colored as above). Bars represent median and IQR. P-values computed using the Mann-Whitney U-test. LLOD = Assay lower limit of detection. Panel C: Same data as the HCW and Seniors+LTC groups shown in panel B, but plotted by age. Statistics and linear model (red line) computed using ordinary least-squares regression. Panels D and E: same as B and C, but after two doses of mRNA vaccine. Panel E: Binding antibody responses as measured by the Roche assay, one month following the 2nd vaccine dose (Peak) and three months after this dose (3 months) in a subset of HCW (blue circles) and individuals living in long-term care or assisted living facilities (LTC; orange) who were COVID-19 naive at study entry. P-values computed using the Wilcoxon paired test.