
 

KMSubtraction: Reconstruction of unreported subgroup 

survival data utilizing published Kaplan-Meier survival 

curves 
 

Joseph J. Zhao1; Nicholas L. Syn1, MBBS; Benjamin Kye Jyn Tan1; Dominic Wei 

Ting Yap1; Chong Boon Teo1; Yiong Huak Chan2, *, PhD; Raghav Sundar1, 3, 4, 5, 6, *, 

MBBS, PhD 
1 Yong Loo Lin School of Medicine, National University of Singapore, Singapore 
2 Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 
3 Department of Haematology-Oncology, National University Health System, Singapore  
4 Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 
5 The N.1 Institute for Health, National University of Singapore, Singapore 
6 Singapore Gastric Cancer Consortium 

* Joint corresponding author 

 

Corresponding authors 

Dr Raghav Sundar, MBBS, MRCP, MMed, MCI, FAMS, PhD 

Department of Haematology-Oncology 

National University Cancer Institute, Singapore 

National University Hospital 

1E Kent Ridge Road, Singapore 119228 

Phone: +65-67795555 

Email: raghav_sundar@nuhs.edu.sg 

 

Dr Yiong Huak Chan, PhD 

Biostatistics Unit 

Yong Loo Lin School of Medicine 

National University of Singapore, Singapore 

21 Lower Kent Ridge Rd, Singapore 119077 

Phone: +65-65166666 

Email: medcyh@nus.edu.sg  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.04.21263111doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.09.04.21263111


 

Conflict of interest: RS has received honoraria from Bristol-Myers Squibb, Lilly, Roche, Taiho, 

Astra Zeneca, DKSH and MSD; has advisory activity with Bristol-Myers Squibb, Merck, Eisai, 

Bayer, Taiho, Novartis, MSD and AstraZeneca; received research funding from MSD and 

Paxman Coolers; and has received travel grants from AstraZeneca, Eisai, Roche and Taiho 

Pharmaceutical.  

 

Financial disclosures: RS is supported by the National Medical Research Council (NMRC)   

(NMRC/Fellowship/0059/2018 and NMRC/TA/0014/2020). All other authors have no funding to 

declare. 

 

Contributions: RS, JJZ, YHC, NLS were responsible for the concept and design of the study. 

JJZ, RS, YHC were responsible for the development of the novel subtracted KM methodology to 

identify unreported patient subgroups from reconstructed time-to-event outcomes. JJZ, NLS and 

YHC conducted the statistical analyses. JJZ, NLS and YHC interpreted the data. RS, JJZ, NLS 

drafted the manuscript. All authors critically revised the manuscript for important intellectual 

content. RS supervised the study. All authors had full access to all the data in the study, and RS 

had the final responsibility for the decision to submit for publication.  

 

Acknowledgements: The authors would like to thank Assistant Professor Justin Silverman, 

College of Information Science and Technology, Penn State University, USA, for clarifying 

enquiries regarding the use of the Hungarian algorithm for bipartite matching; and Associate 

Professor Hyungwon Choi, Department of Medicine, Yong Loo Lin School of Medicine, National 

University of Singapore, Singapore, for guiding us through the simulations and development of 

the package. 
 
  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.04.21263111doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263111


 

ABSTRACT 

 

KMSubtraction: Reconstruction of unreported subgroup 

survival data utilizing published Kaplan-Meier survival 

curves 
 

BACKGROUND: Data from certain subgroups of clinical interest may not be 

presented in primary manuscripts or conference abstract presentations. In an effort 

to enable secondary data analyses, we propose a workflow to retrieve unreported 

subgroup survival data from published Kaplan-Meier (KM) curves. 

 

METHODS: We developed KMSubtraction, an R-package that retrieves patients 

from unreported subgroups by matching participants on KM curves of the overall 

cohort to participants on KM curves of a known subgroup with follow-up time. By 

excluding matched patients, the opposing unreported subgroup may be retrieved. 

Reproducibility and limits of error of the KMSubtraction workflow were assessed by 

comparing unmatched patients against the original survival data of subgroups from 

published datasets and simulations. Monte Carlo simulations were utilized to 

evaluate the effect of the reported subgroup proportion, missing data, censorship 

proportion in the overall and subgroup cohort, sample size and number-at-risk table 

intervals on the limits of error of KMSubtraction. 3 matching algorithms were 

explored – minimal cost bipartite matching, Mahalanobis distance matching, and 

nearest neighbor matching by logistic regression.  

 

RESULTS:  The validation exercise found no material systematic error and 

demonstrates the robustness of KMSubtraction in deriving unreported subgroup 

survival data. Limits of error were small and negligible on marginal Cox proportional 

hazard models comparing reconstructed and original survival data of unreported 

subgroups. Extensive Monte Carlo simulations demonstrate that datasets with high 

reported subgroup proportion (r=0.467, p<0.001), small dataset size (r=-0.374, 

p<0.001) and high proportion of missing data in the unreported subgroup (r=0.553, 

p<0.001) were associated with uncertainty are likely to yield high limits of error with 

KMSubtraction. 
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CONCLUSION: While KMSubtraction demonstrates robustness in deriving survival 

data from unreported subgroups, the implementation of KMSubtraction should take 

into consideration the aforementioned limitations. The limits of error of 

KMSubtraction, as reflected by the mean |ln(HR)| from converged Monte Carlo 

simulations may guide the interpretation of reconstructed survival data of unreported 

subgroups. 

 

311 words 
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MANUSCRIPT 

 

BACKGROUND 
 

Advances in secondary data analysis of survival data has been made by Guyot et 

al.1 This enables retrieval of individual patient data (IPD) from reported KM curves.2,3 

However, this is only amenable for KM curves presented in the original publication. 

Often, subgroups of interest in clinically negative randomized controlled trials (RCTs) 

may not be presented in Kaplan-Meier (KM) curves. Where subgroups of interest are 

not reported (or more commonly presented as a summary statistic in forest plots), 

IPD retrieval utilizing such algorithms becomes impossible.  

 

In this era of precision medicine, where molecular markers or gene expression levels 

are increasingly available to clinicians, treatment should ideally be rendered to the 

patient when their clinicopathological profile is predictive of a good treatment 

response.4-6 This is critical in deciding approvals for unique subgroups, or conversely 

for discouraging use in the opposing subgroup – where negative biomarkers have 

demonstrated the lack of benefit. In addition, cost-effectiveness analysis (CEA), a 

major consideration in deciding against therapeutic strategies at a public health level, 

requires IPD data for the appropriate analysis. While new biomarkers for therapeutic 

regimens have been sought after and studied in trials, they remain exploratory and 

are often underpowered for interpretation. To overcome this, meta-analytic 

techniques may be exploited to pool data together to increase statistical power.  

 

In an effort to enable secondary data analyses in such circumstances, we propose a 

workflow to retrieve unreported subgroup survival data from published KM curves.  
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METHODS 

 

KMSubtraction is an R-package designed to retrieve survival data of patients from 

unreported subgroups. An overview of the KMSubtraction workflow is illustrated in 

Figure 1. The workflow of KMSubtraction is detailed as such: 

 

Step 1 Reconstruction of time-to-event outcomes. A graphical reconstructive 

algorithm is exploited to estimate time-to-event outcomes from KM curves by an 

iterative algorithm based on KM estimation described by Guyot et al1,2,7. The 

implementation of this step is described by Liu et al in the package IPDfromKM7. KM 

curves describing the overall cohort and a known subgroup is required. 

 

Step 2 Matching of patients – KMSubtractionMatch(). KMSubtractionMatch() is a 

wrapper function that utilizing raw reconstructed time-to-event outcomes to match 

patients from subgroups among the overall cohort. Minimal cost bipartite matching 

with the Hungarian algorithm8 was adopted as the primary matching algorithm. The 

minimal cost bipartite matching algorithm aims to match patients from the overall and 

subgroup cohort by minimizing follow-up time differences between matched 

patients.8 The Hungarian alogrithm (or the Huhn-Munkres algorithm) is a 

combinatorial optimization algorithm that solves the problem of assigning optimal 

pairs in polynomial time, and is implemented in the RcppHungarian9 package in R. 

Matching through Mahalanobis distance matching (Mahalanobis) and nearest 

neighbor matching by logistic regression (Logisitic) with the MatchIt10 package are 

provided as well. Patients with events and censorships were matched separately. By 

excluding matched patients, the opposing unreported subgroup may be retrieved. 

 

Evaluation of matching – KMSubtractionEvaluateMatch(). The quality of 

matching was evaluated by comparing matched patients. This was conducted by 

inspecting the following parameters and quality of match test statistics (1) Bland-

Altman11 plots to explore discrepancies between matched pairs with the blandr12 

package in R (2) Empirical cumulative distribution functions and the 

Kolmogorov−Smirnov Test of follow-up times between matched pairs (3) KM curves 

of matched patients from the overall cohorts versus directly reconstructed subgroup 
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cohorts, along with hazard ratios and log-rank tests from a marginal Cox proportional 

hazard model.   

 

Potential limits of error of each task – KMSubtractionError(). In light of the 

variation in each implementation, the limits of error surrounding each task would be 

different. It would therefore be of paramount importance to ascertain whether the 

implementation of KMSubtraction would be appropriate in each context. This may be 

especially relevant in the interpretation of derived data in situations where there is a 

sizable proportion of missing data in the opposing subgroup. KMSubtractionError() 

conducts Monte Carlo simulations to evaluate the limits of error of 

KMSubtractionMatch() given parameters surrounding the reconstruction task 

required. Follow-up time was modelled by a random weibull distribution of common 

shape parameter of 1.000 and scale parameter of 5.000. Reconstructed and original 

survival data were compared by means of marginal Cox-proportional hazard models 

and restricted mean survival time difference (RMST-D).13 The similarity may be 

summarized by the natural logarithmic of the hazard ratio, ln(HR) and RMST-D. 

Deviations from the true value is reflected by the absolute of ln(HR) and RMST-D, 

where |ln(HR)| and |RMST-D|=0 is ideal. 

 

Simulation exercise 

Next, we conducted Monte Carlo simulations to evaluate the effect of the sample 

size, reported subgroup proportion, proportion of missing data, censorship proportion 

in the overall and subgroup cohort, and number of number-at-risk table intervals on 

the quality of reconstruction. 5,000 iterations were conducted for each scenario. 

Follow-up time was modelled by a random Weibull distribution of common shape 

parameter of 1.000 and scale parameter of 5.000. To facilitate the high magnitude of 

simulations performed, curve coordinates retrieval from KM curve images were 

automated by identifying RGB coordinates of each rasterized curve with a 

prespecified color and rescaling them with prespecified maximum and minimum xy 

coordinates. This was conducted using the magick14 package in R. The extracted xy 

coordinates of curves were thereafter incorporated into IPDfromKM7 for 

reconstruction. Utilizing KMSubtraction, patients from the opposing subgroup are 

identified. 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.04.21263111doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263111


 

Thereafter, reconstructed curves were compared against original curves using a 

marginal Cox proportional hazards model. The absolute value of natural logarithmic 

transformed hazard ratios (|ln(HR)|) was inspected as the main summary statistic. 

Running |ln(HR)| mean plots were inspected to evaluate for simulation convergence. 

For each scenario, means and Wald’s 95% confidence intervals were derived per 

outcome. The Pearson’s product-moment correlation coefficient r was inspected to 

evaluate the proportion of the variation in |ln(HR)| that is predictable from the 

upstream varying independent variables. Cutoffs were determined by the intersection 

between |ln(HR)|=0.03, 0.04 & 0.05 and smoothing splines of 15 degrees of freedom 

generated with the primary matching algorithm. Comparisons between the different 

matching algorithms were undertaken using two-way analysis of variance (ANOVA) 

with Tukey multiple pairwise-comparisons between each algorithm. Besides minimal 

cost bipartite matching, Mahalanobis distance matching, and nearest neighbor 

matching by logistic regression were explored as well. Finally, we sought to evaluate 

associations between the quality of match and the limits of error. Correlograms 

reflecting associations between |ln(HR)| and quality of match test statistics of 

KMSubtractionEvaluateMatch() were inspected to help interpret and identify tests 

that may assist in prognosticating reconstruction accuracy. 

 

The R code for the simulations is provided in Supplementary Code, and the 

parameters utilized for each simulation scenario are provided in Supplementary 

Table 1. All analyses were conducted in R-4.1.015. 
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IMPLEMENTATION  

 

A step-by-step user guide is provided in the Supplementary Guide.  

 

Scenario 1 – The first scenario utilizes time-to-death data of patients with stage III 

colon carcinoma treated with fluorouracil (5FU) plus levamisole (Lev) versus 

levamisole only after resection in a randomized controlled trial by Moertel et al.16 The 

dataset was retrieved from the survival package in R.17 The hypothetical scenario is 

designed as such: KM curves describing survival outcomes for patients treated with 

Lev vs Lev+5FU is presented for the overall cohort (n=614) [Figure 2A] and for 

patients with more than 4 positive lymph nodes (n=168) [Figure 2B]. Survival 

outcomes for patients with less than or equal to 4 positive lymph nodes is however 

unreported (n=446) [Figure 2C, solid line].  

 

Upon reconstruction of Figure 2A and Figure 2B, and processing with 

KMSubtractionMatch() with minimal cost bipartite matching, the retrieved subgroup 

yielded curves [Figure 2 C, dashed line] similar to the original data. Hazard ratios 

on the marginal Cox model were similar as well (original-HR=0.714, 95%-CI: 0.526-

0.969, p=0.030 vs KMSubtraction-HR=0.713, 95%-CI: 0.526-0.966, p=0.028) [Figure 

2C].  

 

Following, 1,000 Monte Carlo iterations with KMSubtractionError() were conducted 

per arm, yielding mean (standard deviation) |ln(HR)| of 0.00960 (0.00780) and 

0.01120 (0.00866) for Lev and Lev+5FU respectively. This suggests that the limits of 

error of KMSubtraction in the above scenarios are likely small and negligible. 

 

Scenario 2 – The second scenario utilizes time-to-death data of patients with 

primary breast cancer from the Rotterdam tumor bank by Royston and Altman et 

al.18 The dataset was retrieved from the survival package in R.17 The hypothetical 

scenario is designed as such: KM curves describing survival outcomes for patients 

treated with chemotherapy-only (Chemo) vs hormonal therapy-only (Hormon) is 

presented for the overall cohort (n=863) [Figure 3A] and for patients with estrogen 

receptors (ER) or progesterone receptors (PGR) more than 100 fmol/l (n=448) 
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[Figure 3B]. Survival outcomes for patients with ER and PGR less than or equal to 

100 fmol/l is however unreported (n=415) [Figure 3C, solid line].  

 

Upon reconstruction of Figure 3A and Figure 3B, and processing with 

KMSubtraction with minimal cost bipartite matching, the retrieved subgroup yielded 

curves [Figure 3C, dashed line] similar to the original data. Hazard ratios on the 

marginal Cox model comparing Chemo vs Hormon among patients with ER and 

PGR less than or equal to 100 fmol/l were similar as well (original-HR=1.353, 95%-

CI: 1.117-1.638, p<0.001 vs KMSubtraction-HR=1.359, 95%-CI: 1.031-1.791, 

p=0.029) [Figure 3C].  

 

Following, 1,000 Monte Carlo iterations with KMSubtractionError() were conducted 

per arm, yielding mean (standard deviation) |ln(HR)| of 0.01211 (0.00818) and 

0.01271 (0.01125) for Chemo and Hormon respectively. This suggests that the limits 

of error of KMSubtraction in the above scenarios are likely small and negligible. 
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SIMULATION RESULTS 

 

Size of dataset 

20 scenarios of intervals n=50 were created from sample sizes ranging 50 to 1000. 

|ln(HR)| was negatively associated with sample size (Bipartite: r=-0.374, p<0.001; 

Mahalanobis: r=-0.380, p<0.001; Logistic: r=-0.373, p<0.001), suggesting that small 

data sets are likely to yield high limits of error [Figure 4A]. No significant differences 

between the matching algorithms were demonstrated on the Tukey pairwise 

comparisons (all p>0.05). Datasets smaller than n=112, 89, 71 are likely to yield a 

mean |ln(HR)| of 0.03, 0.04 and 0.05 respectively with minimum cost bipartite 

matching. The mean of absolute differences in follow-up time among patients with 

events appears to be weakly associated with the limits of error [Figure 5A]. 

 

Proportion of reported subgroup 

20 scenarios of intervals 5% were created from proportions ranging 1% to 96%. 

|ln(HR)| was positively associated with the proportion of reported subgroup (Bipartite: 

r=0.467, p<0.001; Mahalanobis: r=0.446, p<0.001; Logistic: r=0.457, p<0.01), 

suggesting that large proportion of reported subgroups are likely to yield high limits 

of error [Figure 4B]. The Mahalanobis matching algorithm yielded significantly lower 

limits of error when the proportion of reported subgroup is beyond 86% 

[Supplementary Table 2]. Proportions of reported subgroups larger than 86.2%, 

89.3% and 91.1% are likely to yield a mean |ln(HR)| of 0.03, 0.04 and 0.05 

respectively with minimum cost bipartite matching. In scenarios with high proportions 

of subgroups, the |ln(HR)| between matched patients of the overall and subgroup 

cohort, log-rank test and mean of absolute differences in follow-up time among 

patients with censorships appears to be associated with the limits of error [Figure 

5B]. 

 

Proportion of censorship in overall cohort 

20 scenarios of intervals 5% were created from proportions ranging 1% to 96%. 

|ln(HR)| was weakly associated with the proportion of censorship (Bipartite: r=0.157, 

p<0.001; Mahalanobis: r=0.172, p<0.001; Logistic: r=0.160, p<0.001) [Figure 4C]. 

No significant differences between the matching algorithms were demonstrated on 

the Tukey pairwise comparisons (all p>0.05). Proportions of censorships in the 
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overall cohort larger than 92.2%, 94.2% and 95.8% are likely to yield a mean |ln(HR)| 

of 0.03, 0.04 and 0.05 respectively with minimum cost bipartite matching. In 

scenarios with smaller proportions of censorship in the overall cohort, the mean of 

absolute differences in follow-up time among patients with events appears to be 

weakly associated with the limits of error [Figure 5C]. 

 

Proportion of censorship in subgroup cohort 

20 scenarios of intervals 5% were created from proportions ranging 1% to 96%. 

|ln(HR)| was weakly associated with the proportion of censorship (Bipartite: r=0.149, 

p<0.001; Mahalanobis: r=0.164, p<0.001; Logistic: r=0.152, p<0.001) [Figure 4D]. 

No significant differences between the matching algorithms were demonstrated on 

the Tukey pairwise comparisons (all p>0.05). Proportions of censorships in the 

overall cohort larger than 92.3%, 94.3% and 96.0% are likely to yield a mean |ln(HR)| 

of 0.03, 0.04 and 0.05 respectively with minimum cost bipartite matching. In 

scenarios with smaller proportions of censorship in the subgroup cohort, the mean of 

absolute differences in follow-up time among patients with events appears to be 

weakly associated with the limits of error [Figure 5D]. 

 

Proportion of missing data 

19 scenarios of intervals 5% were created from proportions ranging 1% to 91%. 

|ln(HR)| was positively associated with the proportion of reported subgroup (Bipartite: 

r=0.553, p<0.001; Mahalanobis: r=0.553, p<0.001; Logistic: r=0.553, p<0.001), 

suggesting that large proportion of missing data in unreported subgroups are likely to 

yield high limits of error [Figure 4E]. No significant differences between the matching 

algorithms were demonstrated on the Tukey pairwise comparisons (all p>0.05). 

Proportions of reported missing data larger than 12.8%, 21.5% and 30.9% are likely 

to yield a mean |ln(HR)| of 0.03, 0.04 and 0.05 respectively with minimum cost 

bipartite matching. Across the range of simulations, all quality of match test statistics 

were poorly associated the limits of error [Figure 5E]. 

 

Number of number-at-risk table intervals 

19 scenarios were created from intervals ranging from 1 to 20. |ln(HR)| was weakly 

associated with the number of number-at-risk table intervals (Bipartite: r=-0.180, 

p<0.001; Mahalanobis: r=-0.182, p<0.001; Logistic: r=-0.175, p<0.001) [Figure 4F]. 
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No significant differences between the matching algorithms were demonstrated on 

the Tukey pairwise comparisons (all p>0.05). Across all scenarios, mean |ln(HR)| 

was under 0.03 with all matching algorithms. Where the number of number-at-risk 

table intervals were small, the |ln(HR)| between matched patients of the overall and 

subgroup cohort, log-rank test, mean of absolute differences in follow-up time among 

patients with censorships and the Kolmogorov-Smirnov Test of follow-up time 

between patients with censorships appears to be strongly associated with the limits 

of error [Figure 5F]. 
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DISCUSSION 

 

Secondary analysis through meta-analysis has become increasingly relevant in this 

era of precision medicine, where definitive conclusions on biomarkers of disease or 

treatment regimens are required to facilitate clinical decision making. The upstream 

analyses demonstrates that KMSubtraction is robust and reliable. 

 

The simulation exercise established that the limits of error of KMSubtraction were 

small and likely negligible in most circumstances. Apart from the proportion of 

missing data from the unreported subgroup, the reproducibility of reconstructed data 

was largely not affected by the other parameters studied. Interestingly, there was 

some evidence that Mahalanobis distance matching proffered a significantly smaller 

error when the proportion of the reported subgroup is beyond 86%. Nonetheless, 

given that KMSubtraction would be discouraged in scenarios where the proportion of 

reported subgroup is high, there is unlikely a scenario for this advantage to be 

exploited. There were otherwise no other appreciable differences on the Tukey HSD 

pairwise comparisons between the matching strategies investigated. 

 

Extensive Monte Carlo simulations demonstrate that datasets with high reported 

subgroup proportion (r=0.467, p<0.001), small dataset size (r=-0.374, p<0.001) and 

high proportion of missing data in the unreported subgroup (r=0.553, p<0.001) were 

associated with uncertainty are likely to yield high limits of error with KMSubtraction. 

Users are advised against implementation of KMSubtraction in such situations, or if 

need be, transparently acknowledge the ensuing limitations and likely compromise in 

quality of reconstructed data. The limits of error of KMSubtraction, as reflected by the 

mean |ln(HR)| from converged Monte Carlo simulations may be arbitrarily interpreted 

as small (<0.03), moderate (0.03-0.05) and large (>0.05), and may guide the 

appropriateness of implementing KMSubtraction in each context.  

 

In implementing KMSubtraction, the quality of match may be the only raw parameter 

derived from the manually retrieved survival information. From our simulations, we 

found a wide variation of how the quality of match influences the limits of error of 

KMSubtraction. As such, in circumstances where the simulated limit of error is 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.09.04.21263111doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263111


 

shown to be high, users are advised to inspect the association of each quality of 

match test statistic against the simulated limits of error. 

 

This approach is not without its limitations. The described method is also unable to 

retrieve patient-level covariates for adjustment. Hence, biomarker investigation 

through this analysis should be interpreted with caution as no further analysis of 

causal inference may be conducted. Further, the described method is only able to 

handle dichotomous variables, rather than continuous variables. This would 

unfortunately limit meta-analytic pooling of unreported subgroup data after 

KMSubtraction when different cutoffs are used instead. 

 

Given the demonstrated effect of the above parameters on the quality of 

KMSubtraction derived data, it would be instructive for those utilizing KMSubtraction 

to report (1) Proportion of reported subgroup among the overall cohort (2) Size of 

dataset (3) Proportion of censorship in overall and subgroup cohorts (4) Proportion 

of missing data (5) Number of number-at-risk table intervals (6) Mean and standard 

deviation of |ln(HR)| from KMSubtractionError() simulations.  

 

Conclusion 

While KMSubtraction demonstrates robustness in deriving survival data from 

unreported subgroups, the implementation of KMSubtraction should take into 

consideration the aforementioned limitations. The limits of error of KMSubtraction, as 

reflected by the mean |ln(HR)| from converged Monte Carlo simulations may guide 

the interpretation of reconstructed survival data of unreported subgroups. This 

approach hopes to enhance the quality of secondary analysis of subgroups and 

biomarkers in the era of precision medicine.  
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Figure legends 

 

Figure 1 Illustration of KMSubtraction. 

 

Figure 2 Example scenario 1 - patients with colon cancer treated with Levamisole 

(Lev) + 5-Fluorouracil (FU) vs Lev only.  

Kaplan Meier curves reporting (A) Overall cohort from original data (B) Patients with 

more than 4 positive lymph nodes (the presented subgroup) from original data (C) 

Patients with less than or equal to 4 positive lymph nodes comparing original and 

KMSubtraction derived data (opposing subgroup)  

 

Figure 3 Example scenario 2 - patients with breast cancer treated with 

chemotherapy vs hormonal therapy.  

Kaplan Meier curves reporting (A) Overall cohort from original data (B) Patients with 

estrogen receptors (ER) or progesterone receptors (PGR) more than 100 fmol/l (the 

presented subgroup) from original data (C) Patients with less than or equal to 4 

positive lymph nodes between original and KMSubtraction derived data (opposing 

subgroup)  

 

Figure 4 Outcomes of the simulation exercise and running mean plots 

demonstrating simulation convergence for (A) Size of dataset (B) Proportion of 

reported subgroup (C) Proportion of patients with censorship in the overall cohort (D) 

Proportion of patients with censorship in the subgroup cohort (E) Proportion of 

missing data (F) Number of number-at-risk table intervals 

 

Figure 5 Correlograms of quality of match test statistics against the limits of error for 

simulations conducted for (A) Size of dataset (B) Proportion of reported subgroup (C) 

Proportion of patients with censorship in the overall cohort (D) Proportion of patients 

with censorship in the subgroup cohort (E) Proportion of missing data (F) Number of 

number-at-risk table intervals 
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