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Abstract14

There is growing experimental evidence that many respiratory viruses—including influenza and SARS-15

CoV-2—can interact, such that their epidemiological dynamics may not be independent. To assess these16

interactions, standard statistical tests of independence suggest that the prevalence ratio—defined as the17

ratio of co-infection prevalence to the product of single-infection prevalences—should equal unity for18

non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence19

ratio from co-detection prevalence data, under the assumption that deviations from unity implied in-20

teraction. To examine the validity of this assumption, we designed a simulation study that built on a21

broadly applicable epidemiological model of co-circulation of two respiratory viruses causing seasonal22

epidemics. By focusing on the pair influenza–SARS-CoV-2, we first demonstrate that the prevalence23

ratio systematically under-estimates the strength of interaction, and can even misclassify antagonistic24

or synergistic interactions that persist after clearance of infection. In a global sensitivity analysis, we25

further identify properties of viral infection—such as a high reproduction number or a short infectious26

period—that blur the interaction inferred from the prevalence ratio. Altogether, our results suggest that27

epidemiological studies based on co-detection prevalence data provide a poor guide to assess interactions28

among respiratory viruses.29
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Main Text30

Introduction31

The pandemic of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syn-32

drome coronavirus 2 (SARS-CoV-2), has emphasized the persistent threat posed by respiratory viruses. In33

addition to SARS-CoV-2, other major respiratory viruses like influenza and the respiratory syncytial virus34

(RSV) cause a substantial burden every year, estimated at 78 million cases of lower respiratory infections and35

130,000 associated deaths worldwide in 2016 [1]. As evidenced by the current and past pandemics, the large36

host range of respiratory viruses—and the correspondingly high risk of spillover from animals into humans—37

also makes them prime candidates for emergence of currently unknown “diseases X” [2]. Interaction—here38

broadly defined as the ability of one pathogen to affect infection or disease caused by another pathogen—is39

an intriguing yet under-studied aspect of respiratory viruses’ biology [3]. Although different nomenclatures40

have been proposed [4], such interactions can be classified according to their sign, either positive (synony-41

mously, synergistic or facilitatory) or negative (synonymously, antagonistic or competitive). According to42

experimental evidence, various biological mechanisms exist which make either sign a priori plausible [4]. Ex-43

amples include, in the case of positive interactions, up-regulation of viral target receptors [5] or cell fusion [6];44

and, in the case of negative interactions, blocking of viral replication caused by the interferon response [7, 8].45

Intriguingly, different respiratory viruses may have opposing effects on COVID-19, e.g., rhinoviruses can46

inhibit SARS-CoV-2 infection via the interferon response [8], while influenza A viruses can facilitate it via up-47

regulation of ACE2, the cognate receptor of SARS-CoV-2 in human cells [5, 9, 10]. SARS-CoV-2 interactions48

may have far-reaching implications for predicting not only the future course of the COVID-19 pandemic, but49

also the indirect effects of non-COVID-19 vaccines on COVID-19 [11]. Indeed, vaccines that directly target a50

pathogen may also indirectly affect non-target pathogens that interact with this target pathogen [12, 13, 14].51

Because of their relevance to epidemiology and public health, a natural question is how best to identify52

and estimate interactions between respiratory viruses. Arguably, challenge studies in animals or humans53

provide the strongest form of evidence, because they can pinpoint the within-host mechanisms of interaction54

in a controlled experimental setting. However, such studies remain scarce and, more generally, it is not55

easy to predict their consequences at the scale of human populations [15]. Hence, epidemiological studies—56

ideally informed by experimental evidence to narrow the search range of interacting pathogens—remain57

indispensable to assess interactions, but it is unclear whether methods commonly used in such studies are58

well-suited to this task.59

In particular, recent studies of SARS-CoV-2 interactions used a test-negative design [16] to compare60

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.02.21263018doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21263018
http://creativecommons.org/licenses/by-nc-nd/4.0/


the risk of SARS-CoV-2 infection among those infected with another respiratory virus (e.g., influenza) to61

that among those uninfected [17, 18, 19]. The underlying idea is conceptually simple: if two (or more)62

viruses do not interact and circulate independently, then the frequency of co-detection estimated from cross-63

sectional data should be approximately equal to the product of each virus’s detection frequency—conversely,64

any significant deviation from equality should indicate interaction. However, earlier epidemiological and65

ecological modeling studies have cautioned against seemingly intuitive metrics of interaction [15, 20, 21]. In66

fact, to our knowledge the validity of this study design has not yet been systematically tested for respiratory67

viruses that cause seasonal epidemics.68

In this study, we aimed to determine if epidemiological studies based on co-detection prevalence data69

enabled reliable estimation of interactions between respiratory viruses. To do so, we designed a simulation70

study that built on a general epidemiological model of co-circulation of two respiratory viruses. We show71

that cross-sectional estimates of co-infection prevalence—interpreted either alone or in combination with72

estimates of single-infection prevalences—provide a poor guide to assess interaction. Hence, we argue that73

earlier epidemiological studies based on this design should be interpreted with caution and that further74

longitudinal studies will be needed to elucidate the epidemiological interactions of SARS-CoV-2with other75

respiratory viruses.76

Methods77

Transmission model of viral co-circulation We developed a deterministic model of circulation of78

two respiratory viruses, assumed to interact during the infectious period (i.e., the period of transmissible79

viral infection, denoted by I) or during a transient period following clearance of infection (denoted by T ).80

According to experimental evidence, such interactions can result from an antiviral state caused by non-81

specific innate immune responses (such as the interferon response), which develop early during infection82

and can persist for a short period after clearance of infection [7]. In contrast, we did not model long-term83

interactions (effected, for example, by adaptive cross-immunity), which are less likely for different species of84

respiratory viruses [7]. The model was similar to that originally proposed by Shrestha et al. [15], with the85

addition of a latent period (denoted by E) and of a realistic distribution for the infectious period, modeled86

as a Gamma distribution with shape parameter 2 [22]. The transmission dynamic of each virus was therefore87

represented by an SEITR model [23], where S represents susceptible individuals and R recovered individuals.88

Following Shrestha et al., we used a double index notation to indicate the infection status with respect to89

each virus, e.g., XSE represents the proportion of individuals susceptible to virus 1 and exposed to virus 2.90

As we primarily focused on respiratory viruses that cause seasonal epidemics lasting a few months, we made91
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the reasonable assumption of a constant, closed population.92

The model was defined by a set of 6 × 6 = 36 ordinary differential equations, represented schematically93

in Fig. 1. The force of infection of each virus i = {1, 2} was given by:94

λ1(t) = R1γ1p1(t)

p1(t) =
∑
x∈Ξ

[XIax(t) +XIbx(t)]

λ2(t) = R2γ2p2(t)

p2(t) =
∑
x∈Ξ

[XxIa(t) +XxIb(t)]

where Ξ = {S,E, Ia, Ib, T,R} is the set of state variables, Ri is the reproduction number of virus i, 1/γi the95

average infectious period of virus i, and pi(t) the prevalence of infection with virus i. Importantly, as in [24] we96

assumed that Ri captured pre-existing population immunity. Hence, this parameter is best interpreted here97

as the initial reproduction number in a partially immune population, as opposed to the basic reproduction98

number in a fully susceptible population [24]. We also defined the prevalence of individuals co-infected99

(purple compartments in Fig. 1):100

p12(t) = XIaIa(t) +XIaIb(t) +XIbIa(t) +XIbIb(t)

Metric to infer interaction from co-detection prevalence data Standard statistical tests of inde-101

pendence suggest that the following prevalence ratio (PR):102

PR(t) =
p12(t)

p1(t)× p2(t)

could be used to infer interaction [18, 17, 19]. Intuitively, a prevalence ratio above unity indicates that the103

frequency of co-detection is higher than that expected by chance, suggesting that co-infection is facilitated—104

that is, that the interaction is positive, i.e., synergistic [20, 21]. Correspondingly, a prevalence ratio below105

unity would suggest a negative, or antagonistic interaction. In numerical applications, we calculated the106

prevalence ratio at the time of peak co-infection prevalence, tmax = arg maxt p12(t) (cf. Fig. 2), as we107

reasoned that empirical studies would have maximal statistical power to detect co-infection at that time108

point. Nevertheless, this choice is arbitrary, and we considered an alternative calculation in a sensitivity109

analysis, described below. In the following, we drop the time argument (PR = PR(tmax)) and we simply110

refer to the prevalence ratio calculated at that time point.111

Of note, other definitions of the prevalence ratio are possible and have been used in previous studies.112
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For example, earlier studies of the association between SARS-CoV-2 and influenza compared the fraction113

of individuals infected with virus 2 among those infected with virus 1 to the fraction infected with virus 2114

among those uninfected with virus 1—that is, a test negative design [18, 17, 19]. Using the above notations115

and after some algebra, the corresponding prevalence ratio PR
′
equals:116

PR
′

=

p12
p1

p2−p12
1−p1

= PR
1− p1

1− PR× p1

However, this alternative prevalence ratio is no longer symmetric in virus 1 and 2, which implies an arbitrary117

choice of virus 1. We therefore prefer our formulation, but we point out that the two prevalence ratios118

are approximately equal for low prevalence of infection with virus 1. Furthermore, it can be shown that119

PR
′
≥ 1⇐⇒ PR ≥ 1, such that the sign of the interaction inferred from either ratio is identical.120

Model parametrization In numerical applications, we considered the pair influenza (virus 1)–SARS-121

CoV-2 (virus 2) and we fixed the parameters accordingly (Table 1). Specifically, for influenza we assumed an122

average latent period of 1 day and an average infectious period of 4 days, resulting in an average generation123

time of 3 days [25, 26]. For SARS-CoV-2, we assumed an average latent period of 4 days and an average124

infectious period of 5 days (average generation time of 6.5 days) [27, 28, 29]. The reproduction number of125

influenza was fixed to 1.3 [24] and that of SARS-CoV-2 to 2.5 [28, 30]. To initialize the model, we assumed126

that a small fraction XES(0) = E0,1 = 10−3 had been exposed to influenza and XSE(0) = E0,2 = 10−5 to127

SARS-CoV-2. These initial conditions were chosen to reflect the epidemiological situation in early 2020 in128

Europe, where influenza was already circulating before the emergence of SARS-CoV-2 [31]. Other individuals129

were assumed fully susceptible (XSS(0) = 1 − E0,1 − E0,2), and all other compartments were initialized to130

0. As explained above, the initial reproduction number Ri was supposed to capture pre-existing population131

immunity [24]. For simplicity we considered only symmetric interactions, that is, the effect of virus 1 on132

virus 2 was assumed equal to that of virus 2 on virus 1. Furthermore, we assumed that interaction could not133

change sign over the course of infection, and we therefore tested negative (0 ≤ θ(T ), θ(I) ≤ 1) and positive134

(1 ≤ θ(T ), θ(I) ≤ 5) interactions separately.135

Simulation protocol In all scenarios, the model was integrated numerically for a period of 400 days, with136

state variable values recorded every 5× 10−2 days.137

Sensitivity analyses for influenza and SARS-CoV-2 To verify the robustness of our results, we138

conducted two sensitivity analyses. First, we considered an alternative prevalence ratio, similarly defined but139

averaged ±14 days around the time of peak co-infection prevalence. Second, although earlier experimental140

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.02.21263018doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21263018
http://creativecommons.org/licenses/by-nc-nd/4.0/


studies found that influenza can affect SARS-CoV-2 infection [9, 10, 5], the effect of SARS-CoV-2 on influenza141

infection, if any, is currently unknown. Previous experimental studies—e.g., of influenza and RSV [7]—142

demonstrated the possibility of non-symmetric interactions, where one virus affects the other, but not the143

other way around. We therefore tested an alternative hypothesis of non-symmetric interactions, for which144

influenza affected SARS-CoV-2 infection, while SARS-CoV-2 did not affect influenza infection (θ(I)
2 = θ

(T )
2 =145

1).146

Global sensitivity analyses To examine more generally the properties of viral infection and interaction147

that affected the prevalence ratio, we conducted a global sensitivity analysis for a broad range of respiratory148

viruses [32]. For simplicity, we assumed a fully symmetric model with identical characteristics of the two149

viruses, and we then proceeded in three steps. First, we used a Latin hypercube design to sample 103
150

values (over the ranges indicated in Table 1, [33]) of the following five parameters: average latent period151

(1/σ), average infectious period (1/γ), average post-infectious period (1/δ), degree of interaction during152

the infectious period (θ(I)), and degree of interaction during the post-infectious period (θ(T )). Second,153

we simulated the model and calculated the prevalence ratio for every parameter set. Finally, we used a154

Normal generalized additive regression model (GAM) to simultaneously estimate the association between155

the prevalence ratio and every input parameter [34]. For every parameter, the association was modeled156

using a basis of cubic splines, with a maximum basis dimension of 10. Preliminary analyses indicated that157

the prevalence ratio was sensitive to the reproduction number, in isolation and in interaction with other158

parameters. To simplify the regression model, we therefore ran the global sensitivity analysis for three159

different values of the reproduction number (1.5, 2.0, and 2.5).160

Numerical implementation We implemented and simulated all the models using the pomp package [35]161

in R version 3.6.3 [36]. For the global sensitivity analysis, we used the mgcv package [34] to fit the GAMs and162

the ggeffects package [37] to plot the marginal effect of each input parameter. Finally, we used the renv163

package to keep track of all packages’ version and to increase the results’ reproducibility [38].164

Results165

The prevalence ratio correctly identifies the sign, but not the degree, of uniform interactions166

We first considered interactions of equal strength during the infectious and post-infectious periods (θ =167

θ(I) = θ(T ))—henceforth referred to as uniform interactions. Example simulations of negative, neutral,168

and positive interactions between influenza and SARS-CoV-2 are plotted in Fig. 2. Compared with the169
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no-interaction scenario (peak co-infection prevalence: 0.4%), the peak amplitude of co-infection was lower170

for negative interaction (0.1%) and higher for positive interaction (2.8%). In all scenarios, however, the171

peak time was approximately identical. Next, we examined the general relationship between the strength172

of interaction and the prevalence ratio for different values of the post-infectious period in the range 1–14173

days (Fig. 3). We found that the prevalence ratio equalled 1 for non-interacting viruses and thus permitted174

correct identification of neutral interactions (θ = 1). For interacting viruses (θ 6= 1), the prevalence ratio175

also correctly estimated the sign of the interaction, but systematically under-estimated its strength. Because176

of a concave association, under-estimation became more severe as the strength of interaction increased.177

The degree of under-estimation also increased with the duration of the post-infectious period. Hence, we178

found evidence that the prevalence ratio enabled qualitative, but not quantitative, estimation of uniform179

interactions.180

Higher interaction post-infection can cause the prevalence ratio to misidentify non-uniform181

interactions Next, we considered the more general case of interactions that differed during the infectious182

and the post-infectious periods, or non-uniform interactions (θ(I) 6= θ(T )). For these experiments, we183

assumed an average post-infectious period of 7 days and we tested negative (0 ≤ θ(I), θ(T ) ≤ 1) and positive184

(1 ≤ θ(I), θ(T ) ≤ 5) interactions separately. Because higher values of θ actually resulted in lower interaction185

when the true interaction was assumed negative, in the following we define the strength of interaction as186

1 − θ for negative interactions and as θ for positive interactions during either the infectious or the post-187

infectious period. As shown in Fig. 4, we found that the prevalence ratio was a monotonic function of the188

strength of interaction during the infectious period, either decreasing for negative interactions or increasing189

for positive interactions. Hence, in either case stronger interaction during the infectious period helped the190

prevalence ratio identify the true interaction. In contrast, higher interaction during the post-infectious191

period blurred the interaction inferred from the prevalence ratio. For weak interaction during infection192

(0.8 ≤ θ(I) ≤ 1.75), these two opposing effects combined caused the prevalence ratio to misidentify the sign193

of interaction in scenarios with strong interaction post-infection. In the other scenarios, the prevalence ratio194

correctly identified the sign of the interaction, but substantially under-estimated its strength (e.g., prevalence195

ratio of 0.44 for θ(I) = 0 and θ(T ) = 1, of 1.82 for θ(I) = 5 and θ(T ) = 1). These experiments demonstrate196

that the prevalence ratio is an unreliable measure of interaction between influenza and SARS-CoV-2.197

Sensitivity analyses demonstrate the results’ robustness for influenza and SARS-CoV-2 In198

sensitivity analyses, we first verified that our results were robust to an alternative calculation of the prevalence199

ratio (Fig. S1). Second, we repeated our analyses for non-symmetric interactions with no effect of SARS-CoV-200
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2 on influenza infection (Fig. S2). The results were broadly comparable to those for symmetric interactions201

(Fig. 4), except that fewer parameter combinations caused the prevalence ratio to mis-identify the sign of202

interaction. However, the strength of interaction was also more severely under-estimated in this scenario203

(prevalence ratio range: 0.80–1.41, compared with 0.44–1.82 for symmetric interactions).204

Global sensitivity analysis highlights properties of viral infection that obscure or facilitate205

estimation of interaction In a global sensitivity analysis of positive interactions (θ(I), θ(T ) ≥ 1), we206

assessed how different properties of viral infection and interaction affected the prevalence ratio. As shown207

in Fig. 5, the prevalence ratio decreased with the average latent period, the average post-infectious period,208

and the strength of interaction post-infection. Hence, these three parameters blurred the interaction inferred209

from the prevalence ratio. Conversely, the average length of, and the strength of interaction during, the210

infectious period increased with the prevalence ratio and therefore facilitated estimation of the interaction.211

Of note, higher values of the reproduction number dampened all these variations. To understand the effect of212

each parameter on the prevalence ratio, we propose that some insights can be gained by examining how and213

when each parameter affects the prevalences of single infections and co-infection. For example, it is likely214

that parameters that enhance interaction after infection (i.e., higher θ(T ) and 1/δ) affect single-infection215

prevalences more rapidly and strongly than co-infection prevalence, thereby decreasing the prevalence ratio.216

In sum, these results confirm our earlier experiments on influenza and SARS-CoV-2 and highlight additional217

factors that make it difficult to interpret the prevalence ratio as a measure of interactions between respiratory218

viruses.219

Discussion220

In this study, we aimed to determine if the prevalence ratio—defined as the ratio of the prevalence of221

co-infection to the product of individual infection prevalences—enabled reliable estimation of interactions222

between respiratory viruses. To do so we designed a simulation study that built on a broadly applicable223

epidemiological model of co-circulation of two respiratory viruses. By focusing on the pair influenza–SARS-224

CoV-2, we first demonstrated that the prevalence ratio systematically under-estimated the strength of in-225

teraction, and could even mistake the sign of interactions that persisted after clearance of infection. In a226

global sensitivity analysis, we further identified properties of viral infection—such as a high reproduction227

number, a long latent period, or a short infectious period—that blurred the interaction inferred from the228

prevalence ratio. Our results show that, in the absence of precise information about the timing of interaction,229

epidemiological studies designed to estimate the prevalence ratio, or variations thereof, may be unreliable.230
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With the likely prospect of COVID-19 becoming endemic, there is a pressing need to elucidate the po-231

tential interactions of SARS-CoV-2with other pathogens, in particular respiratory viruses. Thus far, most232

epidemiological studies of SARS-CoV-2 interaction used simple statistics of co-circulation, such as the preva-233

lence of co-infection, the prevalence ratio, or some variation thereof [18, 17, 19, 39, 40]. As we showed234

here, however, such studies—even those carefully designed to control for various sources of bias like age235

or co-morbidities—are likely uninformative. Besides the prevalence ratio, we found that the prevalence of236

co-infection was also an unreliable measure of interaction, as low prevalences could be consistent with strong,237

positive interactions (Fig. 2, bottom panel). As suggested by our global sensitivity analysis, these deficiencies238

may be even more severe for SARS-CoV-2 infection, characterized by a relatively long latent period and a239

high reproduction number [28]. In sum, we submit that further epidemiological studies will be needed to240

elucidate the interactions of SARS-CoV-2with other respiratory viruses.241

More generally, our study adds to the growing body of evidence demonstrating the shortcomings of seem-242

ingly intuitive measures of interaction. Using the same model, Shrestha et al.demonstrated the unreliability243

of phase as an indicator of interaction [15]. Using a SIS-like model of multiple pathogens causing chronic244

infection, Hamelin et al. showed that the prevalence ratio (as defined in this study) exceeded unity for non-245

interacting pathogens [21]. In contrast, we found that the prevalence ratio equalled unity for non-interacting246

pathogens (Fig. 3). This discrepancy, explained by the different pathogens and modeling assumptions con-247

sidered in [21], highlights the sensitivity of the prevalence ratio to the characteristics of infection. More248

generally, it suggests that our results cannot be extrapolated to pathogens not well described by the SIR-like249

model used here. Using a series of SIS and SIRS models, Man et al. examined the properties of the odds250

ratio, defined as the ratio of the odds of one type in the presence of the other type, relative to the odds of251

this type in the absence of the other type—a quantity closely related to the alternative prevalence ratio PR
′

252

defined above [20]. They proved that odds ratio exceeding unity could mask negative interactions. Despite253

differences in the scope of, and the models used in, this study, our results replicate this finding (Fig. 4). Fur-254

thermore, the association between the prevalence ratio and the interaction parameter in our study (Fig. 3)255

is comparable to that in [20] (Figure 2A, SIRS direct model). Finally, in a field study to assess interactions256

between an intestinal pathogen and nematodes in mice (where the true sign of interaction was known from257

previous experimental evidence), Fenton et al. reported that statistical methods based on cross-sectional data258

performed poorly and typically estimated the wrong sign of interaction [41]. Our results align with these259

findings, and we second Fenton et al.’s caution against the use of such methods to study pathogen-pathogen260

interactions. In sum, our study broadly agrees with previous evidence, and provides new evidence specific261

to the epidemiology of respiratory viruses.262

The shortcomings of the prevalence ratio demonstrated here might suggest the need for new statistical263
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methods to estimate interaction from co-detection prevalence data. However, seconding Fenton et al. [41],264

we propose that methods based on longitudinal data—collected at an appropriately fine time scale—offer265

a more promising avenue of research. Among those methods, mathematical models of transmission provide266

a powerful tool to formulate and test biologically explicit mechanisms of interaction, while capturing the267

underlying, non-linear dynamics of infection of each pathogen [42]. Robust statistical inference techniques268

now facilitate fitting these models to epidemiological time series [43, 44], as demonstrated by earlier successful269

applications in the field of pathogen interactions [45, 46, 47, 48, 49, 50]. Alternatively, advanced regression270

models have been developed to assess interactions between respiratory viruses [51], but such models may be271

limited because they lack a mechanistic formulation of interaction. Altogether we propose that empirical or272

mechanistic models of longitudinal data will be required to study the interactions of SARS-CoV-2with other273

respiratory viruses, and more generally the interactions between respiratory pathogens [52].274

Our study has four important limitations. First, because we used a deterministic model expressed in pro-275

portions, we sidestepped the important issue of statistical uncertainty, caused for example by finite sample276

size or imperfect measurement of infection prevalences. As the prevalence ratio was found to systematically277

under-estimate the strength of interaction, such uncertainty—inevitable in practice—may further limit the278

ability of the prevalence ratio to correctly identify interactions. Second, for simplicity we did not include279

confounding variables (e.g., age) that may also affect estimation of the prevalence ratio. Third, we consid-280

ered only short-term interactions that rapidly waned after clearance of infection. Although such interactions281

appear to be the most biologically plausible for different species of respiratory viruses [7, 8], long-term in-282

teractions resulting from adaptive cross-immunity have been documented and could be relevant to other283

systems, such as the multiple types or subtypes of influenza [53, 54]. Fourth, for simplicity we only modeled284

interactions that affected susceptibility to infection, because experimental evidence suggests this mechanism285

predominates among respiratory viruses [7, 8]. However, other mechanisms—like changes in the transmissi-286

bility or the duration of infection—are biologically likely and could be tested for other classes of pathogens.287

Acknowledging all these limitations, our simple model could serve as a building block for further research on288

epidemiological interactions.289

In conclusion, our results show that the inherently complex, non-linear dynamic of respiratory viruses290

makes the interpretation of seemingly intuitive measures of interaction difficult, if not impossible. Despite291

these pitfalls, other statistical or mathematical methods based on longitudinal data should enable epidemi-292

ological research on pathogen interactions. Indeed, with increasing evidence that SARS-CoV-2 and other293

pathogens do not circulate in isolation but within polymicrobial systems, such research should remain a294

priority.295
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Figure 1: Schematic of epidemiological model of viral co-circulation. Individuals infectious with
virus 1 are highlighted in blue, with virus 2 in red, and with both viruses in purple. Dashed lines indicate
epidemiological transitions affected by interactions.
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Figure 2: Example model simulations for different types of uniform interactions between in-
fluenza and SARS-CoV-2. The simulations depicted correspond to uniform interactions (θ = θ

(I)
1 =

θ
(T )
1 = θ

(T )
2 = θ

(I)
2 ), either negative (θ = 0, upper panel), neutral (θ = 1, middle panel), or positive (θ = 5,

lower panel). Here the average post-infectious period was fixed to 1
δ = 1

δ1
= 1

δ2
= 1day; other parameters

were fixed to model the coupled dynamics of influenza and SARS-CoV-2 (cf. Table 1). The purple points in-
dicate the peak of co-infection prevalence, when the prevalence ratio was calculated (numerical values of the
prevalence ratio: 0.45, 1.00, and 1.72 from top to bottom). In every panel, the y-axis values are square-root
transformed to highlight the peaks.
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Figure 3: Relationship between strength of interaction and prevalence ratio for uniform interac-
tions between influenza and SARS-CoV-2. The scenarios tested correspond to θ(I)

1 = θ
(T )
1 = θ

(T )
2 = θ

(I)
2

(x -axis), for three different values of the average post-infectious period (1
δ = 1

δ1
= 1

δ2
); other parameters were

fixed to model the coupled dynamics of influenza and SARS-CoV-2 (cf. Table 1). The dashed grey identity
line depicts equality between the prevalence ratio and the true strength of interaction.
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Figure 4: Relationship between strength of interaction and prevalence ratio for non-uniform
interactions between influenza and SARS-CoV-2. The scenarios tested correspond to θ(I)

1 = θ
(I)
2 =

θ(I) and θ
(T )
1 = θ

(T )
2 = θ(T ); other parameters were fixed to model the coupled dynamics of influenza and

SARS-CoV-2(cf. Table 1). For negative interactions (top panel), the x -axis represents 1−θ(I) and the y-axis
1 − θ(T ); for positive interactions (bottom panel) θ(I) and θ(T ). Hence, in either panel the true strength of
interaction increases from left to right and from bottom to top.
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Figure 5: Global sensitivity analysis for positive virus-virus interactions. The association between
the prevalence ratio and each input parameter was estimated using a GAM with cubic splines (sample size
n = 103), for three different values of the reproduction number (1.5, 2.0, and 2.5). The corresponding
adjusted R-squared equalled 96.3%, 96.6%, and 98.4%. For visual clarity, the x -axis values differ between
panels.
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Parameter Meaning 

Fixed value or 

interval 

(influenza–SARS-

CoV-2 analysis) 

Fixed value or 

interval 

(global sensitivity 

analysis) 

Source/Comment 

𝜎1
−1 

Average latent 

period of influenza 
1 day 

𝜎1
−1 = 𝜎2

−1 = 𝜎−1 

𝜎−1 ∈ [1,14] days 

[26] 

𝜎2
−1 

Average latent 

period of SARS-

CoV-2 

4 days [29] 

𝛾1
−1 

Average infectious 

period of influenza 
4 days 

𝛾1
−1 = 𝛾2

−1 = 𝛾−1 

𝛾−1 ∈ [4,14] days 

[27] 

𝛾2
−1 

Average infectious 

period of SARS-

CoV-2 

5 days [28] 

𝑅1 

Reproduction 

number of 

influenza 

1.3 

𝑅1 = 𝑅2 = 𝑅 

𝑅 ∈ {1.5, 2.0, 2.5} 

[25] 

𝑅2 

Reproduction 

number of SARS-

CoV-2 

2.5 [29, 31] 

𝐸0,1 
Initial fraction 

exposed to 

influenza 

10−3 

𝐸0,1 = 𝐸0,2 = 10−5 

Assumption: 

Influenza 

circulated before 

SARS-CoV-2 [32] 𝐸0,2 
Initial fraction 

exposed to SARS-

CoV-2 
10−5 

𝛿−1 = 𝛿1
−1 = 𝛿2

−1 
Average post-

infectious period 
1–14 days 1–14 days [34] 

𝜃(𝐼) = 𝜃1
(𝐼)

= 𝜃2
(𝐼)

 

Strength of 

interaction during 

infectious period 

0–5 1–5 Assumption 

𝜃(𝑇) = 𝜃1
(𝑇)

= 𝜃2
(𝑇)

 

Strength of 

interaction during 

post-infectious 

period 

0–5 1–5 Assumption 

 

Table 1: List of model parameters.
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Figure S1: Relationship between strength of interaction and prevalence ratio for non-uniform
interactions between influenza and SARS-CoV-2 (prevalence ratio time-averaged ±14 days
around the peak time of co-infection). The scenarios tested correspond to θ

(I)
1 = θ

(I)
2 = θ(I) and

θ
(T )
1 = θ

(T )
2 = θ(T ); other parameters were fixed to model the coupled dynamics of influenza and SARS-CoV-

2(cf. Table 1). For negative interactions (top panel), the x -axis represents 1 − θ(I) and the y-axis 1 − θ(T );
for positive interactions (bottom panel) θ(I) and θ(T ). Hence, in either panel the true strength of interaction
increases from left to right and from bottom to top.
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Figure S2: Relationship between strength of interaction and prevalence ratio for non-symmetric,
non-uniform interactions between influenza and SARS-CoV-2. The scenarios tested correspond to
θ

(I)
1 = θ(I), θ

(I)
2 = 1 and θ

(T )
1 = θ(T ), θ

(T )
2 = 1 (that is, no effect of SARS-CoV-2 on influenza); other

parameters were fixed to model the coupled dynamics of influenza and SARS-CoV-2 (cf. Table 1). For
negative interactions (top panel), the x -axis represents 1−θ(I)

1 and the y-axis 1−θ(T )
1 ; for positive interactions

(bottom panel) θ(I)
1 and θ(T )

1 . Hence, in either panel the true strength of interaction increases from left to
right and from bottom to top.
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