Online supplementary material

A. Additional background

• List of Least Developed Countries

B. Additional methodological information

- Model structure
- JMP imputation
- Formula for number of rural households with no hygiene service
- Electronic searches
- Intervention studies from which promotion price is derived
- Methods for estimating the cost of water

C. Additional results

- Results for alternative intervention scenario excluding one-to-one promotion
- Scenarios for deterministic sensitivity analysis
- Deterministic sensitivity analysis results for promotion cost

A. Additional background

List of Least Developed Countries

Americas and Caribbean (1)		Middle East and North Africa (3)		
Haiti		Djibouti	Yemen	
		Sudan		
East Asia and	the Pacific (7)	South Asia (4)		
Cambodia	Solomon Islands	Afghanistan	Bhutan	
Kiribati	Timor-Leste	Bangladesh	Nepal	
Lao	Tuvalu			
Myanmar				
Eastern and Southern Africa (15)		West and Central Africa (16)		
Angola	Mozambique	Benin	Liberia	
Burundi	Rwanda	Burkina Faso	Mali	
Comoros	Somalia	Central African Republic	Mauritania	
Eritrea	South Sudan	Chad	Niger	
Ethionia	Tanzania	Congo D R	São Tomé and	
		Collgo, D.N.	Principe	
Lesotho	Uganda	The Gambia	Senegal	
Madagascar	Zambia	Guinea	Sierra Leone	
Malawi		Guinea-Bissau	Тодо	

B. Additional methodological information

Model structure

JMP imputation

The population of the five countries for which the LDC average is imputed represent only 6% of the total LDC population.

Country	No hygiene facility	Piped / non-piped water supply
Comoros	2016	2019
Djibouti	2020 LDC average* (21% urban, 30% rural)	2020
Eritrea	2020 LDC average* (21% urban, 30% rural)	2016
Liberia	2017	2020
Mauritania	2019	2020
Mozambique	2015	2020
Solomon Islands	2019	2020
South Sudan	2020 LDC average* (21% urban, 30% rural)	2020
Sudan	2020 LDC average* (21% urban, 30% rural)	2020
Tuvalu	2020 LDC average* (21% urban, 30% rural)	2018
Yemen	2017	2020

	Prior coverage v	vear applied	instead of 2020), in cases o	f missing data
--	------------------	--------------	-----------------	---------------	----------------

*LDC average here means the average proportion of people across all LDCs with no hygiene facility

We used the below formula to calculate numbers of households to be served in rural areas, per country. An equivalent formula was used for urban areas.

where:

$$A_r = \frac{B_r}{C_r} * D_r$$

 A_r is the number of rural households with "no hygiene service" in the country

 B_r is the total rural population in the country (UN-DESA medium variant 2019)

 C_r is the average rural household size in the country (latest DHS)

 D_r is proportion of the rural population in the country with "no hygiene service" (JMP data)

Electronic searches

On 4th June 2021, we searched Google Scholar for records since 2015, just before the Hutton & Varughese (2016) study was finalised. Search terms were handwashing cost (without inverted commas), "soap expenditure" and "expenditure on soap". We reviewed the first 10 pages of results for each search, downloaded full texts, and word-searched them for "cost", "\$", "US", "price", and names/symbols of the currency of the study country.

Intervention studies from which promotion price is derived

Studies from which we extracted the price of hand hygiene promotion are listed below. Where source data excluded the costs of administration/management of the campaign, we attributed an uplift based on the average percentages for this cost from across studies that did so (24%).

Promotion interventions (12 studies reporting 14 interventions)

- Borghi J, Guinness L, Ouedraogo J, Curtis V. Is hygiene promotion cost-effective? A case study in Burkina Faso. Trop Med Int Heal 2002; 7: 960–9.
- Bikash Srot Kendra. Piloting hygiene promotion through routine immunisation in Nepal. 2017.
- Delea MG, Snyder JS, Belew M, et al. Design of a parallel cluster-randomized trial assessing the impact of a demand-side sanitation and hygiene intervention on sustained behavior change and mental well-being in rural and peri-urban Amhara, Ethiopia: Andilaye study protocol. BMC Public Health 2019; 19: 1–15.
- Briceño B, Chase C. Cost and Cost-Efficiency of Rural Sanitation and Handwashing Promotion: Activity-Based Costing and Experimental Evidence from Indonesia, India, Tanzania and Peru. 2014.
- Pinfold J, Horan N. Measuring the effect of a hygiene behaviour intervention by indicators of behaviour and diarrhoeal disease. Trans R Soc Trop Med Hyg 1996; 90: 366–71.

- Rajaraman D, Varadharajan KS, Greenland K, et al. Implementing effective hygiene promotion: Lessons from the process evaluation of an intervention to promote handwashing with soap in rural India. BMC Public Health 2014; 14. DOI:10.1186/1471-2458-14-1179.
- Saadé C, Bateman M, Bendahmane DB. The Story of a Successful Public-Private Partnership in Central America. Handwashing for Diarrheal Disease Prevention. Arlington, Virginia: Basic Support for Child Survival Project (BASICS II), 2001.
- Greenland K, Chipungu J, Curtis V, et al. Multiple behaviour change intervention for diarrhoea control in Lusaka, Zambia: a cluster randomised trial. Lancet Glob Heal 2016; 4: e966–77.
- Evans B, Bates L, Halder A. Analysing the Value for Money of SHEWA-B in Bangladesh. 2015.
- Waterkeyn J, Matimati R, Muringaniza A, et al. Comparative Assessment of Hygiene Behaviour Change and Cost-Effectiveness of Community Health Clubs in Rwanda and Zimbabwe. Healthc Access - Reg Overviews 2019. DOI:10.5772/intechopen.89995.
- Biran A, White S, Awe B, et al. A cluster-randomised trial to evaluate an intervention to promote handwashing in rural Nigeria. Int J Environ Health Res 2020; 00: 1–16.
- George CM, Monira S, Sack DA, et al. Randomized controlled trial of hospital-based hygiene and water treatment intervention (CHoBI7) to reduce cholera. Emerg Infect Dis 2016; 22: 233–41.

Methods for estimating the cost of water

Separately for urban and rural, we estimated a per country average price of water based on: (i) the proportion of households using piped improved water supply (JMP data for 2020);¹ (ii) the average national tariff per m³ reported by the International Benchmarking Network for Water and Sanitation Utilities.² Households using piped improved were assumed to pay the IBNET tariff. Unconnected households were assumed to pay double that tariff, an approximation in the absence of data, to reflect their likely increased economic cost of water due to travel time. We combined the above prices with an assumed volume per person per day of 1.5 litres, to estimate an annual cost of water for handwashing. The volume estimate is based on: (i) an average of measured volume data reported by Whinnery et al.³ for three types of barrel and tap technologies, tippy tap, and jug/basin; (ii) the assumptions that, in real life, people wash their hands for 10 seconds an average of four times per day.

C. Additional results

Results for alternative intervention scenario excluding one-to-one promotion

Scenarios for deterministic sensitivity analysis

		Variables		
		Lower cost	Base case	Higher cost
Promotion	Promotion price	lower bound of 95% Cl (l\$ 38)	mean (I\$ 86)	upper bound of 95% CI (I\$ 134)
	Top-up promotion price	20% every 2 years	25% every 1 year	35% every 1 year
	Useful life of promotion	7 years	5 years	3 years
HWF	HWF price	lower bound of 95% Cl (I\$ 32)	mean (I\$ 45)	upper bound of 95% CI (I\$ 58)
	HWF useful life	7 years	5 years	3 years
	Home-made HWF instead of purpose built	"tippy-tap" or repurposed jug/bowl, with a useful life of 2 years (mean prices of n=4 studies)	purpose- built	n/a
Other	Annual soap expenditure	lower bound of 95% Cl (I\$ 29)	mean (I\$ 46)	upper bound of 95% CI (I\$ 63)
	Water volume used for handwashing (litres / person / day)	1	1.5	2
	Discount rate (based on IDSI/GHCC reference cases – see main body)	7%	3%	0.1%
	Economies of scale	Prices of promotion, HWFs and soap in year 2 are 10% lower than year 1, further 8% lower in year 3, etc. such that price from year 7 onwards is 30% lower than year 1 & remains constant.	no change	n/a

Deterministic sensitivity analysis results for promotion cost

References for supplementary materials

- 1 UNICEF & WHO. Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. New York, 2019.
- 2 IBNET. IBNET tariffs database. Int. Benchmarking Netw. Water Sanit. Util. 2021. https://tariffs.ib-net.org/ (accessed Feb 15, 2021).
- Whinnery J, Penakalapati G, Steinacher R, Wilson N, Null C, Pickering AJ. Handwashing with a water-efficient tap and low-cost foaming soap: the Povu Poa 'Cool Foam' system in Kenya. *Glob Heal Sci Pract* 2016; **4**: 336–41.