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Supplementary Methods  
 
 
Collection and processing of prostate tissue to obtain image-translation training data. In 

order to train an image-sequence translation model, we collected one FFPE block from each of 

nine radical prostatectomy (RP) specimens archived in an IRB-approved genitourinary 

biorepository at the University of Washington (UW). Based on the original pathology reports 

generated from the RP specimens, five specimens were from Gleason Grade Group 1 (GS = 3+3) 

and four specimens from Gleason Grade Group 2 or 3 (GS = 3+4 and 4+3). The imaging data 

from this cohort allowed us to train an image-translation model for low- to intermediate-risk PCa 

(Grade Group 1-3).  

 

For deparaffinization, the FFPE blocks were first heated at 75°C for 1 hour until the outer paraffin 

wax was melted. The tissue blocks were then treated 2× with 500 ml of 75°C xylene for 24 hours. 

A hotplate with magnetic stirrer was used to maintain the temperature of the xylene and to 

promote fluid convection around the specimens. Next, we used a vibratome to cut a 200-μm-thick 

slice from the surface of each tissue block. This thickness was optimized to balance two factors: 

1) providing sufficient 3D context to train and test the image-sequence translation model and 2) 

allowing for uniform antibody diffusion and staining within the tissue slices. The tissue slices 

averaged about 1.5 cm × 1 cm in their lateral dimension. Prior to staining, each tissue slice was 

cut into smaller pieces, measuring approximately 0.5 cm × 0.5 cm × 200 μm, to further promote 

fluid convection around all specimens during the staining protocol.  

 

Tri-labeling protocol for generating training datasets. We performed a tri-labeling protocol 

(see Supplementary Table 2) that utilized SYTO™ 85 (Cat: S11366, ThermoFisher) as a nuclear 

stain (hematoxylin analog), Alexa Fluor™ 488 NHS Ester (Cat: A20000, ThermoFisher) as a 

cytoplasmic stain (eosin analog) 61, and a CK8-targeted monoclonal antibody (Cat: MA5-14088, 
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ThermoFisher) for immunofluorescence labeling. Our tri-labeling protocol was adapted from the 

iDISCO protocol 14. We first labeled the tissue with an Alexa Fluor™ 488 NHS ester (binds to all 

proteins) prior to performing CK8 immunostaining in order to prevent the NHS ester from staining 

the CK8 antibody. This ensures unbiased training of the H&E-to-CK8 translation model. CK8 

immunostaining included a primary and secondary antibody staining step. Nuclear staining with 

SYTO™ 85 was performed afterwards, followed by tissue dehydration in ethanol and optical 

clearing (index-matching, n = 1.56) with ethyl cinnamate (Cat: 112372, Sigma-Aldrich). 

 

The fluorescent analog of H&E used for generating training datasets (i.e., SYTO™ 85 + Alexa 

Fluor™ 488 NHS Ester, “S&N”) was slightly different from the H&E analog used for whole-biopsy 

staining in our inference datasets (i.e. TO-PRO-3 + eosin, “T&E”). The S&N version of our H&E 

analog was used for generating the training data so that the CK8 immunofluorescence could be 

placed in the longest-wavelength channel. This was done to ensure that there was negligible 

crosstalk of the CK8 immunofluorescence into the H&E-analog wavelength channels (for 

unbiased training). Despite this difference in the H&E-analog staining protocols, our trained model 

was shown to be applicable to both S&N- and T&E-labeled tissues as inputs. High-fidelity image 

translation was achieved in both cases with minimal differences in appearance (Supplementary 

Fig. 5).  

 

OTLS microscopy parameters. For imaging the 200-μm thick tri-labeled prostate tissue sections 

(training specimens), the Alexa Fluor™ 488 NHS Ester was excited at 488 nm and imaged 

through an emission bandpass filter (FF03–525/ 50–25, Semrock). The nucleic-acid-targeting 

fluorophore, SYTO™ 85, was excited at 561 nm and imaged through another bandpass filter 

(FF01–618/50–25, Semrock). CK8 immunofluorescence (Alexa Fluor™ 647 conjugated 

secondary antibody) was excited at 638 nm and imaged through a third bandpass filter (FF01–

721/ 65–25, Semrock). Raw OTLS images were downsampled by 2× in all three dimensions 
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(which resulted in a sampling pitch of ~0.9 μm/pixel) and fused into a continuous 3D dataset using 

the BigStitcher plug-in 68 in ImageJ. This was done to alleviate memory requirements and to 

accelerate image-translation computations. However, this level of downsampling still preserved 

sufficient sub-cellular details for effective image translation and visual inspection by pathologists. 

From the fused 3D imaging data, we extracted image volumes measuring 1024 × 1024 × 50 pixels, 

which were treated as image sequences with 50 depth levels (corresponding to ~45 μm in depth). 

These image sub-blocks were used for training and testing of the image-translation model. 

 

For imaging the T&E-labeled prostate biopsies, eosin was excited at 488 nm and imaged through 

an emission bandpass filter (FF03–525/ 50–25, Semrock). The nucleic-acid-targeted fluorophore, 

To-PRO™-3 Iodide, was excited at 638 nm laser and imaged through another bandpass filter 

(FF01–721/ 65–25, Semrock). The fused datasets were downsampled by 2× in all three 

dimensions using the BigStitcher plug-in 68 in ImageJ. 

 

Post-processing of training and test data. The small-molecule H&E-analog stain was highly 

reproducible and generated spatially uniform images 13,19. Therefore, data screening/cleaning was 

primarily based on the image quality of the CK8 immunofluorescence channel. In the training and 

testing datasets, we only included tissue regions with spatially uniform CK8 labeling (based on 

visual inspection). To further enhance the contrast and uniformity of the CK8 training data (and 

hence the uniformity of the image-translation outputs), contrast-limited adaptive histogram 

equalization (CLAHE) 69 and flat-fielding 70 were applied on the CK8 datasets. For the training set, 

we obtained a total of 1,806 tri-labeled image sequences (each containing 50 levels) as described 

in the last section. For the validation set, which was used to calculate performance metrics, we 

set aside 58 image sequences that were not used in the training phase. The H&E-analog channels 

were used as model inputs, and corresponding co-registered CK8 images was used as model 

targets (desired outputs) for our GAN-based supervised training strategy. 
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Training the image-translation models. Generative adversarial networks (GANs) 71 provide a 

generalizable model and loss function to solve different image-translation problems that 

traditionally would require the design of specialized models and loss functions by practitioners 

with extensive field-specific expertise. In GANs, the discriminator’s goal is to classify images as 

real or fake (generated), while the generator is trained to synthesize realistic output data that can 

“fool” the discriminator. As an extension of the GAN structure, conditional GANs (cGANs) are 

structured such that both the generator and discriminator are conditioned with prior information 

(in our case, H&E-analog inputs), such that the model can learn how to map inputs (H&E analog) 

to outputs (synthetic CK8) in a supervised manner (Supplementary Fig. 1a). 

 

We adapted pix2pix 72, a prior implementation of cGANs for single-level 2D image translation, in 

order to initialize our image-sequence translation workflow. The pix2pix framework directly 

conditions the generator (Gimge in Supplementary Fig. 1a) with input images that are paired with 

target images. Our adapted generator uses a U-Net 52 architecture with 9 layers of downsampling 

and up-sampling, and the discriminator (Dimage in Supplementary Fig. 1a) uses a convolutional 

PatchGAN 73 classifier. The pix2pix model was first introduced for tasks such as label-to-photo or 

pose-to-photo translations but has also been adapted for biomedical image translations in many 

recent studies 45,74. For pix2pix training, from each 50-level image sequence, we selected five 

levels of 2D images that were 10 pixels apart (~9 μm) to maximize diversity in the training set. 

This yielded 9030 images in total for pix2pix training, each of which was 1024 × 1024 pixels in 

size. Each 2D image level was treated as an independent input during training. Hyperparameters 

were set as default values (identical to the original pix2pix model) except for those specified in 

the training script provided in our GitHub repository. The training required 200 epochs for 44 hours 

with a 12-GB NVIDIA Tesla P100 GPU on a standard node of the UW Hyak high-performance 

computation (HPC) cluster. 
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For “2.5D” image-sequence translation, we adapted a video-translation model, vid2vid 47, which 

performs image conversion frame-by-frame (originally in a “time stack”) and utilizes information 

in adjacent frames to ensure that temporal continuity is maintained. Given that we treat a 3D 

image as a “z-stack” of 2D images, we can apply this same concept to improve continuity in the 

depth dimension. As shown in Supplementary Fig. 1b, the sequence generator (Gsequence) 

synthesizes CK8 images in a level-by-level manner by taking into account the synthetic CK8 

images generated at two previous levels along with the corresponding H&E analog images at 

each level (i.e., the current plus two previous levels). Similar to pix2pix, a multi-scale PatchGAN 

architecture is adopted for the image discriminator (Dimage). In addition, a multi-scale sequence 

discriminator (Dsequence) is trained to ensure small- and large-scale consistency in the 3D spatial 

domain. All 1,806 image sequences (50 levels per sequence) were used for the vid2vid training 

set.  

 

Step 1 of ITAS3D: image-sequence translation (inference phase). Whole-biopsy H&E-analog 

datasets are first sub-divided into blocks of size 1024 × 1024 × 712 pixels with 25% overlap along 

the biopsy-axis direction (the long axis of the cylindrical biopsy). For level-by-level (2.5D) 

inference of synthetic CK8 images, each depth level takes into account the synthetic CK8 images 

generated at two previous levels. Therefore, in order to initiate this process, a 2D translation 

model (the pix2pix model in our case) is required to generate the first two synthetic images within 

the depth sequence (Supplementary Fig. 1c). For each image-sequence block, we start the 

image-sequence translation bi-directionally from the center of the block. This ensures that the 

initial images are of high-quality and that we can avoid irregularities at the tissue edges (e.g., 

staining artifacts and surface irregularities at the edges of the biopsies). We split each block into 

two halves with 34 overlapping levels (Supplementary Fig. 1c). As mentioned, to initialize the 

image-sequence translation process, 2D image translation (pix2pix) is first performed on the 
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bottom two levels of the top half of the block, and on the top two levels of the bottom half of the 

block. The image translation of each biopsy (usually consisting of 10-15 blocks with 25% overlap 

between adjacent blocks) takes ~6 hours with a 12-GB NVIDIA Tesla P100 GPU on a standard 

node of the UW Hyak HPC cluster. Hyperparameters are set as default values (identical to the 

original vid2vid model) except for those specified in the inference script provided in our GitHub 

repository. Once image-sequence translation is completed for both halves, the two halves are 

merged: the first 12 levels in each half are discarded (i.e., they are only used to initiate the image-

sequence translation processes), and the remaining 10 overlapping levels are linearly blended 

(the intensities are smoothly adjusted between the two images so that one image fades out as 

the other image transitions in). Finally, the synthetic-CK8 image blocks are mosaicked with linear 

blending using the ImageJ “stitching” plug-in 75. 

 

Step 2 of ITAS3D: gland segmentation based on synthetic-CK8 datasets. Prior to performing 

gland segmentation, the synthetic-CK8 images are downsampled by 2× in all 3 dimensions (1.8 

μm/pixel) to reduce memory requirements and computational times while still enabling gland 

segmentations to be performed at a reasonable spatial resolution. The resulting synthetic-CK8 

datasets for each biopsy are approximately 7000 (length) × 512 (width) x 356 (depth) pixels in 

size. First, to enhance the contrast of the boundary of the epithelium with respect to the 

background, a 3×3 edge-sharpening filter is applied to each sagittal 2D level within the 3D dataset 

(the sagittal view is the typical en face view of a biopsy seen by pathologists). Then, a preliminary 

segmentation mask for the epithelium is obtained via Otsu thresholding. The CK8 biomarker is 

expressed in the cytoplasm of the luminal epithelial cells.  Therefore, in order to fill in the unstained 

nuclei and to acquire a solid epithelium mask, a binary closing routine (dilation followed by erosion) 

is performed using a 3×3 structural element with a square connectivity equal to one, followed by 

a small-hole filling routine applied to the epithelium mask. 
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To segment the lumen, we first fill in any 2D contours enclosed by the epithelium mask in a level-

by-level manner along 3 orthogonal directions (see Supplementary Fig. 6), which are then 

combined. This allows most lumen spaces to be filled in accurately even in the presence of small 

and sparse gaps in the 3D epithelium mask that may arise due to imperfections in the synthetic-

CK8 images. However, this method occasionally introduces false-positive lumen regions that 

actually correspond to cytoplasm regions. A cytoplasm mask, obtained with Otsu thresholding of 

the eosin channel, is used to remove these false-lumen regions.  We finalize the semantic 

segmentation of glands by taking the union of the lumen and epithelium masks with some minor 

adjustments, such as noise removal and filling in of small holes. In addition, a stroma mask is 

obtained by applying an active contour algorithm 48 to the cytoplasm channel. For each biopsy, 

the computational time for gland segmentation when starting from a synthetic CK8 dataset is ~30 

minutes for a 3.20GHz CPU (Intel® Xeon® Gold 6134) with 64Gb of RAM. 

 

Benchmarking the performance of ITAS3D with alternative segmentation methods. The 

effectiveness of ITAS3D was compared with two well-known object-segmentation methods. The 

first benchmarking method utilized traditional 3D image-processing techniques, starting with a 

watershed method 51 extended to 3D, which was applied on the eosin-analog channel to identify 

candidate lumen regions only (segmenting the epithelial cells was not successful with this 

method). Here, the 3D-watershed algorithm was initiated at marker points that were identified with 

an Otsu thresholding routine applied on the same eosin-analog images. Likewise, nuclei were 

detected by applying another watershed-based segmentation method on the hematoxylin-analog 

images 76. Candidate lumen regions in which the majority of the boundary pixels were not adjacent 

(within 10 µm) to segmented nuclei were eliminated due to the fact that true lumen regions are 

always enclosed by epithelial cells. The second benchmarking method was a convolutional neural 

network, U-Net 52, originally developed for biomedical image segmentation. To train the 2D U-Net 

model, patches were extracted from 15 ROIs from five biopsies (3 ROIs from each). Manual 
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ground-truth annotations of glands were performed under the guidance of a board-certified 

pathologist (N.P.R.). Four biopsies were used for training with the remaining biopsy used to 

validate the accuracy of the model. For each 512 × 512 patch, a split ratio of 4:1 was utilized for 

training vs. validation 52,77,78, which resulted in 1600 patches for training, and 400 for validation. 

During training, the patches were further augmented via random left or right flipping manipulations, 

and 90° rotations, to increase the robustness of the model. 

 

Ground-truth annotations to validate gland-segmentation performance. Ten 0.2-mm3 

regions (512 × 512 × 100 voxel each) from different patients were randomly selected from the 

testing dataset (tri-labeled 3D images not used for training). These regions were manually 

annotated based on H&E-analog and real-CK8 immunofluorescence images to obtain a ground-

truth set of 3D gland segmentations (for both the lumen mask and epithelium mask). These 

manual annotations were performed using a commercial image-analysis software package, Aivia 

(Leica Microsystems), under the guidance of a board-certified genitourinary pathologist (N.P.R.). 

 

Cancer-region annotations. Cancer-enriched regions in each biopsy were annotated by 

recording the coordinates of those regions along the axis of each cylindrically shaped biopsy.  

This was performed based on a level-by-level visual inspection of the 3D biopsy datasets under 

the guidance of a board-certified genitourinary pathologist (N.P.R.). We analyzed the glandular 

features only within the cancerous regions of each biopsy. This was motivated by our finding that 

histomorphometric features from cancer glands exhibit higher correlation with BCR outcomes 

than those from adjacent benign glands (Supplementary Fig. 7). However, due to the fact that 

our cancer-region annotations are only performed along the long axis of each cylindrical biopsy 

(i.e., rough annotations), as well as the observation that benign and cancer glands can be 

intermixed within certain tissue regions, a more-precise and accurate method to identify individual 

cancer glands would likely further improve the prognostic value of our methods in the future. 
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Feature extraction: non-skeleton glandular features. From the 3D gland segmentations, 12 

non-skeleton glandular features relating to gland size and shape were computed. These features 

are presented in Supplementary Table 1 along with a brief description and AUC value for each 

feature. In order to explore the advantages of extending 2D glandular features into 3D, we 

analyzed features that have direct 2D vs. 3D analogs. The first feature set characterizes the 

volumetric extent of different tissue compartments (lumen, epithelium, and stroma). The other 

feature sets characterize the shape of the different compartments, which are derived from a 

“triangle mesh” that approximates the compartments 79. Such features include the surface-area-

to-volume ratio of an object (in 3D) or circumference-to-area ratio (in 2D); the average surface 

curvature (in 3D) or boundary curvature (in 2D) of an object 35; and the gland-to-convex-hull ratio 

(G/H), defined as the volume ratio (in 3D) or area ratio (in 2D) of the gland mask (epithelium + 

lumen) to the convex hull that circumscribes the gland.  The non-skeleton glandular features were 

extracted using the “regionprops”, “mesh_surface_area”, and “ConvexHull” methods from 

Python’s “scikit-image” and “scipy” packages. 3D curvature values were calculated with the 

“discrete_gaussian_curvature_measure” method from the “trimesh” library using meshes 

generated by the “marching_cubes” method in “scikit-image”.  

 

Feature extraction: lumen skeleton features. Extraction of the lumen skeleton (centerline of 

the lumen) was based on a 3D-thinning algorithm 80. As mentioned in the main manuscript, 

meaningful 2D analogs of the 3D skeleton-based features do not exist (Supplementary Table 1). 

Before the skeleton extraction, we down-sampled the segmentation mask by 4× and applied a 

binary erosion (with a spherical kernel of a 2-voxel radius) to prevent false branches from being 

introduced due to fine surface irregularities. For the skeleton networks, a junction is defined as 

the point where a lumen splits into two or more lumens. A branch is defined either as a segment 

between a junction and a junction, a junction and an end point, an end point to an end point, or 
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an isolated loop 81. We extracted 5 different skeleton features: mean branch length, standard 

deviation of the branch lengths, median tortuosity (defined as the ratio of branch length to the 

Euclidean distance between the two end points of the branch), standard deviation of the tortuosity, 

and branch connectivity. Here, branch connectivity is defined as the ratio of the total number of 

branches to the total number of connected sets of branches within each biopsy. 
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Supplementary Notes 

 

Supplementary Note 1 | Omission of the “coarse-to-fine” training strategy in the vid2vid 

model 

 

The coarse-to-fine strategy 1 was a technique employed within the original vid2vid model to 

generate high-resolution videos. In this method, the resolution of the training images was 

increased incrementally (2× at a time, starting from downsampled images) while adding 

resolution-matched residual blocks 2 to the front and back of the generator during the training 

process until the desired target resolution was reached. With the coarse-to-fine training strategy, 

image-sequence translation training was performed over 54 epochs, which took 2 months. 

Without the coarse-to-fine training strategy, only 20 epochs were required, taking about 1 month, 

but with negligible performance loss (see Supplementary note 1, Supplementary Fig. 2 and 

Supplementary Video 1). Both models were trained with a 12-GB NVIDIA Tesla P100 GPU on 

a standard node at the UW Hyak HPC cluster. Note that if the resources are available, the training 

can be done with multiple GPUs (e.g., 8 GPUs in the vid2vid paper) to potentially shorten the 

training time to a few days. Hyperparameters were set as default values (identical to the original 

vid2vid model) except for those specified in the training script provided in our GitHub repository. 

 

The “coarse-to-fine” training strategy was initially proposed to improve the translation of real-world 

inputs, such as natural-scenery videos, over a large range of spatial scales 1. Our speculation is 

that unlike such videos, our CK8 image translation operates on a more-limited range of micro-

scale structures (i.e., close-packed arrangements of luminal epithelial cells surrounding the 

prostate glands). Therefore, the “coarse-to-fine” method, which significantly increases the training 

time, does not noticeably improve the model’s performance. 
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Supplementary Note 2 | Comparison of redundantly processed biopsy volume when using 

3D vs. 2.5D image-translation strategies 

 

There are practical advantages for our 2.5D image-translation-based segmentation approach 

(ITAS3D) in comparison to an approach that operates on whole 3D data cubes.  For computational 

analyses, the maximum allowable size of a 3D data cube (volumetric sub region) is typically 

limited by GPU memory. For instance, with the 3D image-translation method, vox2vox 3, which 

uses a 3D U-Net 4 structure as its generator, a 3D block size that pushes against the 

computational limits of a NVIDIA GeForce RTX 2080 Ti GPU during the inference phase is ~ 160 

× 190 × 130 pixels. With the OTLS microscope used in this study, this corresponds to a physical 

tissue volume of about 140 × 170 × 110 µm3.  This small block size, which results in many prostate 

glands being truncated, could lead to errors (e.g., edge and stitching errors) when performing 3D 

gland segmentations. A common strategy to reduce stitching errors is to include a larger amount 

of overlap between neighboring sub-volumes, but this would further increase computational times.   

 

As a rough estimate based on our experiences with ITAS3D and published results for vox2vox 3 

(see Supplementary Table 4), and assuming a 25% overlap ratio between image blocks 

processed with a 12-GB GPU, approximately 30% of the tissue volume in each biopsy would be 

redundantly processed using a 2.5D image-translation method (e.g. ITAS3D), whereas more than 

100% of each biopsy volume would be redundantly processed using 3D image translation 

(vox2vox) due to the overlap between sub-volumes. This would contribute to increased 

computational times for a 3D image-translation strategy. 
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Supplementary Figures 
 
 

 
Supplementary Fig. 1 | Image-sequence translation model training and inference. a, Image translation in this 
study is based on previously developed conditional GANs (pix2pix for 2D image translation, and vid2vid for 2.5D image 
translation), which are trained with paired imaging data in a fully supervised manner. For 2D image translation, the 
generator (Gimage) is trained to translate 2D H&E-analog images into 2D synthetic-CK8 images that cannot be 
distinguished from real CK8 images by the discriminator (Dimage), which is adversarially trained to classify between real 
and fake (synthetic) CK8 images. b, For 2.5D image translation, a 3D image is regarded as a sequence of 2D images. 
The generator (Gsequence) is trained to produce synthetic CK8 images in a level-by-level manner, conditioned with both 
an H&E-analog input image at each level, as well as H&E-analog and synthetic-CK8 images at two previous levels to 
ensure spatial continuity between adjacent images/levels within the sequence. Meanwhile, an image discriminator 
(Dimage) and a sequence discriminator (Dsequence) are adversarially trained to classify between real or fake (synthetic) 2D 
images and image sequences, respectively. c, In the inference phase, to ensure robust image translation, each H&E-
analog image block is split into a top and bottom half with overlapping regions. This allows image-sequence translation 
to be initiated from the center of the biopsy, where image-quality is optimal and tissue-edge artifacts are avoided. For 
each half, image-sequence translation is initiated with 2D image translation of the first two levels (in blue for the top 
half, in orange for the bottom half), which transitions to 2.5D image-sequence translation for the remaining levels. The 
final synthetic-CK8 dataset is obtained by merging the top and bottom halves of the block with linear blending of the 
overlapping middle levels (in red).  
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Supplementary Fig. 2 | A bivariate plot to compare the 3D SSIM metric for synthetic-CK8 images generated 
with and without coarse-to-fine training. The testing dataset contains 58 tissue volumes, each with a size of ~0.2-
mm3 (1024 × 1024 × 200 pixel). The p values (two-sided paired t-test) show no significant differences between the 
SSIM distributions for synthetic-CK8 images generated by the two models (with and without the coarse-to-fine training 
strategy). 
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Supplementary Fig. 3 | Histogram of branch lengths for PCa glands. The diameter of the biopsies (1-mm) imaged 
in this study is large enough to accurately quantify the majority of branch lengths for PCa glands.  
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Supplementary Fig. 4 | Visualization of the separation between BCR and non-BCR groups based on 3D and 2D 
glandular features. The 25 BCR cases and 25 non-BCR cases were mapped to a 2-dimensional space using t-SNE. 
The separation between the two groups is more evident when the t-SNE analysis is based on 3D (a) rather than 2D (b) 
glandular features. 
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Supplementary Fig. 5 | Use of a different fluorescent analog of H&E for model training and inference. Although 
our image-sequence translation model is trained with a H&E analog that is slightly different from the H&E analog used 
for our inference datasets, the trained model performs comparably well in both cases.  The top and bottom rows show 
image-translation results based on tissues stained with an “S&N” protocol (used for training) versus a “T&E” protocol 
(used in our clinical studies).  Minimal differences are seen in the synthetic-CK8 output images (far right). This is likely 
due to the highly similar appearance of tissue stained with the two H&E-analog protocols (as shown). Scale bar: 100 
μm. 
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Supplementary Fig. 6 | Lumen-filling strategy. Epithelial cells should ideally completely enclose all lumen regions. 
However, due to imperfect labeling, sparse and small gaps in the epithelia occasionally appear. This leads to errors 
when attempting to identify the lumen spaces with a slice-by-slice contour-filling routine (as shown in step 1).  However, 
by performing slice-by-slice contour filling along 3 orthogonal directions and combining the results, most lumen spaces 
are accurately filled in.  We have found this method to be superior to standard 3D methods for filling in enclosed 
surfaces. 
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Supplementary Fig. 7 | Comparing the AUC values for glandular features in cancer and benign regions. Patient-
level AUC values for glandular features (4 non-skeleton and 4 skeleton-based features are shown here) are higher for 
glands in cancerous regions than in adjacent benign regions.  We therefore focused our analyses on cancer-enriched 
regions of each biopsy. 
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Supplementary Fig. 8 | Illustration of the model-training and validation schema. A nested 3-fold cross validation 
(CV) was used for model training and validation. The inner CV was performed at each iteration of the outer CV to 
determine the optimal model parameter, l. In the outer CV, the model was developed based on the training fold (2/3 of 
the cases) using the optimal l value. Model performance metrics were then quantified based on the validation fold 
(remaining 1/3 of cases) to calculate the AUC.  The nested CV ensures that there is no overlap between the data used 
to develop the classification model and the data used to evaluate the performance of the model. The nested CV was 
performed 200 times, generating 600 AUCs (3 AUCs from each iteration). The average and standard deviation of the 
AUCs were calculated and compared.  
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Supplementary Tables 

 

Supplementary Table 1 | List of glandular features 

Feature 
category Feature set 

3D glandular features (G: 
gland [1], E: epithelium, L: 

lumen, S: stroma) 

3D AUC 
value 2D glandular features 2D AUC 

value 

Non-
skeleton 
features 

Size 
Volume (L) / volume (E) 0.82 Area (L) / area (E) 0.79 
Volume (E) / volume (G) 0.82 Area (E) / area (G) 0.78 
Volume (S) / volume (G) 0.67 Area (S) / area (G) 0.68 

Compactness 
Surface area (G) / volume (G) 0.68 Circumference (G) / area (G) 0.63 
Surface area (E) / volume (E) 0.57 Circumference (E) / area (E) 0.55 
Surface area (L) / volume (L) 0.69 Circumference (L) / area (L) 0.75 

Irregularity 

Volume (G) / convex hull 
volume (G) 0.72 Area (G) / convex hull area (G) 0.62 

Volume (E) / convex hull 
volume (E) 0.52 Area (E) / convex hull area (E) 0.72 

Volume (L) / convex hull 
volume (L) 0.67 Area (L) / convex hull area (L) 0.51 

Boundary 
Curvature 

Average Gaussian curvature 
(absolute values) of the G 

surface  
0.79 Average curvature of the G 

boundary 5. 0.72 

Average Gaussian curvature 
(absolute values) of the E 

surface 
0.80 Average curvature of the E 

boundary 5. 0.64 

Average Gaussian curvature 
(absolute values) of the L 

surface  
0.84 Average curvature of the L 

boundary 5. 0.74 

Skeleton 
features 

Lumen 
skeleton 

Average branch length 0.73 

N /A 

Standard deviation of the 
branch length  0.71 

Median tortuosity [2] for all 
branches  0.65 

Standard deviation of the 
tortuosity for all branches  0.6 

Branch connectivity [3]  0.58 

 

[1] G = E + L 
[2] Tortuosity is defined as: branch length / Euclidian distance between two end points 
[3] Branch connectivity is defined as: total number of branches / total number of connected sets of branches  
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Supplementary Table 2 | The tri-labeling protocol 

Time Steps 

Week 1 
 

Day 2 Wash samples with PBS (1× phosphate-buffered saline) for 1h, then in 25% methanol (in PBS) for 
1h, 50% methanol for 1h, 75% methanol for 1h, and 100% methanol for 1h at room temperature. 
Samples are then put into 100% methanol for storage. 

Day 3 Chill samples at 4°C for 1h, then bleach in 5%H2O2 in methanol at 4°C overnight. 

Day 4 Wash samples in 75% methanol (in PBS) for 1h, then in 50% methanol for 1h, 25% methanol for 1h, 
100% PBS for 1hr at room temperature. For cytoplasm staining, samples are incubated in 5μg/ml 
Alexa Fluor™ 488 NHS ester (dissolved in pH 5 PBS, where the pH is adjusted with HCl, Cat: 
A20000, ThermoFisher) at 37°C overnight. 

Day 5 Wash samples in PBS/0.2% Triton X-100 for 1h at room temperature twice. Samples are kept in 
PBS/0.2% Triton X-100 at room temperature. 

Week 2 
 

Day 1 Samples are incubated in PBS/0.2% Triton X-100/20% DMSO/0.3M glycine, at 37°C overnight. 

Day 2 Block samples with PBS/0.2% TritonX-100/10% DMSO/6% Donkey Serum/3mM NaN3, at 37°C 
overnight. 

Day 3 Samples are incubated with the primary antibody (Cytokeratin 8/18 Monoclonal Antibody 5D3, 1:20 
diluted, Cat: MA5-14088, ThermoFisher) in PBS/0.2%Tween-20/10μg/ml heparin 
(PTwH)/5%DMSO/3% Donkey Serum/3mM NaN3 at 37°C until the next step. 

Week 3 
 

Day 2 Wash samples in PTwH for 15 min, 30 min, 1h and 1h at room temperature. Samples are then kept 
in PTwH overnight at room temperature. 

Day 3 Samples are incubated with the secondary antibody (Alexa Fluor 647 AffiniPure Donkey Anti-Mouse 
IgG, 1:100 diluted, Cat: 715-605-150, JacksonImmunoResearch) in PTwH/3% Donkey Serum/3mM 
NaN3 at 37°C. 

Week 4 
 

Day 1 Samples are incubated in PTwH for 15 min, 30 min, 1h and 1h at room temperature. For nuclear 
staining, samples are incubated 5uM SYTO™ 85 (in PTwH, Cat: S11366, ThermoFisher) overnight 
at 37°C. 

Day 2 Wash samples with PBS for 1h, then incubate with 25% ethanol (in PBS) for 1h, 50% ethanol for 1h, 
75% ethanol for 1h, and 100% ethanol for 1h at room temperature. Samples are then kept in 100% 
ethanol overnight at room temperature. 

Day 3 For optical clearing, samples are incubated in ethyl cinnamate for 30 min 2x at room temperature. 
Samples are then ready for 3D OTLS microscopy. 
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Supplementary Table 3 | Relevant clinical parameters for study cases (N = 50)  

Case # Eligibility BCR 
category [1]  

Age at 
diagnosis 

Days to recurrence 
post-RP 

Multiparameter 
model 

classification 
based on 2D 
features [2] 

Multiparameter 
model 

classification 
based on 3D 

(w/o skeleton) 
features [2] 

1 Non-recurrent 0 50-54 N/A Low risk Low risk 

2 Recurrent (<5 years) 1 65-69 669 Low risk High risk 

3 Recurrent (<5 years) 1 55-59 Data not available Low risk Low risk 

4 Recurrent (<5 years) 1 55-59 Data not available High risk High risk 

5 Non-recurrent 0 60-64 N/A High risk High risk 

6 Recurrent (<5 years) 1 70-74 Data not available High risk High risk 

7 Recurrent (>5 years) 0 45-49 Data not available Low risk Low risk 

8 Non-recurrent 0 55-59 N/A Low risk Low risk 

9 Recurrent (<5 years) 1 70-74 Data not available High risk High risk 

10 Recurrent (<5 years) 1 45-49 Data not available High risk Low risk 

11 Recurrent (<5 years) 1 55-59 1491 Low risk High risk 

12 Non-recurrent 0 60-64 N/A Low risk Low risk 

13 Non-recurrent 0 55-59 N/A High risk Low risk 

14 Non-recurrent 0 55-59 N/A Low risk Low risk 

15 Recurrent (>5 years) 0 60-64 1949 High risk High risk 

16 Recurrent (<5 years) 1 50-54 Data not available High risk High risk 

17 Non-recurrent 0 50-54 N/A High risk Low risk 

18 Non-recurrent 0 55-59 N/A High risk Low risk 

19 Recurrent (<5 years) 1 55-59 1553 Low risk Low risk 

20 Non-recurrent 0 60-64 N/A High risk Low risk 

21 Non-recurrent 0 55-59 N/A Low risk Low risk 

22 Recurrent (<5 years) 1 70-74 182 Low risk High risk 

23 Non-recurrent 0 70-74 N/A Low risk Low risk 

24 Recurrent (<5 years) 1 50-54 214 Low risk High risk 

25 Non-recurrent 0 60-64 N/A High risk Low risk 

26 Non-recurrent 0 65-69 N/A High risk High risk 

27 Non-recurrent 0 55-59 N/A Low risk Low risk 

28 Recurrent (<5 years) 1 70-74 1065 High risk High risk 

29 Non-recurrent 0 55-59 N/A High risk High risk 

30 Non-recurrent 0 55-59 N/A Low risk Low risk 

31 Non-recurrent 0 50-54 N/A High risk Low risk 

32 Recurrent (<5 years) 1 55-59 Data not available Low risk High risk 

33 Recurrent (>5 years) 0 55-59 Data not available High risk Low risk 

34 Recurrent (<5 years) 1 65-69 457 High risk High risk 
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35 Recurrent (<5 years) 1 60-64 Data not available High risk High risk 

36 Non-recurrent 0 55-59 N/A Low risk Low risk 

37 Recurrent (<5 years) 1 50-54 1216 High risk High risk 

38 Recurrent (<5 years) 1 55-59 182 High risk High risk 

39 Recurrent (<5 years) 1 45-49 912 High risk High risk 

40 Recurrent (<5 years) 1 60-64 Data not available High risk High risk 

41 Recurrent (<5 years) 1 65-69 Data not available High risk High risk 

42 Recurrent (<5 years) 1 60-64 Data not available Low risk High risk 

43 Recurrent (<5 years) 1 60-64 Data not available High risk High risk 

44 Recurrent (<5 years) 1 60-64 Data not available High risk High risk 

45 Recurrent (<5 years) 1 60-64 1096 High risk Low risk 

46 Non-recurrent 0 50-54 N/A Low risk High risk 

47 Recurrent (<5 years) 1 70-74 Data not available Low risk High risk 

48 Non-recurrent 0 65-69 N/A Low risk Low risk 

49 Non-recurrent 0 50-54 N/A High risk Low risk 

50 Non-recurrent 0 60-64 N/A Low risk Low risk 

 
[1] 1 = cases with BCR under 5 years, 0 = all other cases. 

 
[2]  This stratification is based on a threshold of 0.5 applied to the multi-parameter classification model’s output (which 
ranges from 0-1). 
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Supplementary Table 4 | Comparison of 3D and 2.5D image translation in terms of the 

tissue volume that must be redundantly processed due to GPU limitations (which limit the 

3D block sizes) 

 

 vox2vox (full 3D) ITAS3D (2.5D) 

Biopsy size (pixels) 14000 × 1024 × 712 

Sub-divided block size, limited by 
GPU memory (pixels) 

173 × 133 × 115 
(NVIDIA GeForce RTX 

2080 Ti) 

1024 × 1024 × 712 
(NVIDIA Tesla P100) 

Overlap percentage 25% 

Total processed volume (# of 
pixels) including overlap  2.5 × 1010  1.3 × 1010 

Redundantly processed volume (# 
of pixels) 1.4 × 1010 3.2 × 109 

Percentage of biopsy volume that 
is redundantly processed 142.5% 31.7% 
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Supplementary Videos 

 

Supplementary Video 1 | Comparison of synthetic-CK8 outputs generated by models 

trained with and without the coarse-to-fine training strategy. A depth-stack (z-stack) video 

shows (from left to right): a real-CK8 dataset (ground-truth), a synthetic-CK8 dataset generated 

by a model trained with the coarse-to-fine strategy, and a synthetic-CK8 dataset generated by a 

model trained without the coarse-to-fine strategy. Two different tissue regions are shown (top and 

bottom rows). The results show no major qualitative or quantitative differences (3D SSIM) in 

image quality, but the training time is approximately doubled with the coarse-to-fine strategy. 

Scale bar: 100 μm. 

 

 

Videos are provided as separate files (a screenshot is shown above)  
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Supplementary Video 2 | Depth sequence of the benign and cancerous 3D regions shown 

in Fig. 3. Columns from left to right: false-colored H&E images, false-colored synthetic-CK8 

images (IHC appearance), and segmentation masks for the luminal epithelium (in red), lumen (in 

yellow), and stroma (in gray). Scale bar: 100 μm. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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Supplementary Video 3 | Depth sequence of a false-colored H&E-analog dataset, a 

corresponding CK8-IHC dataset, and a gland-segmentation mask for a 3D prostate biopsy. 

In the segmentation mask, yellow regions represent the luminal epithelium, red regions represent 

the lumen, and gray regions represent the stroma. Scale bar: 100 μm. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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Supplementary Video 4 | Comparison between 2D image translation and 2.5D image 

translation. A depth-stack (z-stack) video shows (from left to right): a false-colored H&E-analog 

dataset (input), real-CK8 IF (ground-truth), synthetic-CK8 IF generated with 2D image translation 

(output), and synthetic-CK8 IF generated with 2.5D image translation (output).  Two different 

tissue regions are shown (top and bottom rows). Compared to 2D image translation, the 2.5D 

image translation significantly enhances the spatial continuity between different levels as a 

function of depth. Scale bar: 100 μm. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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Supplementary Video 5 | Comparison of segmentation results with ITAS3D and two 

baseline methods. Top, front, and side views (x, y, and z-stack videos) are shown of 3D 

segmentations for an example tissue region achieved with ITAS3D, 2D U-net (generated level-

by-level along the z direction), and 3D watershed. Regions where the segmentation mask agrees 

with the ground-truth annotation (segmentation+, ground-truth+) are shown in white, and regions 

where the segmentation disagrees with the ground-truth are shown in cyan (segmentation+, 

ground-truth-) and magenta (segmentation-, ground-truth+). Scale bar: 100 μm. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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Supplementary Video 6 | Volume rendering of gland segmentations and skeleton 

networks for benign and cancerous biopsies. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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Supplementary Video 7 | Video summary of ITAS3D-enabled PCa gland analysis for 

whole biopsies. 

 

 

Videos are provided as separate files (a screenshot is shown above) 
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