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Abstract  
Background 
The computer simulation presented in this study aimed to investigate the effect of contact tracing on 
COVID-19 transmission and infection in the context of rising vaccination rates.  
 
Methods 
This study proposed a deterministic SEIRV model with contact tracing and vaccination components. 
We initialized some parameters using the Malaysian COVID-19 data to inform the model. We defined 
contact tracing effectiveness as the proportion of contacts of a positive case that was successfully 
traced and vaccination rate as the proportion of daily doses administered per population in Malaysia. 
Sensitivity analyses on the untraced and infectious populations were conducted. The study presented 
in silico findings on multiple scenarios by varying the contact tracing effectiveness and daily 
vaccination rates.  
 
Results 
At a vaccination rate of 1.4%, a contact tracing with the effectiveness of 70% could delay the peak of 
untraced asymptomatic cases by 17 days and reduced the highest number of daily cases by 70% 
compared with 30% contact tracing effectiveness. A similar trend was observed for symptomatic cases 
when a similar experiment setting was used. We also performed sensitivity analyses by using different 
combinations of contact tracing effectiveness and vaccination rates. In all scenarios, the effect of 
contact tracing on COVID-19 incidence persisted for both asymptomatic and symptomatic cases.  
 
Conclusion  
While vaccines are progressively rolled out, efficient contact tracing must be rapidly implemented 
concurrently to reach, find, test, isolate, and support the affected populations to bring the pandemic 
under control. 
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Introduction  
 
The pandemic caused by the virus SARS-CoV-2 has infected more than 200 million people and led to 
4.5 million deaths worldwide as of 26 August 2021.1 Since January 2021, approximately 2 billion people 
are fully vaccinated against COVID-19, with several countries, mostly upper-middle-income economies, 
having reached 70% full vaccination to-date.1,2 Despite this, the pandemic shows no sign of abatement, 
with the spread of the Delta variant triggering new outbreaks in many countries globally.3    
 
Governments of various countries have started to invest in digital contract tracing since 2020. Digital 
contact tracing is an approach to disrupt the chains of disease transmission by identifying and isolating 
those in close contact with an infected individual.4 It leverages proximity and geospatial technologies 
to provide a comprehensive approach to collect spatio-temporal data.5,6 The data can be used to study 
the movement and interaction of humans across time, which can then be utilized further for 
investigating disease transmissions such as COVID-19, tuberculosis, and other communicable diseases. 
A successful digital contact tracing could keep the reproduction number R-naught under control, while 
failing to have an efficient digital contract tracing would cause the daily cases to increase exponentially. 
A study by Mizumoto and colleagues has shown that for COVID-19, 70% of transmissions occur before 
someone is symptomatic,7 indicating the importance of having a speedy and accurate contract tracing 
mechanism. Another study by Abueg and colleagues has also reported that if a digital contact tracing 
is used by 75% of the population, the number of infections can be reduced by 73–79%.8 
 
Among those fully vaccinated, reports of breakthrough infections, severe illness, and deaths have 
since been reported in countries like Iran and Indonesia.9,10 The evidence on the protective effect of 
several COVID-19 vaccines in the World Health Organization Emergency Use Listing against the Delta 
variant has gradually emerged, with their effectiveness reported being lower than the protection 
conferred against the Alpha variant.11–13 Nevertheless, the evidence thus far indicates that vaccines 
are effective against symptomatic and severe COVID-19,12,14,15 and vaccines uptake and administration 
should be ramped up globally. From a public health perspective, it is vital to reduce the transmission 
and incidence of infection to protect pockets of populations who could not be vaccinated and allow 
economies to open in a safe and calibrated manner.  
 
As of 26 August 2021, the cumulative number of COVID-19 cases in Malaysia has exceeded 1.5 million, 
and the daily new confirmed cases per 100,000 population remain one of the highest in the world.1 
While Malaysia has consistently rolled out between 400,000 and 500,000 doses of vaccines per day 
since July 2021 and implemented multiple iterations of movement control order with different 
measures since March 2020, the pandemic continues to rage with a record number of cases and 
deaths daily. Contact tracing efforts are also severely hampered due to the strain to the public health 
system, causing missed contacts who might have been infected but did not know their risk to delay 
testing and further transmit the virus.16,17  
 
It is increasingly evident that a single intervention, be it vaccine, public health, or social measures, is 
insufficient to control the pandemic. Hence, in this paper, we aimed to investigate the importance of 
implementing an effective contact tracing on COVID-19 transmission and infection in the context of 
rising vaccination rates using a deterministic, compartmental modeling approach as an experimental 
basis for our discussion.  
 
Methods 
 
Design 
First, we proposed a novel transmission model which factored in contact tracing effectiveness and 
vaccination. Next, we determined the parameter using estimations based on Malaysia COVID-19 data 
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and information from published literature. Finally, we conducted sensitivity analyses of the 
parameters on the number of untraced, infectious individuals.   
 
Epidemic model 
We developed a deterministic, compartmental SEIRV model to study the transmission dynamics of 
COVID-19 when contact tracing and vaccination were incorporated. The human population was 
subdivided into ten classes according to their disease status, namely the susceptible (𝑆), exposed (𝐸), 
traced exposed (𝑇), quarantined symptomatic infected (𝑄!"#), quarantined asymptomatic infected 
(𝑄$!"#), symptomatic infected (𝐼!"#), asymptomatic infected (𝐼$!"#), recovered (𝑅), death (𝐷) and 
vaccinated (𝑉). The susceptible compartment (𝑆) was composed of all healthy individuals who could 
get infected with SARS-CoV-2. Individuals in the exposed compartment (𝐸) were those who have 
gotten infected with the virus but remained in their latent period and untraced. The traced exposed 
(𝑇) compartment referred to infectives in their latent period who were successfully traced and isolated. 
Quarantined symptomatic infected (𝑄!"#) compartment comprised infected individuals who were 
infectious with symptoms and in quarantine either at home or in hospital, whereas the quarantined 
asymptomatic infected (𝑄$!"#) compartment was composed of those infectious individuals without 
symptoms and in quarantine. Individuals in the symptomatic infected (𝐼!"#) compartment referred 
to those untraced infectious individuals who have developed the symptoms, while those untraced 
infectious individuals without symptoms belonged in the asymptomatic infected ( 𝐼$!"# ) 
compartment. Those who recovered with COVID-19 immunity made up the recovered ( 𝑅 ) 
compartment, and those who received COVID-19 immunity through vaccination formed the 
vaccinated (𝑉 ) compartment. Lastly, victims who died from COVID-19 were represented by the 
compartment 𝐷. Individuals could transition from one compartment over time but were only allowed 
to be in one compartment at a time. These compartments were summarized in Table 1. 
 
Table 1: Description of compartments in our SEIRV model 
 

State variable Description 
𝑆 Susceptible individuals 
𝑇 Infected individuals in latent period (exposed) that were traced  
𝐸 Infected individuals in latent period (exposed) that were untraced  

𝑄!"# Symptomatic infectious individuals that were traced and quarantined  
𝑄$!"# Asymptomatic infectious individuals that were traced and quarantined 
𝐼!"# Symptomatic infectious individuals that were not traced 
𝐼$!"# Asymptomatic infectious individuals that were not traced 
𝑅 Recovered individuals with immunity 
𝐷 Deaths due to COVID-19 
𝑉 Vaccinated individuals 

 
Model assumptions 
The susceptibles (𝑆) could become infectives when they met with either symptomatic (𝐼!"# ) or 
asymptomatic ( 𝐼$!"# ) infectious individuals at different transmission rates of 𝛽!"#   or 𝛽$!"# , 
respectively. This transmission rate was the product of contact rate and the probability of transmission 
given contact. In this paper, we assumed that these public health and social measures (PHSM) did not 
vary across time and that the population was not partitioned according to age or comorbidity. Also, 
natural births and deaths were not considered. Our focus was on analyzing the “trace and isolate” 
policy, whereby tracing could be done manually or through an automated process using tracing apps. 
Hence, we subdivided the exposed compartment (infectives in latent period) further into traced 
exposed (𝑇) and untraced exposed (𝐸 ) compartments. The implementation of the “trace and isolate” 
approach could reduce the transmission of COVID-19 by forcing the traced exposed individuals into 
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quarantine (𝑇 ) through self-isolation. Therefore, we assumed that all the traced individuals in 
quarantine (𝑇) will have full compliance.  
 
As they were unaware of their disease status, asymptomatic infectious individuals (𝐼$!"# ) would 
continue to contribute to the transmission of the virus when they met another susceptible at a rate of 
𝛽$!"# , leading to untraced infectives in the 𝐸  compartment. Following the work of Grimm and 
colleagues,18 the parameter 𝜔  denoted the proportion of the symptomatic infectious population 
(𝐼!"#) detected by the health authorities, while the parameter 𝜏 was the contact tracing effectiveness 
which described the fraction of the contacts traced either manually or via digital tools such as tracing 
apps. Hence, the product 𝜔𝜏 gave the total proportion of infectives in their latent period who were 
successfully traced and transitioned into the (𝑇) compartment at a rate of 𝛽!"#, whereas (1 - 𝜔𝜏) 
referred to tracing failures and thus, (1 - 𝜔𝜏 ) proportion of infectives would enter the untraced 
exposed (𝐸) compartment at a rate of 𝛽!"#.  
 
Furthermore, infectives in their latent period (𝐸, 𝑇) would become infectious at a rate of 𝜎, which 
denoted the reciprocal of the incubation period. With 𝜀 as the fraction of exposed persons (𝐸, 𝑇) who 
were asymptomatic, then 𝜀𝜎𝐸  would be the number of untraced exposed ( 𝐸 ) entering the 
asymptomatic infectious compartment (𝐼$!"#), while 𝜀𝜎𝑇 referred to the number of traced exposed 
(𝑇) who would move into the asymptomatic infectious quarantine (𝑄$!"#) compartment. This gives 
(1 - 𝜀) as the fraction of the exposed population (𝐸, 𝑇) who were symptomatic, which leads to (1 - 
𝜀)𝜎𝐸, the number of untraced exposed (𝐸) moving into the symptomatic infectious compartment 
(𝐼!"#), whereas (1 - 𝜀)𝜎𝑇 as the number of traced exposed (𝑇) entering the asymptomatic infectious 
quarantine (𝑄!"#) compartment. We assumed that only symptomatic infected individuals could die 
from COVID-19 at a rate of 𝜇 thus entering the 𝐷 compartment. We also assumed that the disease-
induced death rate (𝜇 ) was constant and unaffected by disease severity and hospital capacity. 
Symptomatic infected individuals ( 𝐼!"#, 𝑄!"# ) would recover at a rate of 𝛾!"#  which was the 
reciprocal of the duration of infectiousness of symptomatic patients. On the other hand, 
asymptomatic infected individuals (𝐼$!"#, 𝑄$!"#) would recover at a rate of 𝛾$!"#  which was the 
reciprocal of the duration of infectiousness of asymptomatic patients. Finally, we incorporated 
vaccination into the model. In this work, the vaccine functioned by reducing the number of 
susceptibles, thus preventing further infections at a rate of 𝑣𝑝, which referred to the product of 
vaccination coverage and effectiveness. The parameters (1 - 𝑝) and 𝛼  denoted the probability of 
vaccination failure in preventing transmissions and the reciprocal duration for the waning of vaccine 
immunity, respectively. Hence, (1 - 𝑝)𝛼𝑉 gave the number of vaccinated individuals who would move 
back to being susceptible (𝑆). The dynamics of transmission were visualized in Figure 1 with the 
description of parameters listed in Table 2: 
 
Table 2: Parameter description 

 
Parameter Description 
𝛽!"# Transmission rate of symptomatic individuals per day per case 
𝛽$!"# Transmission rate of asymptomatic individuals per day per case 
𝜔 Fraction of symptomatic individuals identified by health authorities per day 
𝜏 Fraction of contacts traced per case either manually or via digital tools 
𝜎 Reciprocal of the incubation period 

𝛾$!"# Reciprocal of the infectious period of asymptomatic individuals 
𝛾!"# Reciprocal of the infectious period of symptomatic individuals 
𝜀 Fraction of asymptomatic infectious individuals per day 
𝜇 Disease-induced death rate  
𝑣 Vaccination coverage per day 
𝑝 Vaccine effectiveness rate  
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𝛼 Reciprocal of the time taken for waning vaccine immunity 
 
 
 

 
 
Figure 1: Transmission diagram of the SEIRV model. 
 
 
Model equations 
Following the previous assumptions, our susceptible-exposed-infected-vaccinated (SEIRV) model was 
described by a nonlinear system of ten ordinary differential equations with 12 parameters: 
 
𝑑𝑆
𝑑𝑡

= (1 − 𝑝)𝛼𝑉 − ;𝛽!"#𝜔𝜏𝑆𝐼!"# +	𝛽$!"#𝑆𝐼$!"# + 𝛽!"#(1 − 𝜔𝜏)𝑆𝐼!"# + 𝑣𝑆>, 
𝑑𝑇
𝑑𝑡

= 𝛽!"#𝜔𝜏𝑆𝐼!"# − (𝜎 + 𝑣)𝑇, 
𝑑𝐸
𝑑𝑡

= 	𝛽!"#(1 − 𝜔𝜏)𝑆𝐼!"# +	𝛽$!"#𝑆𝐼$!"# − (𝜎 + 𝑣)𝐸, 
𝑑𝑄!"#

𝑑𝑡
= (1 − 𝜀)𝜎𝑇 − (𝛾!"# + 𝜇)𝑄!"#, 

𝑑𝑄$!"#

𝑑𝑡
= 𝜀𝜎𝑇 − 𝛾$!"#𝑄$!"#, 

𝑑𝐼!"#

𝑑𝑡
= (1 − 𝜀)𝜎𝐸 − ;𝛾!"# + 𝜇>𝐼!"#, 

𝑑𝐼$!"#

𝑑𝑡
= 𝜀𝜎𝐸 − 𝛾$!"#𝐼$!"#, 

𝑑𝑅
𝑑𝑡

= 𝛾!"#(𝑄!"# + 𝐼!"#) + 𝛾$!"#(𝑄$!"# + 𝐼$!"#) − 𝑣𝑅, (8) 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝑑𝐷
𝑑𝑡

= 𝜇(𝐼!"# + 𝐼$!"#), 

𝑑𝑉
𝑑𝑡

= 𝑣(𝑆 + 𝑅) + 𝑣(𝑇 + 𝐸) − (1 − 𝑝)𝛼𝑉, 

 
with initial conditions 𝑆(0) = 𝑆% > 0, 𝑇 > 0, 𝐸(0) = 𝐸% > 0,  𝑄!"#(0) = 𝑄!"#% > 0,𝑄$!"#(0) =
𝑄$!"#% > 0, 𝐼!"#(0) = 𝐼!"#% > 0,  𝐼$!"#(0) = 𝐼$!"#% > 0,  𝑅(0) = 𝑅% > 0,  𝐷(0) = 𝐷% > 0,  and 
𝑉(0) = 𝑉% > 0. 
 
 
Parameter estimation 
The values of parameters in this paper were either estimated using Malaysian COVID-19 data or 
adapted from literature. From a COVID-19 modeling study in Malaysia by Gill and colleagues,19 we 
took the average contacts per day per case (n=25) and the probability of transmission given contact 
by symptomatic persons = 0.05. We calculated the transmission rate 𝛽 as the product of the two which 
gave us 25 x 0.05 = 1.25. However, since we assumed that the population was closed with constant 
size N = 32600000 (the total Malaysian population), we divided the transmission rate 𝛽	by N, to get 
our final 𝛽!"#  as 3.8 × 10&' . To calculate 𝛽$!"#,	we followed the same steps but replaced the 
probability of transmission given contact by asymptomatic persons = 0.02 from Churches and 
colleagues,20 to get the 𝛽$!"# as 1.5 × 10&'.  
 
We defined the effectiveness of contact tracing as the proportion of contacts of a positive case that 
was successfully traced. In Malaysia, we estimated that the proportion of contacts of a COVID-19 case 
traced per case varied between 30% to 40%.21,22 The vaccination coverage per day (𝑣) was estimated 
from the Malaysian vaccination statistics, where around 1.0%–1.5% of the total population was 
vaccinated daily. Also, we included the values for the vaccination coverage,  𝑣 = 0.8% and the contact 
tracing effectiveness, 𝜏  = 50%, 70%, 90% as well for our simulation exercise. Other parameters 
obtained from the literature review were summarized in Table 3. 
 
Table 3: Parameter values 

Parameter Value  Source 
𝛽!"# 3.8 × 10&' 19 
𝛽$!"# 1.5 × 10&' 20 
𝜔 0.9 19 
𝜏 0.9,0.7,0.5,0.4,0.3 estimated, dynamic 
𝜎 1/5 18 

𝛾$!"# 1/10 18 
𝛾!"# 1/12.5 18 
𝜀 0.25 18 
𝜇 0.02 20 
𝑣 0.014,0.012,0.01,0.008 estimated, dynamic 
𝑝 0.9 23 
𝛼 1/30 23 

 
Sensitivity analysis  
In order to solve our SEIRV model, we implemented a numerical integration method Runge-Kutta of 
order 5 by using solve_ivp function from the scipy.integrate module in Python along with parameter 
values in Table 3. Next, to study the dynamics of transmission of COVID-19 concerning contact tracing 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(9) 

(10) 
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and vaccination, we conducted sensitivity analyses of the parameters on the untraced, infectious 
individuals. We were interested in observing the simulation on  𝐼$!"#	and 𝐼!"#  because these 
populations would contribute to forward transmission since they were not traced and isolated. Hence, 
an uncontrolled number of 𝐼$!"#	and 𝐼!"#  would in turn lead to a potential surge in future total 
COVID-19 cases. We varied the values of vaccination coverage 𝑣 and contact tracing effectiveness 𝜏 
and investigated the effects of the changes on 𝐼$!"#	and 𝐼!"# . We prepared four scenarios as 
summarized in Table 4: 
 
Table 4: Scenarios for sensitivity analysis 

Scenario Fixed parameter Value 
(/day) 

Varying parameter Value 
(/day) 

1 Vaccination coverage 1.4% Contact tracing 
effectiveness 30%, 40%, 50%, 70%, 90% 

2 
  

(Vaccination coverage, 
Contact tracing 
effectiveness) 

(30%, 1.5%), (40%, 1.4%), 
(50%, 1.3%), (70%, 1.2%), 
(90%, 1%) 

3 Contact tracing 
effectiveness 90% Vaccination coverage 0.8%, 1%, 1.3%, 1.4% 

4 Contact tracing 
effectiveness 35% Vaccination coverage 0.8%, 1%, 1.3%, 1.4% 

 
 
Results  
 
Scenario 1 simulated five different contact tracing effectiveness ranged between 30% and 90% against 
the backdrop of a fixed vaccination rate of 1.4% per day (Figure 2a-2b). This scenario assumed that 
the vaccine was administered at a rate of approximately 450,000 doses per day. We found that when 
contact tracing effectiveness was at 30%, the number of untraced, asymptomatic cases would peak at 
day-42 with approximately 1.52 million cases before gradually tapering down—the peak decreases as 
the contact tracing effectiveness increases (Figure 2a). When contact tracing effectiveness was 
increased to 70%, the peak was delayed by about 17 days, with the highest number of daily cases at 
459,000, which was about a 70% reduction from those estimated when contact tracing effectiveness 
was at 30%. It can be observed that a contact tracing effectiveness of 90% would almost flatten the 
curve. Similar behavior could be observed for the untraced, symptomatic cases in Figure 2b, in which 
a combination of high vaccination rate (1.4%) and low contact tracing effectiveness (30%) would cause 
a peak of the cases to be about 3.5 million at day-40. When we increased the contact tracing 
effectiveness to 70%, the peak was delayed by about 15 days, with approximately one million cases 
which were about 29% of those estimated when contact tracing was at 30% effectiveness. When 
contact tracing effectiveness increased, the peaks for both cases were delayed and lowered. 
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Figure 2a: Simulated number of untraced, COVID-19 asymptomatic cases with fixed vaccination rate 
and varied contact tracing effectiveness. The vaccination rate per day was fixed at 1.4%, which 
translates to approximately 450,000 doses of vaccine, and the contact tracing effectiveness varied 
between 30% and 90%. The dashed lines represent the simulated number of untraced COVID-19 
asymptomatic cases for five different contexts over 120 days.  
 

 
Figure 2b: Simulated number of untraced, COVID-19 symptomatic cases with fixed vaccination rate 
and varied contact tracing effectiveness. The vaccination rate per day was fixed at 1.4%, which 
translates to approximately 450,000 doses of vaccine, and the contact tracing effectiveness varied 
between 30% and 90%. The dashed lines represent the simulated number of untraced COVID-19 
symptomatic cases for five different contexts over 120 days.  
 
In scenario 2, we conducted simulations by pairing higher contact tracing effectiveness with a lower 
daily vaccination rate and vice versa. Despite a higher vaccination rate, the simulated trend of new 
daily untraced, asymptomatic cases contingent on 30% contact tracing effectiveness was estimated to 
peak at day-42 with 1.46 million cases. The variant with 90% contact tracing effectiveness but a lower 
vaccination rate delayed peaking at day-74 with 182,000 cases (Figure 3a). The same trends were 
observed among symptomatic cases (Figure 3b). A low contact tracing effectiveness of 30% with a 
high daily vaccinate rate of 1.5% would lead to a peak at 3.35 million untraced, symptomatic cases on 
day-41. The scenario with the combination of 90% contact tracing effectiveness and only 1% 
vaccination rate managed to delay the peak to day-72 with 381,000 cases. 
 

 
Figure 3a: Simulated number of untraced, COVID-19 asymptomatic cases with varied vaccination 
rates and contact tracing effectiveness. The vaccination rates per day were varied between 1% and 
1.5%, which translates to approximately 320,000 and 480,000 doses of vaccine, respectively. The 
contact tracing effectiveness varied between 30% and 90%. The dashed lines represent the simulated 
number of untraced COVID-19 asymptomatic cases for five different contexts over 120 days.  
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Figure 3b: Simulated number of untraced, COVID-19 symptomatic cases with varied vaccination 
rates and contact tracing effectiveness. The vaccination rates per day were varied between 1% and 
1.5%, which translates to approximately 320,000 and 480,000 doses of vaccine, respectively. The 
contact tracing effectiveness varied between 30% and 90%. The dashed lines represent the simulated 
number of untraced COVID-19 symptomatic cases for five different contexts over 120 days.  
 
We also simulated two other scenarios where the contact tracing effectiveness was fixed at 90% 
(Figure 4a-4b) and 35% (Figure 5a-5b), respectively. In both scenarios, the vaccination rates varied 
between 0.8% and 1.4% per day. At 90% contact tracing effectiveness (Figure 4a), the peaks for all 
permutations occurred at around the same time (day-68 to day-73) and ranged between 107,000 to 
207,000 cases. The estimated highest number of daily untraced, asymptomatic cases differed by 
approximately 100,000 between high and low vaccination rates when contact tracing effectiveness 
was fixed. The increase in vaccination rate could only delay the peak but failed to lower the peak 
significantly. For the untraced, symptomatic cases in Figure 4b, a combination of low vaccination rate 
(1%) and high contact tracing effectiveness (90%) could successfully reduce the highest number of 
daily cases to about 381,000 at day-70. Under the same circumstance except for a lower contact 
tracing effectiveness (Figure 5a), the estimated number of daily untraced, asymptomatic cases was at 
540,000 at day-57 when the vaccination rate was 1.4%. A similar trend could be seen for the untraced, 
symptomatic cases in Figure 5b, whereby a high vaccination rate (1.4%) but low contact tracing 
effectiveness (35%) could still cause the peak of cases to be 1.2 million at day-54. 
 

 
Figure 4a: Simulated number of untraced, COVID-19 asymptomatic cases with fixed contact tracing 
effectiveness at 90% and varied vaccination rates. The contact tracing effectiveness was fixed at 90% 
and the vaccination rates per day were varied between 0.8% and 1.4%, which translates to 
approximately 260,000 and 450,000 doses of vaccine, respectively. The dashed lines represent the 
simulated number of untraced COVID-19 asymptomatic cases for five different contexts over 160 days. 
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Figure 4b: Simulated number of untraced, COVID-19 symptomatic cases with fixed contact tracing 
effectiveness at 90% and varied vaccination rates. The contact tracing effectiveness was fixed at 90% 
and the vaccination rates per day were varied between 0.8% and 1.4%, which translates to 
approximately 260,000 and 450,000 doses of vaccine, respectively. The dashed lines represent the 
simulated number of untraced COVID-19 symptomatic cases for five different contexts over 160 days. 
 

 
Figure 5a: Simulated number of untraced, COVID-19 asymptomatic cases with fixed contact tracing 
effectiveness at 35% and varied vaccination rates. The contact tracing effectiveness was fixed at 35%, 
and the vaccination rates per day were varied between 0.8% and 1.4%, which translates to 
approximately 260,000 and 450,000 doses of vaccine, respectively. The dashed lines represent the 
simulated number of untraced COVID-19 asymptomatic cases for five different contexts over 120 days. 
 

 
Figure 5b: Simulated number of untraced, COVID-19 symptomatic cases with fixed contact tracing 
effectiveness at 35% and varied vaccination rates. The contact tracing effectiveness was fixed at 35%, 
and the vaccination rates per day were varied between 0.8% and 1.4%, which translates to 
approximately 260,000 and 450,000 doses of vaccine, respectively. The dashed lines represent the 
simulated number of untraced COVID-19 symptomatic cases for five different contexts over 120 days. 
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Discussion  
 
The pandemic saw major movement and travel restrictions, lockdown, and personal protective 
measures implemented globally in various forms and stringency. The Public Health and Social 
Measures (PHSM) are effective in limiting COVID-19 transmission and death.24 However, some of the 
interventions, particularly lockdowns and cessation of economic activities, have negatively impacted 
the economy and psychosocial well-being of the affected populations.25,26 One major component of 
PHSM is the enhancement of surveillance and response actions through contact tracing, testing and 
isolating close contacts, and providing necessary support mechanisms.24  
 
In this paper, we simulated the impact of contact tracing on COVID-19 transmission and infection in 
the context of rising vaccination rates. We observed that a combination strategy of high daily 
vaccination rate and low contact tracing effectiveness would significantly increase the untraced 
infectious population. While the vaccine has been poised as one of the most vital tools to take us 
towards the restoration of post-pandemic normality, we found that contact tracing is key to COVID-
19 control. However, the ability of countries to perform contact tracing is challenged by the lack of 
human resources (contact tracers), compliance to self-isolation orders, and a paucity of timely and 
accurate contacts data. Successes observed in countries like Singapore and South Korea leveraged 
technology to aid contact tracing,6 and integration of digital technology and the conventional contact 
tracing approach could result in a swifter response to stem COVID-19 transmission.  
 
In Malaysia, personal details are collected for entry to all premises outside of residence using a mobile 
application (MySejahtera®) or documented in writing for contact tracing purposes.28,29 With the rapid 
rise in COVID-19 infections and an overwhelmed public health system, the contact tracing 
effectiveness in Malaysia has crippled and currently stands at approximately 30% to 40%.21,22  Given 
the significance of contact tracing in pandemic control, it is pivotal to capitalize the contacts data, 
automate the data processing and application process,4 and develop more efficient strategies to 
improve contact tracing effectiveness.           
  
In this study, we modeled the number of untraced cases, both symptomatic and asymptomatic.  Since 
this population contributes to forward transmission, an uncontrolled number of these untraced and 
un-isolated individuals could potentially cause a surge in cases COVID-19 cases. In addition to 
transmission and infection, future work could be considered using an extended model that 
incorporates disease severities and health system capacity to estimate the effect of contact tracing on 
COVID-19 mortality. Furthermore, we set the two main intervention parameters—contact tracing and 
vaccine—to approximate the ground realities in Malaysia. However, further parameterization using 
local data is warranted to generate outcome estimates salient to Malaysia. 
 
Contact tracing has been at the forefront in controlling the spread of infectious diseases, and an 
effective and efficient system could prevent disease spread, save lives, and allow the economy to 
resume.27 While vaccination rates have progressively increased in Malaysia and some parts of the 
world, efficient contact tracing must be rapidly implemented to reach, find, test, isolate, and support 
the affected populations to bring the pandemic under control.  
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