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Abstract—Papanicolaou is an inexpensive and non-invasive
method, generally applied to detect cervical cancer, that can
also be useful to detect cancer on oral cavities. Although oral
cancer is considered a global health issue with 350.000 people
diagnosed over a year it can successfully be treated if diagnosed
at early stages. The manual process of analyzing cells to detect
abnormalities is time-consuming and subject to variations in
perceptions from different professionals. To evaluate a possible
solution to the automation of this process, in this paper we employ
the object detection deep learning approach in the analysis of this
type of image using 3 models: RetinaNet, Faster R-CNN, and
Mask R-CNN. We trained and tested the models using images
from 6 cytology slides (4 cancer cases and 2 healthy samples)
and our results show that Mask R-CNN was the best model for
localization and classification of nuclei with an IoU of 0.51 and
recall of abnormal nuclei of 0.67.

I. INTRODUCTION

The chances of reverting a cancer case are strongly related
to how early it is detected and treated [1]]. Considering oral
mucosa tumors, the early diagnosis can increase survival rates
from 19% to 80% [2]]. This disease is a global health problem,
with over 350,000 people being affected each year [3|] and
the high mortality rate is mostly related to the late diagnosis
due to the fact this disease doesn’t present symptoms at the
early stages of development. Nonetheless, signs are present
at the oral mucosa since the early beginning of the disease
development and the use of non-invasive methods such as
exfoliative exams are strongly recommended.

Currently, the biopsy is recognized as the gold-standard
method for oral cancer diagnosis, but it is an invasive surgical
procedure that is not recommended to be used as a screening
test. On the other hand, the cytology exam is cheaper and
doesn’t require special infrastructure because it is a non-
invasive method for cell collection. Cytology is widely used as
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a diagnostic tool in medicine and dentistry and requires a stain
for cells visualization (the most popular is the Papanicolaou
Staining method), a light microscope for image amplification,
and a Pathology consultant.

The early stages of cancer development can be identified by
morphometric alterations in the affected cells’ nucleus. Given
that these alterations seem to have an important role in cancer
development, the morphological analysis using Papanicolaou
is a promising and low-cost method for the early detection of
malignant tumors. Besides that, this technique is not widely
used in the clinical odontological routine because of the lack of
an automated method for the analysis of this type of data [2].
Training the professionals that analyze these exams takes years
of practice. Diagnose on cytology samples is still considered
a manual and time-consuming process, subject to variations in
perceptions and human error. In order to avoid these problems,
computer-assisted analysis such as deep learning methods can
be used to detect alterations of cellular status, helping on early
cancer diagnosis [4].

A. Objectives

Machine Learning has been employed to develop methods
for the automated support of quantitative analysis of cytolog-
ical samples for more than 25 years [5]-[9]. However, recent
advances in the field of Deep Learning, have opened many
new possibilities for the automated analysis of this type of
image.

Segmentation, detection and classification approaches have
already been applied with Papanicolaou [[10], AgNOR [11] and
Feulgen [12] slide images. In this work, our main objective is
to evaluate the detection approach applied to a larger dataset
of Papanicolaou stained oral cytology slide images. For this,
we trained and compared, in terms of precision and recall, 4
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deep learning detection models to evaluate the performance of A. Data

this method in the cytology images domain.

II. RELATED WORKS

The use of computer-aided technology in the analysis of
oral cytology exams is not a well-explored area. To identify
the state-of-the-art in this field, we analyzed two distinct Sys-
tematic Literature Reviews: [[13]], published in December 2019
as a technical report, and [14], published in May 2021. These
reviews are focused on methods used to detect anomalies in
cytology exams in oral examinations and other body parts.

In [14], the authors identified a growing tendency in re-
searches using Deep Learning in the digital cytology field.
Besides that, classic computer vision methods are still widely
used. We found only two public datasets of Papanicolaou
stained images using the conventional sample preparation
technique, with only one containing slide fields with multiple
cells and none with oral mucosa exams. Also, the analyzed
works are in an experimental phase, without experiments in
the clinical routine. Considering the automated analysis of oral
cytology, in [13] the authors concluded that the research is
mainly based on generic feature extraction methods as his-
togram analysis, active contours, and grayscale co-occurrence
matrices. Those features are then used along with classification
algorithms like ANN, SVM, and k-NN and no state-of-the-art
methods like Deep Learning were applied to oral cytology
slides images.

In [10] the authors compared models for three deep learning
approaches: segmentation, object detection, and image classi-
fication. The results show that the binary object detection with
Faster R-CNN was the best approach for nuclei detection and
localization (0.76 IoU). Since ResNet 34 had a good perfor-
mance on abnormal nuclei classification (0.88 accuracy, 0.86
F' score) the authors concluded that these two models can be
used in combination to make a localization and classification
pipeline. This work reinforced that the automated analysis
of oral cytology to make a pipeline for nuclei classification
and localization using deep learning can help to minimize the
subjectivity of the human analysis and also to detect cancer at
early stages. In [[15] the authors evaluated the segmentation
and detection approaches for cell nuclei localization using
the second version of the UFSC OCPap dataset. This work
reinforced the Faster R-CNN as the best model for localization,
with 0.81 of IoU.

III. MATERIAL AND METHODS

To evaluate possible methods to analyze Papanicolaou
stained slides, we applied the object detection approach.
Object detection aims to provide each object of interest a
bounding box with a label and can localize and classify
nuclei. The code used in this work is publicly available
at https://codigos.ufsc.br/lapix/segmentation-detection-
and-classification-of-cell-nuclei-on-oral-cytology-samples-
stained-with-papanicolaoul.

We used the UFSC OCPap (v3) dataset, available at https:
/farquivos.ufsc.br/d/5035aec3c241421a95d0/, to train and val-
idate the models. This dataset comprises 6,128 images of
1200x1600 pixels acquired from 4 slides of cancer diagnosed
and 2 healthy oral brush samples stained with Papanicolaou
and captured with an Axio Scan.Z1 microscope and a Hi-
tachi HV-F202SCL camera. The slides were provided by the
Hospital Dental Center of the University Hospital Professor
Polydoro Ernani de Sao Thiago of Federal University of Santa
Catarina (HU-UFSC) ['| Each slide originated an image of
214,000x161,000 pixels (0.111um x 0.111um per pixel) that
we divided into the fields that originated the dataset.

A group of specialists labeled these images using the
LabelBox [16] free software tool and we split it into three
subsets: 70% for training (4,307 images), 15% for validation
(902 images), and 15% for test (919 images). Those subsets
were created to evaluate the generalization capability of the
trained model and to avoid biased results. The only set used to
train the models was the training subset. The validation set was
used for hyperparameter tuning during training, influencing
the learning rate and the weight decay values. In this case, the
validation set also influences the training process, which can
result in overfitting. To avoid that, a more robust approach
is the utilization of a third distinct set for evaluation of the
results: the test subset [17]. Also, around 30% of the labels
were reviewed by an experienced pathologist to assure the
quality of the dataset. Figure |1| shows an example of Ground
Truth (GT) and the respective label mask from the dataset.
This figure exemplifies the complexity and diversity of the
objects of interest in this type of image.

For this work, we used the entire dataset (n = 6,128). The
labeling process generated bounding boxes labeled as “abnor-
mal epithelial nucleus”, “healthy epithelial nucleus”, “out of
focus nucleus”, “blood cell nucleus”, “reactive nucleus” and
“dividing nucleus” for each image at each subset. Figure [2]
shows the distribution of classes on each subset.

B. Experimental Setup

To train and validate the models, we employed the De-
tectron2 [[18] API. We trained the networks using Nvidia
Tesla K80 (12 GiB VRAM), T4 (16 GiB VRAM), and P100
(16 GiB VRAM) graphics cards, with an Intel(R) Xeon(R)
CPU @ 2.20GHz x 4, 26 GiB of RAM and Ubuntu 18.04.3
LTS 64-bit. The models were pre-trained on COCO Dataset
[19]. We trained 4 object detection models: Faster R-CNN
[20], Mask R-CNN [21]] and RetinaNet [22]] with ResNet 50
and FPN [23] as backbone as they have shown state-of-the-
art performance at Object Detection tasks on various image
modalities. We selected the learning rate and weight decay as
0.005 and 0.0001 evaluating multiple training runs and trained
each model for 2000 iterations. We also used the smooth L1

IThis research was approved by the UFSC Research Ethics Committee
(CEPSH), protocol number 23193719.5.0000.0121. All patients were previ-
ously approached and informed about the study objectives. Those who agreed
to participate signed an Informed Consent Form.
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Fig. 1. Example of Ground Truth (GT) and label mask from the UFSC OCPap (v3) dataset.
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Fig. 2. Chart of the nucleus instances distribution in the dataset.
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Fig. 3. Predictions using Mask R-CNN on images of the test set.

loss function for bounding boxes and cross-entropy for class
loss with an SGD optimizer and 2 images per batch. We
applied the following data augmentations: resizing to 640x853,
672x896, 704x939, 736x976, 768x1024, and 800x1067, and
random horizontal flip with a probability of 0.5.

IV. RESULTS AND DISCUSSION

To evaluate the models, the precision and recall were
calculated for each individual class to better show the classifi-
cation performance of the models. To evaluate the localization
performance, the IoU was calculated for the bounding boxes
disconsidering the classes along with the instance count. All
metrics were calculated on the test set with an IoU threshold
of 0.5 and a score threshold of 0.5. An example of the results
of two images of the test set can be seen in Figure [3]

Table[[|shows the precision and recall metrics of the models’
detections for each class. These results show that Mask R-
CNN has the best recall for abnormal and normal nuclei.
Considering that our objective is to detect abnormal cells, the
abnormal nuclei recall is considered the most important metric
in this work. For this reason, we considered that RetinaNet,

despite having the best results for precision, had the worse
results as it showed a low recall for both the main classes.
Also, none of the models could detect reactive and dividing
nuclei due to their under-representativity in the dataset.

Figure ] shows the localization IoU performance of all the
evaluated models compared to the previous work that uses the
second version of the dataset (v2). These results show that
with the inclusion of more images, the IoU performance of
the models became worse, even though Faster R-CNN is still
better than RetinaNet for localization. Considering this metric,
the Mask R-CNN model had betters results than Faster R-
CNN, being the best model considering these metrics.

Figure [5] provides instance-level statistics in comparison
with the previous work (v2) along with the Mean Squared
Error (MSE) per image of each model. The number of in-
stances in the Ground Truth (GT) of the test set is represented
by the green area. It is possible to see that Faster R-CNN
had the best localization result, improving from the previous
work results, followed by Mask R-CNN. This indicates that
the models can localize the nuclei, despite having a low recall
and precision for classification of the nuclei.
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TABLE I
METRICS RESULTS FOR ALL MODELS BY CLASS. (P = PRECISION, R = RECALL)
Model Abnormal Healthy Blood Out of Focus
P R P R P R P R
Faster R-CNN | 0.59 | 046 | 0.72 | 0.56 | 0.43 | 0.53 | 0.34 | 0.42

Mask R-CNN 0.52 | 0.67 | 0.54 | 0.74 | 0.52 | 0.34 | 0.27 | 0.33
RetinaNet 0.68 | 040 | 0.83 | 0.34 | 046 | 0.12 | 048 | 0.01
YOLO v4 CSP | 0.68 | 037 | 0.60 | 0.68 | 048 | 0.07 | 0.77 | 0.02
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Fig. 4. IoU detection results metrics.
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Fig. 5. Instance level results chart.

Table [l shows the results for abnormal cells of the related
works extracted from that use similar evaluation metrics
to the ones that we employed for the evaluation of our models,
and can be objectively compared to our results, despite using
distinct datasets. Except for , all the cited related works
use liquid-based samples. This sample preparation technique
produces slide images with fewer overlapping cells and fewer
artifacts, which are less complex to be analyzed by a computer
vision method [24]]. However, using this method has a higher
cost when compared to the Conventional Pap Smear technique,
used in our work, making it not viable in the public health
systems of developing countries [25]]. Considering that Liquid
Based Cytology (LBC) Pap samples and Conventional Pap
samples produce considerably different images, the papers
are divided into these two groups. The best results for the
IoU metric achieved 0.90 in LBC Pap smear slides, which
emphasizes that it is easier to detect nuclei in this kind of
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TABLE II
BEST RESULTS OBTAINED BY THE MAIN RELATED WORKS FOR ABNORMAL
CELLS. THE BEST RESULTS OF EACH METRIC ARE HIGHLIGHTED IN BOLD.

LBC Pap Conventional Pap
Paper 261 T 1281 | 1240 Our work
Patients Count | 1,167 | 149 | 194 4
Image Count 14,132 516 194 6,128
Detection IoU - 09 | 0.53 0.51
I Score 0.60 | 0.86 | 0.69 0.59

samples while our work achieved the maximum 0.51 IoU using
Conventional Pap Smear samples. Analyzing the F} Score,
our work had a similar result (0.51) with the work that had
the best performance [24] (0.53) considering this metric for
Conventional Pap Smear samples. It is also important to notice
that two papers [26], [27] indicate that Faster R-CNN has the
best results for images of Papanicolaou stained samples, both
LBC and conventional, which corroborates with our results.

A. What is new here in relation to the previous works?

In comparison with the previous works, in this paper we
applied one new detection model (Mask R-CNN) using a
larger, more diverse, and more balanced version of the dataset,
including 2 new slides of healthy cases and another 1 of a
cancer case.

V. CONCLUSION

In this work, we evaluated deep learning models for the
object detection approach using the Faster R-CNN, Mask R-
CNN, and RetinaNet models. Comparing the IoU, precision,
and recall results, we concluded that the Mask R-CNN was the
best model for localization and classification of the nuclei with
an IoU of 0.51 and recall of abnormal nuclei of 0.67. Besides
those results are not considered good enough for the automated
detection of abnormal nuclei in Papanicolaou stained cytology,
the two best models showed the capacity to localize the nuclei.
These results reinforce what we concluded in the previous
works: there seems to be necessary a composed pipeline, using
separate models for localization and classification of the cells.

Hence, as future works, we plan to test an additional set
of different algorithms, approaches, and methods to build a
complete pipeline of automated slide analysis to help health
professionals to early diagnose oral cancer cases. Furthermore,
we want to enhance the quality and size of the dataset and
generalize the analysis to other tissues and types of cell
nuclei to support the diagnosis of other types of cancer. The
objective is, in the next years, to integrate this pipeline into the
Telepathology module [29] and the Oral Telemedicine module
[30] of a public statewide Telemedicine system [31]], [32]] and
to perform a large-scale validation study of our approach that
will also consider the feasibility of integrating Tele-Cytology
into the Telemedicine workflow.

The main contribution of this work is to show the per-
formance of a possible solution for the automation of the
analysis of oral cytology Papanicolaou stained slides using
deep learning, highlighting the fact that the Papanicolaou

staining method is also a promising approach for oral cancer
diagnosis. We believe that our research can help to spread the
Papanicolaou method as a screening exam to detect oral cancer
at early stages and improve the treatment success.
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