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Abstract:  
Along tract statistics enables white matter characterization using various diffusion MRI (dMRI) 
metrics. Here, we applied a machine learning (ML) method to assess the clinical utility of dMRI 
metrics along corticospinal tracts (CST), investigating whether motor glioma patients can be 
classified with respect to their motor status. The ML-based analysis included developing 
models based on support vector machine (SVM) using histogram-based measures of dMRI-
based tract profiles (e.g., mean, standard deviation, kurtosis and skewness), following a 
recursive feature elimination (RFE) method based on SVM (SVM-RFE). Our model achieved 
high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% AUC). 
Incorporating the patients’ demographics and clinical features such as age, tumor WHO 
grade, tumor location, gender and resting motor threshold (RMT) into our designed models 
demonstrated that these features were not as effective as microstructural measures. The 
results revealed that ADC, FA and RD contributed more than other features to the model. 
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Introduction 

Gliomas are known as the most frequent and malignant human brain tumors, 

characterized by poor prognosis and high morbidity 1. Gliomas infiltrating the motor 

system potentially cause various degrees of damage to the white matter (WM) 

architecture and might lead to substantial motor function impairments. Diffusion-

weighted imaging (dMRI) 2,3 has shown promising potentials by enabling non-invasive 

delineation of the WM pathways known as tractography 4–8. Tractography has been 

frequently used for preoperative planning or analyzing tumor-induced structural impact, 

for example to investigate tumor infiltration and its impact on surrounding tissues 9,10. 

Here, we investigate whether dMRI-based metrics can be used as predictive features to 

detect motor function impairments. 

Recent studies demonstrated clinical correlations of segmental diffusion tensor imaging 

(DTI) derived metrics, such as apparent diffusion coefficient (ADC; a measure of the overall 

diffusivity in a single voxel), axial diffusivity (AD; the diffusion rate along the main axis of 

diffusion), fractional anisotropy (FA; the directional preference of diffusion), or radial 

diffusivity (RD; rate of diffusion in the transverse direction) 11–13. Furthermore, we 

investigated how a more complex dMRI-based metric, namely the constrained spherical 

deconvolution (CSD)-related fiber density (FD) offers an even more detailed WM 

characterization 14. DTI and CSD-related quantification of dMRI-based measures along 

tractograms 15 have gained great interest since these methods reveal insights into WM 

development, function and disease 16–19. Multiple fiber populations are found in up to 90% 

of the WM voxels and 30% - 40% of these WM voxels contain more than three fiber 

populations 20–23. Moreover, non-WM contamination is found in more than a third of the 

WM voxels 24 and multi-tissue CSD methods 25–28 have been used to account for it. As a 

result, CSD-based metrics in addition to DTI metrics (such as AD, ADC, FA, or RD) are critical. 

By estimating fiber orientation distributions (FODs) in each voxel based on the expected 

signal from a single collinearly oriented fiber population, CSD can discriminate complex 

fiber populations 29. Probabilistic tractography algorithms, such as the iFOD2, have been 

proposed to overcome the limitations of tensor-based tractography methods by using the 

rich information in FODs 30. A complete picture of the underlying white matter architecture 
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is critical for risk assessment and neurosurgical planning and as well for prediction models  
31. To that end, modern CSD-based FD and fixel-based analysis (FBA) approaches, in 

addition to traditional DTI methods, provide promising opportunities because they are 

related to the intra-axonal restricted compartment that is limited to a given fiber 

orientation within a voxel 32,33. Recently, we used FD for fiber orientation-specific study of 

microstructural properties along the tract in relation to infiltrating tumors 14, which was 

previously focused on group-based analyses 32.  Yet, research lacks the individual and tract-

specific characterization of white matter microstructure investigating the association 

between tumor impact on structural connectivity and clinical outcomes. 

Here, we employed machine learning (ML) methods using along CST-related dMRI metrics 

(e.g., AD, ADC, FA, FD and RD) to predict motor deficits in patients with motor-related 

glioma, focusing on individual diagnosis rather than groupwise comparisons. We used ML 

methods based on support vector machines (SVM) which is a powerful method, easy to 

interpret and well suitable method to handle large dimensional datasets 34–36. We designed 

our predictive models applying SVM with an embedded feature selection methods 37,38 

using histogram-based features of dMRI-based tract profiles. In addition, an SVM model 

was developed with principle component analysis (PCA) method 39,40 to process all 

segmental information of dMRI-based tract profiles in a low dimensional feature space. 

Furthermore, patients’ demographics and clinical variables including the resting motor 

threshold (RMT), a transcranial magnetic stimulation (TMS)-derived neurophysiological 

marker, were incorporated into our designed models, sought to investigate the impact of 

all types of features, e.g., demographics, clinical and microstructural features, on the 

performance of the developed models. 

 

Results 

MRC grading, TMS mapping to acquire the RMT, the computation of CST and the 

subsequent extraction of tractogram-related AD, ADC, FA, FD and RD measures were 

feasible in each patient. Visual inspection of violin- and line plots showed differences 
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between patients with (class 1) and without (class 0) motor deficits in ipsilesional 

tractograms for AD, ADC, FA, FD and RD (Fig. 1 & 2). 

45 (37.9%) of the recruited 116 patients presented with preoperative motor deficits 

(MRC<5), cf. Table 1. There were no significant differences in gender (χ![1, 𝑁 = 116] =

0.51, 𝑝 = 6.3𝑒 − 1) or hemispheric pathology position (χ![1, 𝑁 = 116] = 0.08, 𝑝 =

7.7𝑒 − 1) in relation to motor deficits. Patients with motor deficits (class 1) were older 

(58.64 ± 15.45) than patients without motor deficits (class 0) (50.25 ± 15.85), with a 

highly significant difference between them (𝑡[114] = 2.83, 𝑝 = 5𝑒 − 3), although a 

medium effect was found (𝑔 = 5.3𝑒 − 1	95%	𝐶𝐼 = [.155 − .914]). There were no 

significant differences in tumor locations and RMT ratio in both ipsi- and contralesional 

hemispheres in relation to motor deficits, cf. Table 1. We also found significant difference 

between the glioma WHO grade III and IV between patients with and without motor 

deficits ( χ![1, 𝑁 = 116] = 0.86, 𝑝 = 3𝑒 − 2).  

Table 1. Demographic and neuropathological overview of the patient cohort 

 
Patients without motor 
deficits 

Class 0 

Patients with motor 
deficits 

Class 1 

 

p-value 

Demographics 
      

Cohort size 71 (62%) 45 (37%) _ 

Age 50.25±15.85 58.64±15.45 0.005 

Female 25 (35%) 18 (41%) 0.63 

Male 47 (65%) 26 (60%) 0.63 

Ipsilesional hemisphere 
      

Left 30 (42%) 17 (39%) 0.77 

Right 41 (57%) 28 (64%) 0.77 

Tumor location       

Frontal 35 (49%) 25 (55%) 0.55 

Parietal 19 (27%) 12 (27%) 0.91 

Insular 10 (14%) 5 (11%) 0.77 

Temporal 7 (10%) 3 (7%) 0.73 

Glioma WHO grades 
      

II 13 (18%) 3 (7%) 0.8a, 0.05b 

III 18 (25%) 5 (11%) 0.8a, 0.03c 
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IV 40 (55%) 37 (84%) 0.05b, 0.03c 

RMT (V/m) 
      

Ipsilesional hemisphere 33.72±7.2 34.64±9.15 0.57 

Contralesional hemisphere 34.3±6.05 35.62±8.64 0.37 

* Resting Motor Threshold (RMT), TMS-derived neurophysiological marker, indicating cortical excitability; a Tumor type 
II versus III; b Tumor type II versus IV; c Tumor type III versus IV. 

Moreover, considering CCA, we found a strong positive correlation between all dMRI-

based extracted features and age, which was statistically significant (𝑟"(114) = 0.7, 𝑝 =

3.3𝑒 − 18 ). The correlation coefficient is provided in supplementary table 1. This 

correlation was stronger in the group with motor deficits (class 1) (𝑟"(45) = 0.93, 𝑝 =

6.12𝑒 − 21). Considering each metrics separately, the correlation was weaker (AD: 

𝑟"(45) = −0.59, 𝑝 = 1.64𝑒 − 5; ADC: 𝑟"(45) = 0.64, 𝑝 = 2.32𝑒 − 6; FA: 𝑟"(45) =

−0.42, 𝑝 = 3.2𝑒 − 4; FD: 𝑟"(45) = −0.24, 𝑝 = 0.1; RD: 𝑟"(45) = 0.51, 𝑝 = 3.54𝑒 − 4). In 

the group without motor deficits (class 0), the dMRI-based extracted measures were 

negatively correlated to age (𝑟"(71) = −0.89, 𝑝 = 1.0𝑒 − 25). Considering each metrics 

separately, the correlation was weaker (AD: 𝑟"(71) = 0.33, 𝑝 = 4.0𝑒 − 4; ADC: 𝑟"(71) =

0.53, 𝑝 = 2.07𝑒 − 6;	FA: 𝑟"(71) = −0.49, 𝑝 = 1.64𝑒 − 5; FD: 𝑟"(71) = −0.55, 𝑝 =

4.87𝑒 − 7; RD: 𝑟"(71) = 0.58, 𝑝 = 1.2𝑒 − 7).  

 

Group-wise statistical analysis  

A comprehensive group-wise analysis was performed over the entire CST and segment-

wise along the 100 segments to compare the differences of dMRI metrics between the two 

patients' groups with (class 1) and without (class 0) motor deficits. The violin plots in Fig. 1 

shows significant differences in dMRI-based measures in the ipsilesional CST between the 

two patients’ groups. 
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Figure 1: Violin plots illustrating frequency distribution of AD, ADC, FA, FD and RD metrics over the 
ipsilesional CST (class 0, without motor deficit, green, MRC = 5; class 1, with motor deficit, violet, 
MRC<5); horizontal lines indicate quartile positions. 

Fig. 2 shows a segment-wise comparison of dMRI metrics between the two groups of 

patients (class 0; class 1) in ipsilesional CST. We found significant segment-wise 

differences, surviving false discovery rate (FDR) correction, between the two groups in the 

ipsilesional CST profiles in relation to ADC, AD, FA and RD metrics. However, no significant 

segment-wise differences were found with respect to FD (cf. supplementary table 2). These 

differences were larger in ADC and RD, especially in the tracts’ middle and peritumoral 

areas. The ipsilesional tract profiles led to larger significant differences compared to the 

differences between ipsi- and contralesional CSTs in group analyses (cf. supplementary 

table 3). In the latter case, only 6 nodes (93-98th) in the ADC, 9 nodes (88-96) in FA and 11 

nodes (88-98) in RD metrics of the ipsilesional tracts showed significant differences 

between the two groups (class 0; class 1) mainly at the superior portion of the CST. 
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Moreover, the significant segments in contralesional tract profiles were only seen in few 

segments in AD and ADC tract profiles (cf. supplementary table 4). 

 

Figure 2: Line plots illustrating AD, ADC, FA, FD and RD metrics along the ipsilesional tractogram 
(segment 0 = medulla oblongata; segment 100 = M1), for both motor patients’ groups (class 0, 
green, MRC = 5; class 1, violet, MRC<5). The lines indicate median values with their 95% confidence 
interval. The heatmaps demonstrate related FDR-BH corrected p-values, derived by t-test. 

Additionally, we used M, STD, KU and SK as histogram-based measures of tract profiles and 

performed group-wise analyses on each measure for ipsi- and contralesional tract profile 

(cf. supplementary table 5a & 5b). As shown in Fig. 3 (A, B, C, E), the M measure over the 

ipsilesional CST profiles of AD, ADC, FA and RD were significantly different between the 

two patients’ groups with and without motor deficits (AD: 𝑈 = 1000, 𝑝 = 3.6𝑒 − 4, 𝑟 =

0.37; ADC: 𝑈 = 974, 𝑝 = 2.07𝑒 − 4, 𝑟 = 0.4; FA: 𝑈 = 1214, 𝑝 = 1.5𝑒 − 2, 𝑟 = 0.24; RD: 

𝑈 = 1003, 𝑝 = 3.8𝑒 − 4, 𝑟 = 0.42) as well as the KU measure of ipsilesional CST profile of 

FA value (𝑈 = 1034, 𝑝 = 7.1𝑒 − 4, 𝑟 = 0.35). Further in Fig. 3 (B, E), STD of ADC and RD 

profiles showed highly significant increase in patient group with motor deficit (ADC: 𝑈 =

1032, 𝑝 = 6.8𝑒 − 4, 𝑟 = 0.35; RD:	𝑈 = 1065, 𝑝 = 1.2𝑒 − 3, 𝑟 = 0.33). 

Ipsilesional tract profile measures led to larger differences compare to the contralesional 

tract profile measures. Nine ipsilesional tract profile measures (extracted features) were 

significantly different between the two patients' groups (cf. supplementary table 5a), see 
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Fig. 3, while only three measures of contralesional tract profiles were significantly different 

(cf. supplementary table 5b). 

 
Figure 3: Violin plots illustrating different measures of CST profiles for AD (mm2/s), ADC (mm2/s), 
FA, FD and RD (mm2/s) metrics. The analyses were done in ipsilesional tract (affected hemisphere) 
profiles between two patient groups, with and without motor deficits (class 1, green, MRC <5; class 
0, violet, MRC=5). 
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SVM classification  

SVM_clinical, using all patients’ demographic and clinical variables as input features, 

received low performance score (58% accuracy, 82% sensitivity, 43% specificity and 62% 

AUC). Among all SVM_AD-RD models, when using microstructural measures in relation to 

each metric separately, SVM_FA reached to the highest accuracy (67%), sensitivity (60%) 

and AUC (68%) and SVM_ADC and SVM_RD reached to the highest specificity (80%). The 

AUC in SVM_ADC and SVM_AD reached to nearly the same score, 67%, Fig. 4.  

Considering SVM_1-4 models, using all measures of dMRI-based tract profiles, the best 

classifier performance was achieved with SVM_2, which reached to 74% accuracy, 74% 

sensitivity, 75% specificity and 77% AUC (Table 2). With KNN interpolation method, the 

number of nearest neighbor when K=10 yielded the best model performance.  

Table 2. SVM_1-4 model performances using Mdn vs. KNN interpolation methods and Mdn vs. 
and Mahalanobis-based weighted mean tract profile. 

 Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

Mdn-based Profile     

Mdn interpolation (SVM_1) 73 73 73 76 

KNN interpolation (k = 10) (SVM_2) 74 74 75 77 

Weighted M profile     

Mdn interpolation (SVM_3) 68 66 70 70 

KNN interpolation (k = 10) (SVM_4) 69 66 70 70 

The 5 most effective features that were selected by SVM-RFE are FA_KU, FA_SK, RD_KU, 

ADC_STD and ADC_M; effect sizes and FDR-corrected p-values were also calculated 

(FA_KU: 𝑈 = 1034, 𝑝 = 1.1𝑒 − 3, 𝑟 = 0.35; FA_SK: 𝑈 = 1413, 𝑝 = 1.5𝑒 − 1, 𝑟 = 0.11; 

RD_KU: 𝑈 = 1377, 𝑝 = 1.3𝑒 − 1, 𝑟 = 0.13; ADC_STD: 𝑈 = 1032, 𝑝 = 1.1𝑒 − 3, 𝑟 =

0.35; ADC_M: 𝑈 = 974, 𝑝 = 1.0𝑒 − 3, 𝑟 = 0.4). Table 3 shows these selected features 

with their respective learned weights using SVM_2.  

Table 3. SVM2 selected features with their respective learned weights using SVM-RFE. 
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Features Weights 

FA_KU 1.29 

FA_SK 1.17 

RD_KU 1.07 

ADC_STD 1.01 

ADC_M 0.61 

In the last step, patients’ demographics and clinical features were integrated into our 

models (SVM_1-4). The feature selection method did not select them in any of the trained 

models (SVM_1-4) and the models’ performances remained unchanged. The receiver 

operating characteristic curves (ROC) for SVM_1-4, SVM_AD-RD and SVM_clinical are 

presented in Fig. 4. 

 
Figure 4 Receiver operating characteristic (ROC) curves of the discriminative performance of the 
SVM_1-4 and SVM_ADC-RD models show the true positive rate against the false positive rate for 
different threshold; The blue lines indicate classifiers with a random performance level. 

Moreover, we developed a model using all segment-wise information along ipsi- and 

contralesional tract profiles for all dMRI metrics (ADC, RD, AD, FA and FD) with 

PCA(SVM_5). This model reached to 63% accuracy, 64% sensitivity, 63% specificity and 70% 

AUC.  
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Discussion  

We investigated how glioma-induced microstructural alterations to WM associated with 

functional motor deficits by mapping dMRI metrics along the CST. In segment-wise group 

comparison, we found significant differences between the ipsilesional tract profiles in the 

two patients’ group (class 0; class 1) in relation to all dMRI metrics except for FD. The 

ipsilateral differences were mainly seen at the level of the glioma (superior portion of the 

tract), which showed the direct influence of the tumor area on motor function. However, 

tumor impact on tract metrics could also be detected in areas relatively distant from the 

tumor and peritumoral edema especially in ADC and RD, demonstrating the spreading of 

the local tumor effect with respect to the motor status.  

FA and ADC have been widely utilized to evaluate the WM health to large extent. FA has 

been shown to be highly sensitive for detecting changes in WM water diffusion in case of 

neuropathology, but rather unspecific. An increase in ADC has been observed in 

pathologies accompanied by for example edema or necrosis 30,41. However, these two 

measures are less sensitive to distinguish specific types of neural impairments (e.g., 

demyelination, axonal injury, inflammation). Since the majority of our patient's cohort 

encompassed patients with glioblastoma tumors (77 patients) with the hallmark of diffuse 

infiltration into the normal brain, we could see the greatest elevation of ADC values along 

CST compared to the other metrics. These results confirmed that the myelinated 

ipsilesional CST fibers were affected.  

Furthermore, AD and RD are direct measures of diffusion in perpendicular and in parallel 

directions to the tract, respectively. The incorporation of these metrics has been shown to 

lead to better differentiations between axonal injury or degeneration (AD) and 

pathological demyelination (RD) 30,41–44. Demyelination could be more a chronic/slow 

process, while axonal degeneration could be a more acute and potentially clinically more 

detrimental process. Here, we did not see a strong improvement in our SVM models 

performance on basis of AD. However, the Kurtosis of tract profile on the basis of RD was 

highly effective (see below).  
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Besides, we even found differences in segments/regions along contralesional tract profiles 

with respect to ADC and AD, supporting the assumption that contralesional CST may play 

a role in postoperative motor outcome and in recovery of motor function. These results 

may have implications for compensatory strategy of the brain. 

 

SVM analysis 

Microstructural measures 

Considering dMRI-based features within the ipsi- and contralesional CST, we successfully 

developed several SVM-based models to classify patients with respect to their motor 

deficits (class 0; class 1). The best model performance achieved an AUC of 76.6% (SVM_2). 

The most effective features were FA_KU, ADC_M, RD_KU, FA_SK and ADC_STD. 

Accordingly, ADC and FA were identified as the most relevant metrics which better 

accounted for detection of motor function impairment 45. These findings are also in line 

with our previous studies 13,14. In 14, we found FA and ADC metrics to be the most relevant 

metrics for detecting CST impairments, and in 13, we found that peritumoral ADC and FA 

were strongly associated with postoperative motor deficits (motor outcome).  The 

univariate analysis confirmed our SVM model results to some extent, showing the 

predictive power of each tract profile’s measure (input feature) separately. All models 

which were trained on each AD, ADC, FA and AD metrics separately, reached a relatively 

high specificity though they dealt with low sensitivity. Among them, SVM_FA provides a 

higher sensitivity but lower specificity and SVM_ADC and SVM_RD provided higher 

specificity. Combining these metrics (SVM_2) led to both high sensitivity and specificity. 

FA_SK and RD_KU were not significantly different between the two patient groups 

although they were selected as two of the most effective features. Features identified as 

significantly relevant or/and predictively relevant can agree or diverge, and numerous 

studies have been conducted demonstrating the differences between highly predictive and 

highly significant variable sets 46,47. Sometimes a strong predictivity fails to be significant, 

as it only provides supplementary information and could increase the predictive power of 

ML models just in combination with other features.  The SVM_2 model reached the best 
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performance among all trained models which showed that the Mdn profile corresponded 

to a better prediction accuracy in comparison to the Mahalanobis-based weighted M tract 

profiles – a method described in 17,48, that implies the robustness of the Mdn method in 

the specific case, since outlier segments with extreme values do not bias the Mdn. The 

superiority of the Mdn profile has been previously shown in 49, where microstructural 

models were used to understand the role of WM in relation to cognitive development. Our 

SVM_1-4 models, which were based on the extracted features, were more efficient and 

robust compared to SVM_5 since these models were less complex in their design. The high 

dimensional dMRI data (100 values per tract profile) and low available number of patient 

data resulted in lower performance in SVM_5. The variety in glioma location in relation to 

the CST as well as the low sample size restricted our analysis when SVM_5 tried to capture 

all patterns of microstructural variations. Therefore, we were not able to detect all 

segment-wise variations as efficiently as possible in SVM_5. In the SVM_1-4 models, we 

were able to summarize the segment-wise information of dMRI-based CST profiles as 

different statistical measures to detect informative glioma-induced microstructural 

alterations to WM to predict functional motor deficits. 

 

Demographic and clinical features  

The SVM model with only demographics and clinical variables (SVM_clinical) such as age, 

gender, glioma location, glioma WHO grade and RMT ratio, showed a poor performance 

(56% accuracy and 62% AUC) while the models with microstructural measures as input, 

e.g., SVM_2 (74% accuracy and 77% AUC), reached to relatively high performance. We 

further assessed the performance of the SVM_1-5 models integrating patients’ 

demographics and clinical features and saw that none of them was affected the SVM 

models’ performances. This could indicate a lower effectiveness of these features 

compared to tract profile-based characteristics (microstructural measures). In addition, 

the dMRI-based measures could be associated with different variables. Since patient’s age 

was significantly different between the two patients’ groups, it was expected to improve 

our predictive models’ performances in combination with the microstructural measures. 

However, integration of patients’ age did not improve the models’ performances. The 
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performed CCA showed a strong and significant correlation between dMRI extracted 

features and age. Interestingly, we found strong and significant correlation in the reverse 

direction for both motor groups (class 0; class 1). This confirms previous findings 50–52 in 

which WM changes in relation to age and its variation as a function of age were 

investigated. In a recent study, age has been accurately predicted by FA and ADC metrics 
48. These results justify as well that if taking into account the microstructural measures, age 

is of critical importance in distinguishing between the two motor groups. 

According to CCA analysis and our SVM results, we could conclude that the information 

provided with age was apparently sufficiently covered by dMRI-based extracted features 

and thus no additional information was found considering patients’ age. 

 

Translational aspect  

The body of evidence that preservation of the white matter connectivity is key to 

preserving function is steadily growing. Therefore, the presurgical assessment not only of 

the spatial relation of the tumor and the tracts, but also a detailed analysis of the impact 

the tumor already exerts on the white matter is of great importance. ML, as demonstrated 

in this study, shows a promising potential to address the microstructural effects of brain 

tumors on the WM which is not accessible with traditional statistical methods, since it 

allows for discovering patterns in dMRI data and well approximating complex 

relationships. Future studies need to further correlate ML finding with functional 

outcomes to establish new biomarkers for WM resilience to surgical manipulation with the 

promise to become a powerful prognostic tool in future neurosurgery. 

 

Limitations 

Tractography suffers from a wide range of limitations that make its routine use 

problematic 14,53. Tractograms contain both false positive 54 and false negative 55 

streamlines. In addition, tractography cannot distinguish between afferent and efferent 

connections, and streamlines may terminate improperly 56, especially in case of tumors 

and edema. Furthermore, our results are atlas and tractography algorithm dependent, 
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since other tractography methods or atlas choices would possibly result in different 

tractograms 14. In addition, the BMRC motor status does not necessarily detect subtle or 

apractic motor deficits which might correlate with early tumor effects on the WM. Indeed, 

the main limitation for our study is the relatively small sample size we could include to 

perform the ML analysis. Moreover, we binarized motor deficits due to low number of 

samples per class. This led to an inaccuracy and affected the performance of our ML 

models. In order to develop models performing multiclass classification which could 

consider differences in degree of motor power (MRC = 1, 2, 3, 4, 5), larger samples would 

be needed per class. Furthermore, the dMRI data used for this study consists of a clinical 

single-shell acquisition, which is not optimal  for fiber density measurements due to the 

incomplete attenuation of apparent extra-axonal signal 14,57 . 

 

Conclusion 

In this study, we analyzed dMRI-based metrics to assess microstructural WM changes in 

correlation with the motor status of patients with gliomas in the motor system. We 

successfully developed SVM models to predict motor deficits in a heterogenous 

multivariate data set. ADC, FA and RD were highly predictive dMRI metrics. Additionally, 

we showed that dMRI metrics are better predictors than demographic and clinical 

variables, such as, age, glioma grade and RMT ratio. Careful selection and testing of ML 

modelling is mandatory to prevent over- or underfitting and misinterpretation of data. 

 

Materials and Methods 

Patient cohort 

We included 116 left- and right-handed adult patients in this study (43 females, 73 males, 

average age = 48.24 ± 16.47, age range 20-78). Only patients with an initial diagnosis of 

supratentorial, unilateral WHO grade II, III & IV gliomas (16 WHO grade II, 23 WHO grade 

III, 77 WHO grade IV) were included (Table 1). All tumors were infiltrating or immediately 

adjacent to M1 and/or the CST either in the left or right hemisphere. Patients with 
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recurrent tumors, previous radio-chemotherapy or multilocular tumors were not included. 

The motor status was graded preoperatively according to the Medical Research Council 

(MRC) scale for muscle power. Grade, 0 means no muscle power and 5 means full muscle 

strength. All patients with MRC<5 were assigned to the group with motor deficits (class 1), 

others (MRC = 5) were assigned to the group without motor deficits (class 0). 

 

Image acquisition 

MRI data were acquired preoperatively at Charité University Hospital, Berlin, Department 

of Neuroradiology. The center performed scans on 3T Siemens Skyra scanner with 

dedicated 32-channel head/neck high count coil. The protocol included whole brain high-

resolution structural data, contrast enhanced T1-weighted images, with TR/TE/TI 

2300/2.32/900 ms flip angle = 9°, field of view (FOV) = 256 × 256, 192 sagittal slices, 1mm 

isotropic resolution, acquisition time: 5 min as well as a single shell diffusion weighted 

volume with TR/TE 7500/95ms, 2×2×2 mm3 voxels, 128 × 128 matrix, 60 axial slices, with 

40 equally distributed orientations for diffusion-sensitizing gradients at b-value of 1000 

s/mm2, for a total acquisition time of 12 minutes. 

 

Transcranial Magnetic Stimulation (TMS) 

Non-invasive functional motor mapping of both ipsilesional and contralesional 

hemispheres was performed in each patient using navigated transcranial magnetic 

stimulation (nTMS) with NeXimia Navigated Brain Stimulation (Nexstim Oy, Helsinki, 

Finland). Each patient’s head was registered to the structural MRI and the composite 

muscle action potentials were captured by the integrated electromyography unit (EMG) 

(sampling rate 3 kHz, resolution 0.3 mV; Neuroline 720, Ambu). The muscle activity (motor 

evoked potential, MEP amplitude ≥ 50 μV) was recorded by surface electrodes on the 

abductor pollicis brevis and first dorsal interosseous. Initially, the first dorsal interosseous 

hotspot, defined as the stimulation area that evoked the strongest MEP, was determined. 

Subsequently, the resting motor threshold, defined as the lowest stimulation intensity that 
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repeatedly elicits MEPs, was defined using a threshold-hunting algorithm within the 

Nexstim eximia software. Mapping was performed at 105% resting motor threshold and 

0.25 Hz. All MEP amplitudes > 50 μV (peak to peak) were considered as motor positive 

responses and exported in the definitive mapping 58. The subject-specific positive 

responses of the first dorsal interosseous were exported as binary 3 mm3 voxel masks per 

response in the T1 image space. 

 

Preprocessing and processing of MRI data 

Preprocessing and processing of MRI data was performed as described earlier 14. Briefly, 

all T1 images were linearly (affine) registered to the dMRI data sets using Advanced 

Normalization Tools (ANTs) 59,60. Furthermore, we registered the human motor area 

template (HMAT) atlas to subject space with ANTs using the Symmetric Normalization 

(SyN) transformation model 59,61 to obtain M1 seeding ROIs 59,61. The preprocessing of 

dMRI data included the following and was performed within MRtrix3 56 in sequential order: 

denoising  62, removal of Gibbs ringing artefacts 63, correction of subject motion 64, eddy-

currents 65, and susceptibility-induced distortions 66 in FSL  67, and subsequent bias field 

correction with ANTs N4 68. Each dMRI data set and processing step was visually inspected 

for outliers and artifacts. Scans with excessive motion were initially excluded based on a 

predefined threshold (if > 10% outlier slices, however this was not the case in the current 

cohort). We upsampled the dMRI data to a 1.3 mm isotropic voxel size before computing 

FODs to increase anatomical contrast and improve downstream tractography results and 

statistics 69. To obtain AD, ADC, FA, RD scalar maps, we first used diffusion tensor 

estimation using iteratively reweighted linear least squares estimator, resulting in scalar 

maps of tensor-derived parameters 2,70 For voxel-wise modelling we used a robust and fully 

automated and unsupervised method. This method allowed to obtain 3-tissue response 

functions for white and gray matter and cerebrospinal fluid (CSF) from our data with the 

use of spherical deconvolution for subsequent usage in multi-tissue CSD-based 

tractography 25,28,71. 
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Tractography  

Probabilistic multi-tissue tractography was performed based on the white matter FODs 

with the iFOD2 algorithm 72 as described earlier 14, with the slight modification of using the 

above mentioned HMAT atlas derived M1 seeding ROI 73. In brief, an inclusion ROI was 

defined in the medulla oblongata, tracking parameters were set to default with an FOD 

amplitude cutoff-value of 0.1, a streamline minimum length of 5 × voxel size and a 

maximum streamline length of 100 × voxel size. For each CST tractogram, we computed 

5000 streamlines per hemisphere. Each streamline per tractogram was resampled along 

its length to 100 equidistant points. Subsequently, we mapped AD, ADC, FA, FD, and RD 

scalar metrics along the derived 100 equidistant points per streamline. 

 

Data Preparation 

We generated dMRI-based CST profiles, by which AD, ADC, FA, FD, and RD were quantified 

at 100 segments along the CST using the values of the 100 points per streamlines. To create 

a tract profile that is robust to outliers, we used two different methods and compared the 

results. In the first method, we calculated the median (Mdn) values across the 5000 

streamlines per tractogram along its 100 segments. In the second method, we computed 

the segment-wise weighted mean (M) of the dMRI measures across streamlines. The 

streamline-wise contribution was weighted by the inverse Mahalanobis distance of the 

streamlines from the tract core (mean). Streamlines that were more distant from M were 

considered less important 17. We used both ipsi- and contralesional CST profiles as input 

features (predictor variables), thus, the dimension of the imaging-based feature space was 

1000 (5 metrics × 2 hemispheres × 100 segments = 1000 features). 

 

Statistical analysis 

Statistical analysis and data visualization were carried out using Python 3.8.6. The main 

packages used were Scipy 74, Seaborn 75, Statsmodels 76 and Matplotlib 77. To compare 
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categorical variables, Fisher’s exact test (when the expected frequency was less than five 

per category) or Pearson’s chi-squared test (for larger values) were employed. Two-tailed 

Student’s t-tests or Mann–Whitney U tests (Wilcoxon rank-sum test) were performed to 

compare continuous variables.  Effect size (𝑟) for Mann–Whitney U-statistics was 

calculated as the Z-statistic divided by the square root of the number of samples. A 

significance level of p < .05 was considered as cutoff. With respect to multiple comparison 

analyses, statistically significant p-values were false discovery rate (FDR) corrected using 

the Benjamini-Hochberg (BH) procedure 78. For all univariate statistical analyses Mdn-

based tract profiles were used.  

Canonical correlation analysis (CCA) was performed as a multivariate correlation analysis 

to identify and measure the association among all dMRI-based extracted features (both in 

ipsi- and contralesional hemispheres) and age 79. This analysis extracts meaningful 

information from a pair of data sets, dMRI-based features and age, by seeking pairs of 

linear combinations from two sets of variables with the maximum pairwise correlation. 

CCA was performed both on the patient’s cohort and on each patients’ group (class 0; class 

1) separately. A more detailed analysis investigating the associations between each metrics 

and age was also performed. 

 

SVM classification  

SVM has gained a widespread application in the neuroimaging context as either a 

classification or regression method 80,81. The aim of an SVM classifier is to find hyperplanes 

with maximal margins between classes. As a supervised machine learning method, SVM 

can be extended to complex instances that are not linearly separable using so-called kernel 

tricks 82,83. Kernel techniques map input features from one space to a higher dimensional 

feature space in which different classes can be distinguished by a separating hyperplane. 

All ML analysis methods should be balanced between their predictive accuracy and 

descriptive power 84. Accordingly, in the present study, we developed different models 

based SVM method using dMRI-based features, demographic and clinical variables to 

predict the motor status (class 0; class1) preoperatively, cf. Fig. 5. 
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Figure 5: Visual summary of the machine learning pipeline with nested cross-validation and 
bootstrapping; First, test and train sets are selected per fold of outer loop CV. Next, numbers of 
(e.g., 1000) new synthetic datasets (𝑇!) are generated from training set by randomly sampling from 
it. Hyper parameters of the classifiers (𝐶!) are optimized within the inner loop; finally, estimator (𝑃!) 
for each of the synthetic set is found and the result/prediction (𝑃) are voted across them. 

Some segments along tract profiles were missed (not-a-number value) when the tract 

profiles were generated. These missing values were imputed using two different 

interpolation methods 85, a) Mdn and b) k-nearest neighbor (KNN) 86. Before fitting a model 

to our data, imputation of missing values and standardization were performed. In order to 

enable our classifier to learn from low and high variance metrics, we removed each 

feature’s M and scaled it to a unit variance (z-score). Training and testing set within each 

cross validation were standardized separately by M and STD derived from the training set 

to prevent information leakage between testing and training data sets. 

Four Different SVM models were trained and tested using Mdn-based and Mahalanobis-

based weighted mean tract profiles with above-mentioned interpolation methods for 

imputation of missing values (SVM_1: Mdn-based imputation method and Mdn-based 

tract profile; SVM_2: KNN-based imputation method and Mdn-based tract profile; SVM_3: 

Mdn-based imputation methods and Mahalanobis-based weighted mean tract tract 

profile; SVM_4: KNN-based imputation method and Mahalanobis-based weighted mean 

tract profile). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.24.21262484doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.24.21262484
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

As a preprocessing step, to reduce the high dimensional imaging-based feature space, a 

set of statistical features was calculated as a high-level representation to measure different 

properties of dMRI-based tract profiles’ distributions. We extracted M as a central 

tendency, STD as a measure of variability and kurtosis (KU) and skewness (SK) as measures 

of shape, Fig. 6. The tract profile statistics were calculated for ipsi- and contralesional 

tractograms (4 measures × 5 metrics × 2 hemispheres = 40 features) and were fed into the 

models. We further incorporated patients’ demographics and clinical data such as age, 

gender, tumor grade, tumor location and RMT ratio, and fed them into the 

aforementioned models and compared the results. 

The most relevant features were selected using SVM-RFE 37,38, which was intended to 

select subsets of features from the original rich feature space before doing the actual 

learning. This method recursively removes features that contribute least to the prediction 

based on the linear SVM classifier weight coefficients. Subsequently, selected features 

were used to train and validate the SVM model with linear kernel.  

 
Figure 6 Kernel density estimation (KDE) plot for approximating the underlying probability density 
function for all dMRI-based ipsilesional tract profiles with the corresponding histogram-based 
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features (4 features: M, STD, SK and KU) for a specific patient; a male patient (age:81) with 
preoperative motor deficits (class 1) and glioma WHO grade IV in the left hemisphere. 

To investigate how well each dMRI metric (e.g., AD, ADC, FA, FD, RD) performed in 

classifying the patients with respect to their motor status, different SVM models were 

trained and tested, e.g., SVM_AD, SVM_ADC, SVM_FA, SVM_FD and SVM_RD, with KNN-

based imputation method for missing values and Mdn-based tract profile. To assess the 

predictive power of patients’ demographics and clinical variables regardless of imaging-

based features (when ignoring the neuroimaging analysis pipeline), an SVM model 

(SVM_clinical) was developed using only patients’ age, tumor WHO grade, tumor location, 

gender and RMT. 

Additionally, a model was developed using all values of ipsi- and contralesional dMRI-based 

tract profiles without performing above mentioned feature extraction method. To reduce 

the high-dimensional imaging-based feature space (1000), principal component analysis 

(PCA) 39,40 was performed on MdN-based tract profiles and the first 4 components were 

fed into an SVM model with linear kernel (SVM_5) using KNN-based imputation method.  

We evaluated our models (SVM_1-5; SVM_AD-RD; SVM_clinical) using nested CV with a 

10-fold outer loop and a 5-fold inner loop. Our model key hyperparameters C for penalty 
87 was optimized in the inner CV loop and the best performing model was applied to the 

outer CV loop test set to evaluate the model selected by the inner loop. C was tested from 

0 to 5 and 0 to 10 with a 0.1 step-size, respectively. 

Our dataset was imbalanced because the proportion of patients with motor deficits to 

patients without motor deficits was nearly 1 to 2 (cf. Table 1). We used a stratified 10-fold 

CV to ensure that class distributions in each data split matched the distribution in the 

complete training dataset. We additionally assigned the class weights, 𝑤#, (class 1: MRC<0; 

class 0: MRC=5) inversely proportional to their respective frequencies as 𝑤# =
$!"#$%&!

$'%"!!&!∗$!"#$%&!(
, where 𝑛"&'()*" is the number of samples, 𝑛+)&""*" is the number of classes 

and 𝑛"&'()*"#  is the number of samples per class. 

Bootstrap aggregating (bagging) has been introduced as a method to reduce the variance 

of a given estimator 88. Bagging involves applying an estimator to multiple bootstrap 
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samples and voting the results across them. These estimators can use CV themselves to 

select fine-tuning parameters trading off bias and variance of the bootstrap sample-

specific candidate estimators. We used this approach in our models (SVM_1-4; SVM_AD-

RD) with 1000 resampled training sets per fold of outer loop CV and lastly voted among all 

1000 generated models. 

We evaluated the performance of our models using the overall accuracy, the ratio of 

correctly predicted samples over the entire cohort, sensitivity, specificity and the area 

under the receiver operating curve (AUC). 

 

Data availability statement 

Parts of the data that support the findings of this study are not publicly available due to 

information that could compromise the privacy of the research participants but are 

available from the corresponding author on reasonable request. However, code we have 

used is openly available on https://github.com/CUB-IGL/Machine-learning-based-

prediction-of-motor-status-in-glioma-patients-using-dMRI-metrics-along-CST and is 

referred to at the corresponding passage in the article.  
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Supplementary Table 2: Corrected p-values (FDR-BH) along ipsilesional CST profiles 

AD ADC FA FD RD 
0.011136856046762069 0.011462777718257914 0.27965843978691385 0.336694391190237 0.023952035688187028 
0.016744609325347045 0.011462777718257914 0.8614222560019962 0.8274002614710084 0.02009184498865534 
0.03015882120803534 0.017049460927474815 0.7461304467136712 0.9141143985149782 0.023928278183991784 
0.03463002505999671 0.017049460927474815 0.4992714530269339 0.9141143985149782 0.02000370924149419 
0.03463002505999671 0.01609853273759804 0.33362888576119026 0.9888779233376925 0.01934585148806892 
0.02929096906969759 0.015070328030297207 0.2411192776556674 0.9982066951663279 0.02000370924149419 
0.02929096906969759 0.016414059129873117 0.1882602269445827 0.9982066951663279 0.02301654840936339 
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0.03171839305313943 0.01609853273759804 0.16357062674222658 0.9627634760330447 0.023377814261011088 
0.025874570423586082 0.011767707372551789 0.14071099944515375 0.9141143985149782 0.02026124322500367 
0.02121149154014225 0.011462777718257914 0.13618760908001423 0.9141143985149782 0.018164815368189098 
0.021243206088001957 0.011462777718257914 0.137593259106739 0.9539734530140437 0.018164815368189098 
0.02282886248425515 0.011767707372551789 0.14071099944515375 0.9627634760330447 0.01890593775097565 
0.02282886248425515 0.011767707372551789 0.16357062674222658 0.9732034434130821 0.02009184498865534 
0.026836322510219602 0.011767707372551789 0.14071099944515375 0.9542175652766098 0.01890593775097565 
0.03171839305313943 0.011767707372551789 0.13618760908001423 0.9542175652766098 0.018164815368189098 
0.03171839305313943 0.011767707372551789 0.14071099944515375 0.9141143985149782 0.01871782297626124 
0.03463002505999671 0.011462777718257914 0.13618760908001423 0.7993414709537926 0.018164815368189098 
0.055242742382381436 0.01176252940160753 0.1123439735986235 0.7735097655761669 0.018164815368189098 
0.06098530177861444 0.01637697785263732 0.12522090303602273 0.732829340561692 0.02049227013218372 
0.056990371311264 0.02023806896489688 0.14379811183280242 0.670781882771652 0.023377814261011088 
0.055242742382381436 0.019547520296756882 0.17010815741260482 0.6256598717427512 0.024336388411057005 
0.06098530177861444 0.02323681379112752 0.21170746187000897 0.6042199620338617 0.029665195952593204 
0.08994367978888763 0.0338046226196035 0.2943903786876607 0.6042199620338617 0.04359606908955554 
0.12999433043589012 0.04208287858689789 0.3982503178400343 0.6042199620338617 0.06286515888821723 
0.14699471121546623 0.03634301769573582 0.5425887833684939 0.6042199620338617 0.07156173355217792 
0.15608847981541277 0.028789716935267145 0.6291283969128854 0.5822955665604527 0.06969162288672615 
0.16651563180443216 0.026615777124084465 0.6012948757163232 0.4325106201914536 0.06691954796741748 
0.17812251369044055 0.02917542685817119 0.5734108400585972 0.2819084518363021 0.06883391740536415 
0.19923711247861567 0.02917542685817119 0.5326023926399954 0.19195509787067483 0.061758018317453554 
0.2266382440708272 0.02832680226944813 0.4613677639298348 0.1485938230016407 0.04440187444481049 
0.2266382440708272 0.023864080709273018 0.3982503178400343 0.1485938230016407 0.03468365486650289 
0.21269741546085077 0.024831482722872774 0.38007842641007183 0.1485938230016407 0.03468365486650289 
0.20946354884691123 0.027700280201350142 0.3896753234923075 0.1485938230016407 0.040900643477244016 
0.17812251369044055 0.025011095415107754 0.38563100423617064 0.1485938230016407 0.04083623304439021 
0.13581417513481156 0.018157248529293974 0.31670973161260846 0.1485938230016407 0.03291789003938622 
0.11889043648836928 0.015956387876704864 0.2786671226853675 0.1485938230016407 0.025887432625942456 
0.10458775476628153 0.012048039939190944 0.213333119674164 0.1485938230016407 0.023377814261011088 
0.0795752340698011 0.011462777718257914 0.14492614860552588 0.1485938230016407 0.01934585148806892 
0.05863356146822964 0.011462777718257914 0.1123439735986235 0.1485938230016407 0.018164815368189098 
0.056990371311264 0.011462777718257914 0.07994206707289495 0.1485938230016407 0.018076665667520586 
0.05792775878183194 0.011462777718257914 0.05959326596819153 0.1485938230016407 0.017421757849957253 
0.05401262186603804 0.011462777718257914 0.04550526922929115 0.1485938230016407 0.01588723194494714 
0.04470889004892224 0.011462777718257914 0.04078425140010971 0.1485938230016407 0.01588723194494714 
0.04470889004892224 0.011462777718257914 0.04078425140010971 0.1485938230016407 0.01588723194494714 
0.04870401647324613 0.011462777718257914 0.04078425140010971 0.1485938230016407 0.017421757849957253 
0.05863356146822964 0.011497714725035172 0.04078425140010971 0.1485938230016407 0.018164815368189098 
0.07901994313636655 0.011767707372551789 0.04078425140010971 0.15226213864144128 0.018164815368189098 
0.09306233751815475 0.012747849113972198 0.041863934899368835 0.17571266360674254 0.018164815368189098 
0.10458775476628153 0.013619963168304565 0.04550526922929115 0.18890654634936266 0.018164815368189098 
0.11777182152502443 0.014565874125948888 0.04740731515010825 0.18907617870645227 0.01890593775097565 
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0.11889043648836928 0.01609853273759804 0.05137638799979671 0.18907617870645227 0.02000370924149419 
0.12078500583653652 0.017999557623633866 0.061543138659016054 0.19233816913746687 0.021779460615798985 
0.11889043648836928 0.021012431943190846 0.07780416004578886 0.23259677308874643 0.023928278183991784 
0.10458775476628153 0.023614098401770214 0.10144973516677312 0.27743331853289555 0.026462791433194653 
0.07952113868114824 0.024431221390329605 0.12522090303602273 0.336694391190237 0.03157076588168193 
0.05863356146822964 0.02323681379112752 0.14071099944515375 0.43735071883222243 0.03550853313730138 
0.04773526620930219 0.02171390340272644 0.16654117355485182 0.478215731155554 0.0381613645019177 
0.03463002505999671 0.017893599449023478 0.20009489545153625 0.6042199620338617 0.0381613645019177 
0.024382381326636202 0.015070328030297207 0.22699672556737807 0.6859842391892909 0.03588214425467024 
0.016744609325347045 0.011894922454589696 0.2411192776556674 0.7695288387565576 0.03313585756572504 
0.01392081883561952 0.011497714725035172 0.2411192776556674 0.789757454540459 0.02851365755958812 
0.011136856046762069 0.011462777718257914 0.2411192776556674 0.789757454540459 0.02566864216123481 
0.011136856046762069 0.011462777718257914 0.2411192776556674 0.789757454540459 0.023928278183991784 
0.011136856046762069 0.011462777718257914 0.2411192776556674 0.789757454540459 0.023278674419693245 
0.011136856046762069 0.011462777718257914 0.2411192776556674 0.789757454540459 0.02301654840936339 
0.011136856046762069 0.011462777718257914 0.25535977736224225 0.789757454540459 0.023278674419693245 
0.011136856046762069 0.011462777718257914 0.2639165492491231 0.789757454540459 0.023928278183991784 
0.011136856046762069 0.011462777718257914 0.2786671226853675 0.789757454540459 0.023952035688187028 
0.011136856046762069 0.011462777718257914 0.27965843978691385 0.789757454540459 0.023952035688187028 
0.011136856046762069 0.011462777718257914 0.2943903786876607 0.789757454540459 0.024732373214574433 
0.011206775544242457 0.011462777718257914 0.31064768769730416 0.789757454540459 0.02518303307330361 
0.01286524468623974 0.011462777718257914 0.31285805946128703 0.789757454540459 0.023952035688187028 
0.014109536187488588 0.011462777718257914 0.30917252479607626 0.789757454540459 0.023928278183991784 
0.014890466596799495 0.011462777718257914 0.27965843978691385 0.789757454540459 0.023278674419693245 
0.018680309910050114 0.011462777718257914 0.25535977736224225 0.789757454540459 0.021394064999468276 
0.02282886248425515 0.011462777718257914 0.22699672556737807 0.789757454540459 0.02000370924149419 
0.02929096906969759 0.011462777718257914 0.16357062674222658 0.7695288387565576 0.019294243701493925 
0.03463002505999671 0.011462777718257914 0.12522090303602273 0.6042199620338617 0.018164815368189098 
0.04021560781878949 0.011497714725035172 0.07780416004578886 0.4658812642859192 0.018164815368189098 
0.04470889004892224 0.011497714725035172 0.05088356958280326 0.3533492096113398 0.018164815368189098 
0.04870401647324613 0.011497714725035172 0.04078425140010971 0.2770301593694052 0.018164815368189098 
0.04870401647324613 0.011462777718257914 0.03245043014523583 0.23349455839247987 0.018033289115355795 
0.04870401647324613 0.011462777718257914 0.02511995941577425 0.19195509787067483 0.01588723194494714 
0.04470889004892224 0.011462777718257914 0.020169973894517256 0.17571266360674254 0.015527430091551199 
0.043107132670720964 0.011462777718257914 0.018137062558646628 0.15226213864144128 0.013917474296056631 
0.03463002505999671 0.011462777718257914 0.01662788252002256 0.15074839122312966 0.013323800502485033 
0.03155622017843677 0.011462777718257914 0.01662788252002256 0.1485938230016407 0.012202570484895169 
0.025574079303818092 0.011462777718257914 0.01662788252002256 0.1485938230016407 0.012202570484895169 
0.022622328713007275 0.011462777718257914 0.01662788252002256 0.1485938230016407 0.012202570484895169 
0.019106282780761756 0.011462777718257914 0.01662788252002256 0.1485938230016407 0.012202570484895169 
0.016744609325347045 0.011462777718257914 0.01662788252002256 0.15226213864144128 0.012202570484895169 
0.014890466596799495 0.011462777718257914 0.01662788252002256 0.18890654634936266 0.012202570484895169 
0.014890466596799495 0.011462777718257914 0.018137062558646628 0.23349455839247987 0.012202570484895169 
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0.01393676144721457 0.011462777718257914 0.02424750538883141 0.3317422608885178 0.012202570484895169 
0.011882195455281816 0.011462777718257914 0.035301485609796034 0.47676095184626227 0.012202570484895169 
0.011136856046762069 0.011462777718257914 0.04078425140010971 0.6473393205321074 0.012202570484895169 
0.011136856046762069 0.011462777718257914 0.06075201010117749 0.789757454540459 0.012202570484895169 
0.011136856046762069 0.011462777718257914 0.10144973516677312 0.8871531125264345 0.012202570484895169 
0.011136856046762069 0.011462777718257914 0.14492614860552588 0.9627634760330447 0.012202570484895169 
0.011136856046762069 0.011462777718257914 0.6906425930218448 0.789757454540459 0.018164815368189098 

 

Supplementary Table 3: Corrected p-values (FDR-BH) along the differences between ipsi- and 

contralesional CST profiles 

AD ADC FA FD RD 
0.946710846397834 0.7807702814114579 0.37323011750235585 0.9775738965452768 0.5838802437081158 
0.4818589402602446 0.556726936781187 0.8410825003874249 0.9040061752791977 0.5928992668593196 
0.42558388377505574 0.29474932132860976 0.7166517983490064 0.8313145176230737 0.2686273630726987 
0.3645473342101959 0.13266042076113374 0.3153792871266046 0.837624646639151 0.10380438744659091 
0.3645473342101959 0.08866269318085154 0.18350084927364785 0.6495610369980465 0.07366599053088398 
0.3735489881783121 0.1040775601787513 0.14168057428042644 0.6427869803426212 0.07634300862113903 
0.4538768865847612 0.14407507449662693 0.11596421370663372 0.6328905221979035 0.10682710846045199 
0.6588512122768341 0.1758508019417226 0.08669312988369528 0.6328905221979035 0.1278380980062686 
0.751280416125299 0.21034427748509554 0.06482408763999176 0.6044532261016083 0.1278380980062686 
0.7813800699684113 0.2979382908536028 0.06721042042700122 0.6328905221979035 0.15082288891412649 
0.9034658406277295 0.6142184862401171 0.08669312988369528 0.6524646842379762 0.2686273630726987 
0.8780239686427145 0.8968498784656392 0.12974703468049267 0.7553173382781562 0.4476555411542437 
0.8469400277391879 0.9910317149864964 0.1553741744955487 0.8172452181173122 0.5291047581762206 
0.7813800699684113 0.9602345364417547 0.15083470128058205 0.8155503794384331 0.5110852133591515 
0.7813800699684113 0.9399810614796142 0.1553741744955487 0.9734637368410731 0.36904925261372795 
0.8780239686427145 0.8788745710258984 0.19557810828249525 0.9775738965452768 0.3635930458206528 
0.8780239686427145 0.756776441358386 0.2019855719955663 0.9734637368410731 0.3257185261513045 
0.8780239686427145 0.6558705945376152 0.17995604433123588 0.9734637368410731 0.25840855408827007 
0.9815595076030244 0.5975384727625117 0.18355486471250076 0.9734637368410731 0.26545028553115174 
0.8780239686427145 0.5152732922843374 0.19322221671857648 0.9638786823435999 0.2402165384885349 
0.8469400277391879 0.3735900802009081 0.18350084927364785 0.946826799458898 0.2010606427452123 
0.8382341274883265 0.3368503135066111 0.17116087929412843 0.8809348111747528 0.1839953263949054 
0.8469400277391879 0.4290329175270216 0.23067527627375958 0.9040061752791977 0.21890095410974983 
0.875295214773319 0.4590821724197558 0.3120567807889906 0.9638786823435999 0.2402165384885349 
0.7813800699684113 0.3533166992981862 0.3612151694221496 0.9899872919283637 0.21854516509838162 
0.7388258758422597 0.21034427748509554 0.3203015998138497 0.9775738965452768 0.16149468799944056 
0.6570449621119576 0.14407507449662693 0.22760500025472905 0.9495976721906235 0.1279680535406273 
0.5275718685377806 0.1366278639994293 0.19761984533463753 0.7630581559197008 0.13944104288251719 
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0.4705315369348145 0.1131651695996264 0.18355486471250076 0.6704805735342625 0.1278380980062686 
0.5030343148422163 0.09569297073289015 0.1553741744955487 0.6458222576050873 0.09361981768721692 
0.4705315369348145 0.0831925205126628 0.1553741744955487 0.6458222576050873 0.08575717647527047 
0.4538768865847612 0.09001828786424906 0.18350084927364785 0.643190672951719 0.09594313955215965 
0.4538768865847612 0.1131651695996264 0.22945409490469965 0.6524646842379762 0.1278380980062686 
0.4538768865847612 0.1131651695996264 0.2539560632242701 0.6704805735342625 0.1278380980062686 
0.42558388377505574 0.08949225398151685 0.2019855719955663 0.6704805735342625 0.10982183469040709 
0.4466102658776658 0.08295252674525776 0.18355486471250076 0.6795303498327848 0.09594533336998949 
0.43468635751057527 0.08007254592202284 0.1553741744955487 0.6704805735342625 0.09309908885774293 
0.42558388377505574 0.07085636337170394 0.13803205013157507 0.6524646842379762 0.07533978150946301 
0.4168535932962531 0.07085636337170394 0.09511219401924051 0.6458222576050873 0.053407816047747116 
0.42558388377505574 0.07085636337170394 0.0721607634931837 0.6427869803426212 0.052370196524349044 
0.4538768865847612 0.07085636337170394 0.06482408763999176 0.6427869803426212 0.052370196524349044 
0.4705315369348145 0.07085636337170394 0.053400683202913836 0.6328905221979035 0.052370196524349044 
0.4818589402602446 0.07085636337170394 0.053400683202913836 0.6328905221979035 0.052370196524349044 
0.5071634137125404 0.07085636337170394 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.514652407761254 0.07582894780604216 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.6024072846192386 0.07901464834480984 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.7194119106828601 0.08095735925122848 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.7813800699684113 0.08125374404500925 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.8469400277391879 0.08125374404500925 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.8780239686427145 0.08125374404500925 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.8780239686427145 0.0836934139524262 0.053400683202913836 0.6044532261016083 0.053407816047747116 
0.8780239686427145 0.09116335398184212 0.053400683202913836 0.6044532261016083 0.05556674288447302 
0.8780239686427145 0.10100102297715273 0.05533487826930164 0.6044532261016083 0.06250788708720481 
0.875295214773319 0.1131651695996264 0.06482408763999176 0.6328905221979035 0.07239593478892002 
0.7813800699684113 0.1131651695996264 0.08409221559866405 0.6328905221979035 0.08177527558658071 
0.6570449621119576 0.10928301473566718 0.09717724750201813 0.6427869803426212 0.09086239954748633 
0.514652407761254 0.09808096357351669 0.11796322308970694 0.6427869803426212 0.09175029282610467 
0.464352857656369 0.08295252674525776 0.13715506819861734 0.6458222576050873 0.09105716260312426 
0.42558388377505574 0.07644946202713564 0.14318687193700194 0.6495610369980465 0.08433823700610824 
0.3645473342101959 0.07085636337170394 0.15083470128058205 0.6524646842379762 0.07555886579618676 
0.35729119733545944 0.07085636337170394 0.15083470128058205 0.6704805735342625 0.07016266499101857 
0.34112341487223097 0.07085636337170394 0.15083470128058205 0.6524646842379762 0.06456733653832186 
0.34112341487223097 0.07085636337170394 0.15083470128058205 0.6495610369980465 0.0602467574325961 
0.3538345288232321 0.07085636337170394 0.14318687193700194 0.6427869803426212 0.05518072776899828 
0.3585798533491954 0.07085636337170394 0.12725758000572143 0.6427869803426212 0.053407816047747116 
0.3585798533491954 0.07085636337170394 0.11596421370663372 0.6421060214145352 0.053407816047747116 
0.36262055396206444 0.07085636337170394 0.10220940273130472 0.6328905221979035 0.053407816047747116 
0.36262055396206444 0.07085636337170394 0.09717724750201813 0.6328905221979035 0.053407816047747116 
0.3645473342101959 0.07085636337170394 0.09717724750201813 0.6328905221979035 0.053407816047747116 
0.3645473342101959 0.07085636337170394 0.09360098287455311 0.6328905221979035 0.053407816047747116 
0.3645473342101959 0.07085636337170394 0.0887404727518205 0.6427869803426212 0.053407816047747116 
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0.3735489881783121 0.07085636337170394 0.08366176387172798 0.6427869803426212 0.052370196524349044 
0.4194614171345507 0.07085636337170394 0.07711797313590166 0.6524646842379762 0.052370196524349044 
0.42558388377505574 0.07085636337170394 0.06721042042700122 0.6704805735342625 0.052370196524349044 
0.4538768865847612 0.07085636337170394 0.06482408763999176 0.7553173382781562 0.052370196524349044 
0.4538768865847612 0.07085636337170394 0.06482408763999176 0.7630581559197008 0.052370196524349044 
0.464352857656369 0.07085636337170394 0.06482408763999176 0.7553173382781562 0.052370196524349044 
0.4700769606431286 0.07582894780604216 0.05533487826930164 0.6704805735342625 0.052370196524349044 
0.4705315369348145 0.07644946202713564 0.053400683202913836 0.6524646842379762 0.052370196524349044 
0.464352857656369 0.07644946202713564 0.053400683202913836 0.6495610369980465 0.052370196524349044 
0.464352857656369 0.07644946202713564 0.053400683202913836 0.6458222576050873 0.052370196524349044 
0.4538768865847612 0.0763728527061631 0.053400683202913836 0.6458222576050873 0.052370196524349044 
0.4538768865847612 0.07085636337170394 0.053400683202913836 0.6427869803426212 0.052370196524349044 
0.4297155255320146 0.07085636337170394 0.053400683202913836 0.6427869803426212 0.052370196524349044 
0.42558388377505574 0.07085636337170394 0.053400683202913836 0.6328905221979035 0.052370196524349044 
0.37909817365337545 0.07085636337170394 0.053400683202913836 0.6328905221979035 0.052370196524349044 
0.3645473342101959 0.07085636337170394 0.053400683202913836 0.6328905221979035 0.052370196524349044 
0.36262055396206444 0.07085636337170394 0.053400683202913836 0.6044532261016083 0.052370196524349044 
0.3585798533491954 0.07085636337170394 0.04490255045469805 0.6044532261016083 0.047205873794830336 
0.3538345288232321 0.06476818068785488 0.040204414262693715 0.6044532261016083 0.037394482643962355 
0.34112341487223097 0.056976518189368115 0.040204414262693715 0.6044532261016083 0.03001955369125982 
0.27764469545794945 0.05363070285608441 0.040204414262693715 0.6044532261016083 0.02885877403778891 
0.27764469545794945 0.05237320079667769 0.040204414262693715 0.6044532261016083 0.02885877403778891 
0.24466784630296584 0.04968901214595009 0.040204414262693715 0.6044532261016083 0.02885877403778891 
0.2139348000837406 0.04968901214595009 0.040204414262693715 0.6044532261016083 0.02885877403778891 
0.2139348000837406 0.04968901214595009 0.040204414262693715 0.6044532261016083 0.02885877403778891 
0.2139348000837406 0.04968901214595009 0.04490255045469805 0.6389952771571914 0.02885877403778891 
0.2139348000837406 0.04968901214595009 0.053400683202913836 0.6427869803426212 0.02885877403778891 
0.2139348000837406 0.04968901214595009 0.053400683202913836 0.6458222576050873 0.02885877403778891 
0.24466784630296584 0.07085636337170394 0.18355486471250076 0.7366544734706596 0.052370196524349044 

 

Supplementary Table 4: Corrected p-values (FDR-BH) along contralesional CST profiles 

AD ADC FA FD RD 
0.02508361401551678 0.04154555678348011 0.997163526242788 0.8779638730808292 0.17545193564158262 
0.059603828717824596 0.06248168193790106 0.997163526242788 0.9361604877288705 0.29124966338597363 
0.12866833514902395 0.12481260112563006 0.997163526242788 0.9361604877288705 0.3640159192490626 
0.17769372168447067 0.15934085421190475 0.997163526242788 0.9361604877288705 0.3721497560025711 
0.17769372168447067 0.20645238225850812 0.997163526242788 0.9361604877288705 0.4014469495497067 
0.13567001036343806 0.1752691719628336 0.997163526242788 0.9361604877288705 0.40557508684163673 
0.08535688893399924 0.14174864986661165 0.997163526242788 0.9361604877288705 0.3813222472041167 
0.04634553204449935 0.09339128552148872 0.997163526242788 0.9361604877288705 0.36686830084271066 
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0.04040866408314997 0.05990586893963859 0.997163526242788 0.9361604877288705 0.3640159192490626 
0.04040866408314997 0.05108090109418563 0.997163526242788 0.9361604877288705 0.32349653047927374 
0.027934404660784742 0.03707540919180264 0.997163526242788 0.9361604877288705 0.2449643400661747 
0.013738437199972845 0.02486524452136699 0.997163526242788 0.9406509592269419 0.19875591240402657 
0.009386995259569693 0.018307499820251205 0.997163526242788 0.9500814708197131 0.17545193564158262 
0.006525497020498873 0.013427991933762175 0.997163526242788 0.9725931029062184 0.17545193564158262 
0.006525497020498873 0.012835202438286843 0.997163526242788 0.9725931029062184 0.17545193564158262 
0.006525497020498873 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.006525497020498873 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.009386995259569693 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.02508361401551678 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.040195240097377676 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.04040866408314997 0.012835202438286843 0.997163526242788 0.9361604877288705 0.1996466731924586 
0.04040866408314997 0.012835202438286843 0.997163526242788 0.9361604877288705 0.262713118884425 
0.05128594475090856 0.012835202438286843 0.997163526242788 0.9361604877288705 0.31311600287936303 
0.09316998561305778 0.01317613120760435 0.997163526242788 0.9361604877288705 0.35041665824668017 
0.17769372168447067 0.018307499820251205 0.997163526242788 0.9361604877288705 0.4014469495497067 
0.2487915492081619 0.038468424877019285 0.997163526242788 0.9302496766802602 0.5362131362882816 
0.3657498244745791 0.05426667000979107 0.997163526242788 0.9302496766802602 0.6105570633562066 
0.5184628960553053 0.08027769595160855 0.997163526242788 0.9302496766802602 0.6054715076988493 
0.6628476104300701 0.13599162417326016 0.997163526242788 0.9302496766802602 0.6054715076988493 
0.696209181836311 0.21695119591871875 0.997163526242788 0.8779638730808292 0.6554084093024616 
0.7504931788809532 0.27504171925320003 0.997163526242788 0.6307515293453646 0.6554084093024616 
0.7821489085475621 0.2587582140647035 0.997163526242788 0.5909523881329235 0.6105570633562066 
0.7630396533256533 0.19524777399773294 0.997163526242788 0.41545920868590525 0.5580310705334856 
0.7023449366135487 0.16409850340262336 0.997163526242788 0.41545920868590525 0.5362131362882816 
0.6628476104300701 0.15761772343199912 0.997163526242788 0.41545920868590525 0.5164692446748043 
0.5336839379121917 0.13544991392075362 0.997163526242788 0.41545920868590525 0.49422056983880175 
0.4816473759146378 0.09879143754941584 0.997163526242788 0.41545920868590525 0.4155501010256586 
0.3847311140607384 0.07663701747720182 0.997163526242788 0.5909523881329235 0.3813222472041167 
0.3226998719660713 0.07226908783123424 0.997163526242788 0.6307515293453646 0.39316548694574266 
0.24467576282988668 0.08027769595160855 0.997163526242788 0.6932351414388339 0.408139550038619 
0.16157707244488012 0.05990586893963859 0.997163526242788 0.6932351414388339 0.3721497560025711 
0.09889316748987668 0.053660230569808856 0.997163526242788 0.7714928342891748 0.3263398595977217 
0.06277109779590523 0.05108090109418563 0.997163526242788 0.9273232746747789 0.32349653047927374 
0.05128594475090856 0.047852126291642566 0.997163526242788 0.9361604877288705 0.3263398595977217 
0.0513365028037749 0.04593236990183122 0.997163526242788 0.9361604877288705 0.35041665824668017 
0.050119872307892915 0.04593236990183122 0.997163526242788 0.9361604877288705 0.3721497560025711 
0.04530941301465678 0.04798017468586765 0.997163526242788 0.9361604877288705 0.3813222472041167 
0.04040866408314997 0.05042394193240203 0.997163526242788 0.9361604877288705 0.39650411846494826 
0.04040866408314997 0.05108090109418563 0.997163526242788 0.9361604877288705 0.4137044559664638 
0.04040866408314997 0.053660230569808856 0.997163526242788 0.9361604877288705 0.4887119110797641 
0.04040866408314997 0.05374928487072884 0.997163526242788 0.9361604877288705 0.49985048500221185 
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0.04040866408314997 0.05393602559149837 0.997163526242788 0.9361604877288705 0.5164692446748043 
0.04040866408314997 0.05381185041731105 0.997163526242788 0.9361604877288705 0.5362131362882816 
0.04040866408314997 0.053660230569808856 0.997163526242788 0.9361604877288705 0.5362131362882816 
0.04040866408314997 0.05374928487072884 0.997163526242788 0.9361604877288705 0.5362131362882816 
0.04040866408314997 0.055676626492493775 0.997163526242788 0.9361604877288705 0.5362131362882816 
0.04040866408314997 0.06006425256430102 0.997163526242788 0.9406509592269419 0.5580310705334856 
0.04040866408314997 0.06248168193790106 0.997163526242788 0.9725931029062184 0.5580310705334856 
0.04040866408314997 0.06248168193790106 0.997163526242788 0.9967038674411898 0.6105570633562066 
0.04040866408314997 0.06248168193790106 0.997163526242788 0.9725931029062184 0.6542199574396032 
0.04040866408314997 0.05972922431752787 0.997163526242788 0.9672952422724697 0.6542199574396032 
0.04040866408314997 0.053660230569808856 0.997163526242788 0.9361604877288705 0.6542199574396032 
0.04040866408314997 0.04593236990183122 0.997163526242788 0.9361604877288705 0.6542199574396032 
0.04040866408314997 0.038468424877019285 0.997163526242788 0.9361604877288705 0.6542199574396032 
0.04040866408314997 0.03707540919180264 0.997163526242788 0.9361604877288705 0.6612825989736123 
0.04040866408314997 0.039864020271848946 0.997163526242788 0.9361604877288705 0.738189992483967 
0.04040866408314997 0.04254875093717367 0.997163526242788 0.9361604877288705 0.7430024543639498 
0.04040866408314997 0.04495889071293446 0.997163526242788 0.9361604877288705 0.7430024543639498 
0.04040866408314997 0.04495889071293446 0.997163526242788 0.9361604877288705 0.7430024543639498 
0.04040866408314997 0.0474209604883618 0.997163526242788 0.9361604877288705 0.7755789395855308 
0.04040866408314997 0.05050370308502325 0.997163526242788 0.9361604877288705 0.8256487414292686 
0.04040866408314997 0.04813357299126024 0.997163526242788 0.9361604877288705 0.8256487414292686 
0.04040866408314997 0.04479282937833091 0.997163526242788 0.9361604877288705 0.8256487414292686 
0.04040866408314997 0.03897089698142747 0.997163526242788 0.9406509592269419 0.7616657771871289 
0.04040866408314997 0.03592798730561081 0.997163526242788 0.9725931029062184 0.7176163379375933 
0.04040866408314997 0.03433693967860302 0.997163526242788 0.9967038674411898 0.6542199574396032 
0.04505605887190529 0.03143515284630125 0.997163526242788 0.9725931029062184 0.5580310705334856 
0.050119872307892915 0.027610229835800366 0.997163526242788 0.9406509592269419 0.46025006986953804 
0.055790870869468524 0.02486524452136699 0.997163526242788 0.9361604877288705 0.3721497560025711 
0.06836518646923101 0.021168584753493824 0.997163526242788 0.9361604877288705 0.32205353664946557 
0.08519104622689083 0.018307499820251205 0.997163526242788 0.9361604877288705 0.2449643400661747 
0.08519104622689083 0.015944395674716692 0.997163526242788 0.9361604877288705 0.1996466731924586 
0.08264746361101617 0.013427991933762175 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.08519104622689083 0.01317613120760435 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.08519104622689083 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.08073723324089202 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.05625367927398639 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.046229397014786865 0.012835202438286843 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.04040866408314997 0.013427991933762175 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.04040866408314997 0.019954282921918313 0.997163526242788 0.9361604877288705 0.17545193564158262 
0.04040866408314997 0.027610229835800366 0.997163526242788 0.9361604877288705 0.1996466731924586 
0.04040866408314997 0.037210787258562444 0.997163526242788 0.9406509592269419 0.2449643400661747 
0.046064684490059175 0.04466276051681297 0.997163526242788 0.9725931029062184 0.2622803489214446 
0.05128594475090856 0.05042394193240203 0.997163526242788 0.9725931029062184 0.3183832438036129 
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0.05128594475090856 0.0553020677775697 0.997163526242788 0.9725931029062184 0.3721497560025711 
0.04963854821753421 0.05764758038756385 0.997163526242788 0.9406509592269419 0.408139550038619 
0.046229397014786865 0.05972922431752787 0.997163526242788 0.9361604877288705 0.46025006986953804 
0.059603828717824596 0.15401863221958004 0.997163526242788 0.9361604877288705 0.6054715076988493 
0.1493701218710107 0.5402929602430806 0.997163526242788 0.9361604877288705 0.8354764540704432 
0.04040866408314997 0.2558138971405256 0.997163526242788 0.9361604877288705 0.6542199574396032 

 

Supplementary Table 5a:  

p-values for histogram-based features of ipsilesional tract profiles (M, STD, KU and SK)  

 
Mean Standard_deviation Kurtosis Skewness 

AD     

Pvalue 0.00035915874512317827 0.2341572786697913 0.366947543185421 0.36481618144418837 
Statistic 1000.0 1469.0 1537.0 1536.0 
ADC     

Pvalue 0.00020793562410994644 0.0006843192729760747 0.06445201298720575 0.38847701594380935 
Statistic 974.0 1032.0 1329.0 1547.0 
FA     

Pvalue 0.015003176742231243 0.347920379642365 0.0007117261438705842 0.1485877267971279 
Statistic 1214.0 1528.0 1034.0 1413.0 
FD     

Pvalue 0.07190077569372236 0.2482846512862143 0.36481618144418837 0.08694737148719373 
Statistic 1339.0 1477.0 1536.0 1357.0 
RD     

Pvalue 0.00038203487598156724 0.001288235588776543 0.10629430993736705 0.4125591732724999 
Statistic 1003.0 1065.0 1377.0 1558.0 

 

Supplementary Table 5b:  

p-values for histogram-based features of contralesional tract profiles (M, STD, KU and SK)  

 
Mean Standard_deviation Kurtosis Skewness 

AD     

Pvalue 0.0029473206024855916 0.10944566682997958 0.3190837409993945 0.11375107562409548 
Statistic 1111.0 1380.0 1514.0 1384.0 
ADC     

Pvalue 0.001288235588776543 0.0816905028870411 0.14085083793248715 0.09151784128287349 
Statistic 1065.0 1351.0 1407.0 1362.0 
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FA     

Pvalue 0.4302883040679208 0.3030707431663115 0.10525856321503085 0.3375093416727035 
Statistic 1566.0 1506.0 1376.0 1523.0 
FD     

Pvalue 0.47966582022590476 0.30505263433040164 0.18534049210053155 0.02632941924235198 
Statistic 1588.0 1507.0 1439.0 1255.0 
RD     

Pvalue 0.016339233313890682 0.05018258478215847 0.14727888645121695 0.12857297507759896 
Statistic 1220.0 1307.0 1412.0 1397.0 
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