Supplementary Information

Design and evaluation of mobile monitoring campaigns for air pollution exposure assessment in epidemiologic cohorts

Magali N. Blanco,^a Annie Doubleday,^a Elena Austin,^a Julian D. Marshall,^b Edmund Seto,^a Tim Larson,^{a,b} Lianne Sheppard^{a,c}

^aDepartment of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave NE, Seattle, WA 98195

^bDepartment of Civil & Environmental Engineering, College of Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195

^cDepartment of Biostatistics, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave NE, Seattle, WA 98195

Table of Contents

1	METHODS 1
2	HOURLY READINGS
3	ANNUAL AVERAGE ESTIMATES
4	MODEL PREDICTIONS
5	MODEL ASSESSMENT
6	SENSITIVITY ANALYSES
7	REFERENCES
List	of Tables
TABLE	S1. Two-week sampling windows for the Rush Hours and Business Hours designs ^a
	S2. GEOCOVARIATES AND BUFFERS INCLUDED IN PLS REGRESSION (N = 321)
	S3. DISTRIBUTION OF THE NUMBER OF HOURLY AND DAY EQUIVALENT (24 SAMPLES/DAY) OBSERVATIONS PER SITE 1
	S4. DISTRIBUTION OF HOURLY CONCENTRATIONS (PPB) ¹
TABLE	S5. DISTRIBUTION OF ANNUAL AVERAGE NOX ESTIMATES FROM VARIOUS SAMPLING APPROACHES. 1
	S6. Predictions above 80 PPB excluded from prediction plots, if noted ¹
TABLE	S7. Distribution of prediction bias for short-term approaches relative to the gold standard predictions 1
	of Figures
	E S1. HIERARCHICAL STRUCTURE OF SIMULATIONS
FIGUR	E S2. LOESS LINES FOR ABSOLUTE AND PERCENT ERROR OF THE NOX ANNUAL AVERAGE (PPB), AVERAGED ACROSS 10,000 RANDOM SAMPLES AND 69 SITES, BY NUMBER OF REPEAT VISITS. THE COLORED CURVES ARE FOR INDIVIDUAL SITES, THE BLACK CURVE IS THE
	OVERALL TREND, AND THE DASHED VERTICAL LINE IS FOR 28 REPEAT VISITS
FIGUR	ie S3. AQS sites included in the analysis of each pollutant (N=69 NOx, 51 NO, 73 NO $_2$). Site ID is a compilation of the
	CA STATE ID (6, THE FIRST DIGIT), COUNTY ID (NEXT 3 DIGITS), AND AQS SITE ID (LAST 4 DIGITS)
FIGUR	ES4. CONCENTRATION TRENDS FOR NOX, NO, AND NO2 OVER THE COURSE OF 2016 AT AQS SITES INCLUDED IN THIS STUDY
	(N=69 NOx, 51 NO, 73 NO $_2$). Colored lines are individual sites
FIGUR	ESS. CONCENTRATION TRENDS FOR NOX, NO, AND NO2 BY DAY AND SEASON AT AQS SITES INCLUDED IN THIS STUDY (N=69 NOX,
_	51 NO, 73 NO ₂). Colored lines are individual sites
FIGUR	te S6. Concentration trends for NOx, NO, and NO2 by Hour and Season at AQS sites included in this study (N=69
F	NOx, 51 NO, 73 NO ₂). Colored lines are individual sites
FIGUR	E S7. ANNUAL AVERAGE SITE CONCENTRATION ESTIMATES FOR DIFFERENT POLLUTANTS AND DESIGN VERSIONS. N=30 CAMPAIGNS
	PER DESIGN VERSION X 69 SITES FOR SHORT-TERM APPROACHES; N = 1 CAMPAIGN PER DESIGN VERSION X 69 SITES FOR LONG-TERM
	APPROACHES. SHORT-TERM APPROACHES APPEAR TO BE MORE VARIABLE (LESS PRECISE), IN LARGE PART BECAUSE ALL 30 CAMPAIGNS ARE REPRESENTED IN THE BOXPLOTS
Eicun	E S8. SITE-SPECIFIC NOX ESTIMATE ERROR FOR SHORT-TERM DESIGNS (N = 30 CAMPAIGNS) AS COMPARED TO THE TRUE ESTIMATES
IIGUR	(LONG-TERM BALANCED DESIGN VERSION 1). ALL SITES ARE INCLUDED. SITES ARE ARRANGED BY THE TRUE NOX AVERAGE, WITH
	HIGHER CONCENTRATIONS HIGHER UP
FIGUR	E S9. VARIATION OF PREDICTIONS ACROSS 69 SITES BY DESIGN RELATIVE TO THE GOLD STANDARD PREDICTIONS (RELATIVE STANDARD
. 1001	DEVIATION [RSD]). BOXPLOTS ARE FOR SHORT-TERM APPROACHES (30 CAMPAIGNS), SQUARES ARE FOR LONG-TERM APPROACHES
	(1 CAMPAIGN). VALUES OF 1 INDICATE THAT DESIGN PREDICTIONS HAVE THE SAME STANDARD DEVIATION AS THE GOLD STANDARD MODEL PREDICTIONS
	IVIOUEL FREDICTIONS

FIGURE S10. SCATTERPLOT OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS THE GOLD STANDARD PREDICTIONS
for NOx, NO, and NO2. Showing predictions below 80 ppb for clarity (see SI Figure S12 and Table S6 for
PREDICTIONS EXCLUDED)
FIGURE S11. BEST FIT LINES OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS THE GOLD STANDARD PREDICTIONS
FOR NOX, NO, AND NO2
FIGURE S12. PREDICTIONS ABOVE 80 PPB EXCLUDED FROM PREDICTION PLOTS, IF NOTED.
FIGURE \$13. SCATTERPLOTS AND BEST FIT LINES OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS TRUE AVERAGE
CONCENTRATIONS FOR NOx. THIN TRANSPARENT LINES ARE INDIVIDUAL CAMPAIGNS, COLORED BY DESIGN VERSION; THICKER LINES
ARE THE OVERALL VERSION TREND. (ONE PREDICTION IS EXCLUDED FOR CLARITY FROM THE RUSH HOURS VERSION 4 SCATTERPLOT
AT X=24 PPB, Y=109 PPB [SITE 60731016] BUT IS INCLUDED IN THE LINE PLOTS)
FIGURE \$14. SITE-SPECIFIC NOX PREDICTION BIASES FOR SHORT-TERM DESIGNS (N = 30 CAMPAIGNS) AS COMPARED TO THE GOLD
STANDARD (LONG-TERM BALANCED DESIGN VERSION 1) PREDICTIONS FOR ALL SITES. SITES ARE ARRANGED BY THE TRUE NOX
MEASUREMENT, WITH HIGHER CONCENTRATION SITES HIGHER UP. ONE PREDICTION BIAS FOR SITE 60731016 IS EXCLUDED (86 PF
FOR RUSH HOURS VERSION 4) FOR CLARITY.
FIGURE S15. NO ₂ MODEL PERFORMANCES (R ² _{MSE} , R ² _{REG} , AND RMSE), AS DETERMINED BY EACH CAMPAIGN'S CROSS-VALIDATED
PREDICTIONS RELATIVE TO: A) THE TRUE AVERAGES (LONG-TERM BALANCED VERSION 1), AND B) ITS CAMPAIGN AVERAGES.
BOXPLOTS ARE FOR SHORT-TERM APPROACHES (30 CAMPAIGNS), WHILE SQUARES ARE FOR LONG-TERM APPROACHES (1
CAMPAIGN).
FIGURE S16. NO MODEL PERFORMANCES (R^2_{MSE} , R^2_{REG} , and RMSE), as determined by each campaign's cross-validated
PREDICTIONS RELATIVE TO: A) THE TRUE AVERAGES (LONG-TERM BALANCED VERSION 1), AND B) ITS RESPECTIVE CAMPAIGN
AVERAGES. BOXPLOTS ARE FOR SHORT-TERM APPROACHES (30 CAMPAIGNS), WHILE SQUARES ARE FOR LONG-TERM APPROACHES (
CAMPAIGN). A FEW INFLUENTIAL OUTLIERS INFLUENCED THESE PERFORMANCE STATISTICS MORE SO THAN FOR NOx AND NO2 2
FIGURE S17. CONCENTRATION TRENDS FOR NOX AT AQS SITES INCLUDED IN THE LOS ANGELES-SAN DIEGO ANALYSIS (N=17). COLORED
SMOOTH LINES ARE INDIVIDUAL SITES.
FIGURE S18. CONCENTRATION TRENDS FOR NOX AT AQS SITES INCLUDED IN THE LOS ANGELES-SAN DIEGO ANALYSIS (N=17) BY DAY AN
SEASON. COLORED SMOOTH LINES ARE INDIVIDUAL SITES.
FIGURE S19. CONCENTRATION TRENDS FOR NOX AT AQS SITES INCLUDED IN THE LOS ANGELES-SAN DIEGO ANALYSIS (N=17) BY HOUR
AND SEASON. COLORED SMOOTH LINES ARE INDIVIDUAL SITES.
AND SLASON. COLONED SINIOOTTI LINES AND INDIVIDUAL SITES
List of Equations
Dist of Equations
EQUATION S1. MEAN SQUARED ERROR (MSE) DEFINITION. WHERE yi , $campaign$ is the prediction from a campaign for a given
DESIGN VERSION; yi, ref is the reference value, either the true annual average or the estimated annual average
FROM THE SAME CAMPAIGN (THE TYPICAL APPROACH IN PRACTICE); AND n IS THE TOTAL NUMBER OF SITES
EQUATION S2. ROOT MEAN SQUARED ERROR (RMSE) DEFINITION
EQUATION S2. NOOT MEAN SQUARED ERROR (RIVISE) DEFINITION. EQUATION S3. MSE-BASED R ² (RMSE2) DEFINITION. WHERE ycampaign is the average across all n sites for a given
CAMPAIGN
List of Notes
List of Notes
N
NOTE \$1. R PACKAGES USED IN ANALYSES

1 Methods

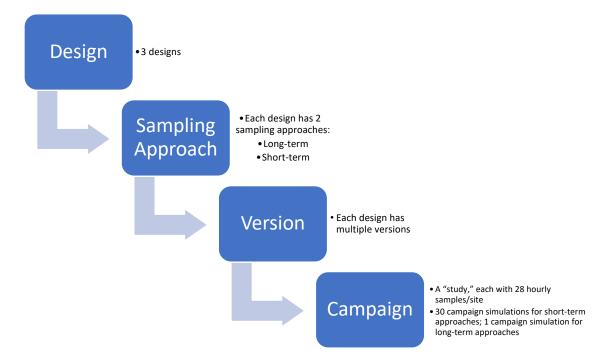


Figure S1. Hierarchical structure of simulations.

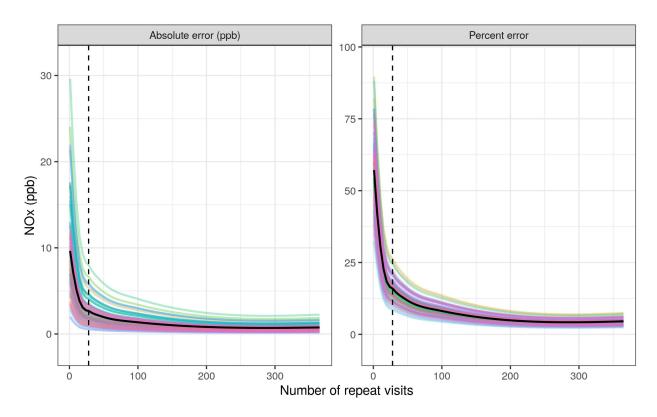


Figure S2. Loess lines for absolute and percent error of the NOx annual average (ppb), averaged across 10,000 random samples and 69 sites, by number of repeat visits. The colored curves are for individual sites, the black curve is the overall trend, and the dashed vertical line is for 28 repeat visits.

Table S1. Two-week sampling windows for the Rush Hours and Business Hours designs^a

Version	Season	Start	End	
4	summer	2016-06-20	2016-07-03	
4	winter	2016-02-27	2016-03-11	
5	summer	2016-08-07	2016-08-20	
5	winter	2016-01-15	2016-01-28	
6	spring	2016-04-15	2016-04-28	
6	fall	2016-09-25	2016-10-08	
7	spring	2016-05-15	2016-05-28	
7	fall	2016-11-24	2016-12-07	

^a the same two-week periods for each version were used for all sites

Table S2. Geocovariates and buffers included in PLS regression (n = 321)

Kind	Covariate	Buffers	Description
airports	log_m_to_airp		log meters to closest airport
airports	log_m_to_l_airp		log meters to closest large airport
bus	log_m_to_bus		log meters to closest bus route
coast	log_m_to_coast		log meters to closest coastline
commercial	log_m_to_comm		log meters to closest commercial and
and services			services area
commercial	lu_comm_p	50, 100, 150, 300,	proportion of commercial land use
and services		400, 500, 750, 1000,	
		1500, 3000, 5000,	
		10000, 15000	
elevation	elev_above	1000, 5000	number of points (out of 24) more
			than 20 m and 50 m uphill of a

			location for a 1000 m and 5000 m
			buffer, respectively
elevation	elev_at_elev	1000, 5000	number of points (out of 24) within
			20 m and 50 m of the location'
			elevation for a 1000 m and 5000 m
			buffer, respectively
elevation	elev_below	1000, 5000	number of points (out of 24) more
			than 20 m and 50 m downhill of a
			location for a 1000 m and 5000 m
			buffer, respectively
elevation	elev_elevation		elevation above sea level in meters
emissions/air	em_CO_s	3000, 15000, 30000	sum of major CO emissions from
pollutants			stacks
emissions/air	em_NOx_s	3000, 15000, 30000	sum of major NOx emissions from
pollutants			stacks
emissions/air	em_PM10_s	3000, 15000, 30000	sum of major PM10 emissions from
pollutants			stacks
emissions/air	em_PM25_s	3000, 15000, 30000	sum of major PM2.5 emissions from
pollutants			stacks
emissions/air	em_SO2_s	3000, 15000, 30000	sum of major SO2 emissions from
pollutants			stacks
emissions/air	no2_behr_2005		Columnar NO2 for 2005
pollutants			
emissions/air	no2_behr_2006		Columnar NO2 for 2006
pollutants			
emissions/air	no2_behr_2007		Columnar NO2 for 2007
pollutants			
imperviousness	imp_a	50, 100, 150, 300,	average imperviousness
		400, 500, 750, 1000,	
		3000, 5000	

land use	lu_bays_p	3000, 5000, 10000, 15000	proportion of land with bays and estuaries
land use	lu_crop_p	100, 150, 300, 400, 500, 750, 1000, 1500, 3000, 5000, 10000, 15000	proportion of cultivated crops such as orchards, vineyards, grains
land use	lu_green_p	750, 1000, 1500, 3000, 5000, 10000, 15000	proportion of evergreen forest land
land use	lu_grove_p	750, 1000, 1500,	proportion of orchards, groves,
		3000, 5000, 10000, 15000	vineyards, nurseries
land use	lu_herb_range_p	1000, 1500, 3000,	proportion of herbaceous rangeland
		5000, 10000, 15000	
land use	lu_industrial_p	150, 300, 400, 500,	proportion of industrial land use
		750, 1000, 1500,	
		3000, 5000, 15000	
land use	lu_mine_p	3000, 5000, 10000	proportion of land with strip mines, quarries, and gravel pits
land use	lu_mix_forest_p	10000, 15000	proportion of mixed forest land
land use	lu_mix_range_p	1500, 3000, 5000, 10000	proportion of mixed rangeland
land use	lu_mix_urban_p	150, 300, 400, 500, 750, 1000, 1500	proportion of mixed urban or built-up land
land use	lu_oth_urban_p	400, 500, 750, 1000, 1500, 5000	proportion of other urban or built-up land
land use	lu reservior p	5000	proportion of land with reservoiurs
land use	lu resi p	50, 100, 150, 300,	Proportion of residential land use
		400, 500, 750, 1000,	•
		1500, 3000, 5000,	
		10000, 15000	

land use	lu_shrub_p	400, 500, 750, 1000, 1500, 3000, 5000, 10000, 15000	proportion of shrubland
land use	lu_transition_p	750, 1000, 1500	proportion of transitional land use
land use	lu_unspec_p	10000, 15000	proportion of unspecified land use
land use	rlu_barren_p	3000, 5000	proportion of barren land
land use	rlu_crop_p	750, 1000, 3000,	proportion of cropland and pasture
		5000	land
land use	rlu_dev_hi_p	50, 100, 150, 300,	proportion of highly developed land
		400, 500, 750, 1000,	(e.g., commercial and services;
		3000, 5000	industrial; transportation,
			communication and utilities)
land use	rlu_dev_lo_p	50, 100, 150, 300,	proportion of low developed land
		400, 500, 750, 1000,	(e.g., residential)
		3000, 5000	
land use	rlu_dev_med_p	50, 100, 150, 300,	proportion of medium developed land
		400, 500, 750, 1000,	(e.g., residential)
		3000, 5000	
land use	rlu_dev_open_p	50, 100, 150, 300,	proportion of developed open land
		400, 500, 750, 1000,	
		3000, 5000	
land use	rlu_grass_p	50, 100, 150, 300,	proportion of grasslands, herbaceous
		400, 500, 750, 1000,	vegetation
		3000, 5000	
land use	rlu_herb_wetland_	5000	proportion of herb (nonforested)
	p		wetland
land use	rlu_mix_forest_p	3000, 5000	proportion of mixed forest
land use	rlu_pasture_p	1000, 3000, 5000	proportion of pasture, hay land
land use	rlu_shrub_p	400, 500, 750, 1000,	proportion of shrubland
		3000, 5000	

NDVI	ndvi_q25_a	250, 500, 1000, 2500, 5000, 7500, 10000	NDVI (25th quantile)
NDVI	ndvi_q50_a	250, 500, 1000, 2500, 5000, 7500, 10000	NDVI (50th quantile)
NDVI	ndvi_q75_a	250, 500, 1000, 2500, 5000, 7500, 10000	NDVI (75th quantile)
NDVI	ndvi_summer_a	250, 500, 1000, 2500, 5000, 7500, 10000	average summer time NDVI
NDVI	ndvi_winter_a	250, 500, 1000, 2500, 5000, 7500, 10000	average winter time NDVI
population	pop_s	500, 1000, 1500, 2000, 2500, 3000, 5000, 10000, 15000	2000 population density
port	log_m_to_s_port		log meters to closest small port
port	lu_transport_p	300, 400, 500, 750, 1000, 1500, 3000, 5000	proportion of transportation, communications, and utilities land
railroads, rail yards	log_m_to_rr		log meters to closest railroad
railroads, rail yards	log_m_to_ry		log meters to closest rail yard
roads	intersect_a1_a1_s	3000	intersect_a1_a1_s
roads	intersect_a1_a2_s	3000	intersect_a1_a2_s
roads	intersect_a1_a3_s	1000, 3000	number of a1-a3 road intersections
roads	intersect_a2_a2_s	3000	number of a2-a2 road intersections
roads	intersect_a2_a3_s	3000	number of a2-a3 road intersections

roads	intersect_a3_a3_s	500, 1000, 3000	number of a3-a3 road intersections
roads	ll_a1_s	500, 750, 1000,	length of a1 roads
		1500, 3000, 5000	
roads	ll_a2_s	1500, 3000, 5000	length of a2 roads
roads	ll_a3_s	50, 100, 150, 300,	length of a3 roads
		400, 500, 750, 1000,	
		1500, 3000, 5000	
roads	log_m_to_a1		log meters to closest a1 road
roads	log_m_to_a1_a1_i		log meters to closest a1-a1 road
	ntersect		intersection
roads	log_m_to_a1_a2_i		log_m_to_a1_a2_intersect
	ntersect		
roads	log_m_to_a1_a3_i		log meters to closest a1-a3 road
	ntersect		intersection
roads	log_m_to_a2		log meters to closest a2 road
roads	log_m_to_a2_a2_i		log meters to closest a2-a2 road
	ntersect		intersection
roads	log_m_to_a2_a3_i		log meters to closest a2-a3 road
	ntersect		intersection
roads	log_m_to_a3		log meters to closest a3 road
roads	log_m_to_a3_a3_i		log meters to closest a3-a3 road
	ntersect		intersection
truck routes	log_m_to_truck		log meters to closest truck route
truck routes	tl_s	750, 1000, 1500,	length of truck routes
		3000, 5000, 10000,	
		15000	
water	log_m_to_waterwa		log meters to closest waterway
	y		
water	rlu_water_p	3000, 5000	proportion of water

$$MSE_{ref} = \frac{1}{n} \sum_{i=1}^{n} (y_{i,ref} - \hat{y}_{i,campaign})^{2}$$

Equation S1. Mean squared error (MSE) definition. Where $\hat{y}_{i,campaign}$ is the prediction from a campaign for a given design version; $y_{i,ref}$ is the reference value, either the true annual average or the estimated annual average from the same campaign (the typical approach in practice); and n is the total number of sites.

$$RMSE_{ref} = \sqrt{MSE_{ref}}$$

Equation S2. Root mean squared error (RMSE) definition

$$R_{MSE}^{2} = \max \left(0, 1 - \frac{MSE_{ref}}{\frac{1}{n} \sum_{i=1}^{n} (y_{i,ref} - \bar{y}_{campaign})^{2}} \right)$$

Equation S3. MSE-based R^2 (R^2_{MSE}) definition. Where $\overline{y}_{campaign}$ is the average across all n sites for a given campaign.

Note S1. R packages used in analyses

dplyr (1.0.6), forcats (0.5.0), ggmap (3.0.0), ggplot2 (3.3.3), ggpubr (0.2.5), ggrepel (0.8.1), ggspatial (1.1.4), glmnet (3.0-2), kableExtra (1.1.0), lubridate (1.7.10), magrittr (1.5), Matrix (1.2-18), modelr (0.1.6), pls (2.7-2), purr (0.3.3), readr (1.3.1), sf (0.9-5), tringr (1.4.0), tibble (3.1.2), tidyr (1.0.2), tidyrerse (1.3.0), VCA (1.4.2)

Figure S3. AQS sites included in the analysis of each pollutant (N=69 NOx, 51 NO, 73 NO₂). Site ID is a compilation of the CA state ID (6, the first digit), county ID (next 3 digits), and AQS site ID (last 4 digits).

2 Hourly Readings

Table S3. Distribution of the number of hourly and day equivalent (24 samples/day) observations per $site^1$

Parameter Name	Count	N	Min	Mean	SD	Median	IQR	Max
Oxides of nitrogen (NOx)	Day Equivalent	69	285	337	15	343	17	355
Oxides of nitrogen (NOx)	Hours	69	6,836	8,090	361	8,236	408	8,510
Nitric oxide (NO)	Day Equivalent	51	294	338	14	342	14	355
Nitric oxide (NO)	Hours	51	7,060	8,119	339	8,216	346	8,510
Nitrogen dioxide (NO2)	Day Equivalent	73	284	337	15	343	17	355
Nitrogen dioxide (NO2)	Hours	73	6,825	8,077	363	8,231	408	8,510

 $[\]frac{1}{1}$ N = number of sites.

Table S4. Distribution of hourly concentrations (ppb)¹

Parameter Name	N	Min	Mean	SD	Median	IQR	Max
Oxides of nitrogen (NOx)	558,207	-5	16	21	9	16	427
Nitric oxide (NO)	414,046	-5	9	16	4	5	381
Nitrogen dioxide (NO2)	589,625	-3	10	10	7	12	97

 $[\]overline{{}^{1}}$ N = total number of hourly readings.

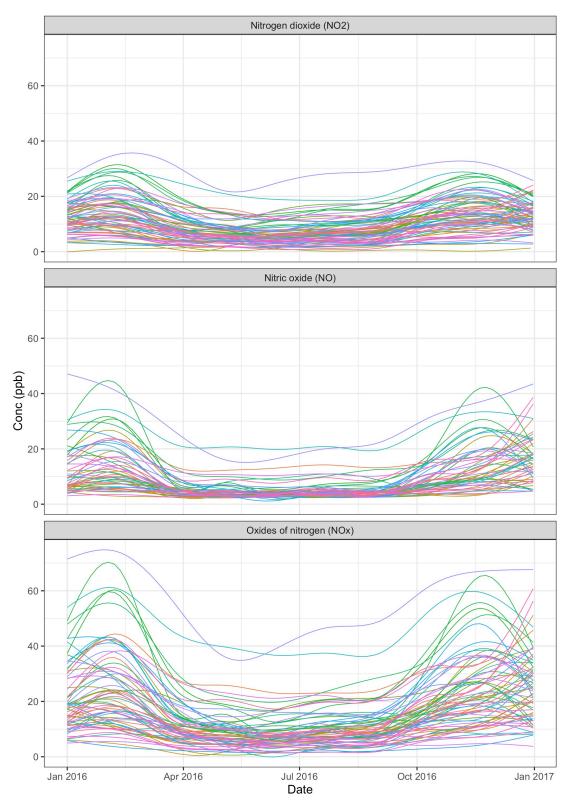


Figure S4. Concentration trends for NOx, NO, and NO2 over the course of 2016 at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

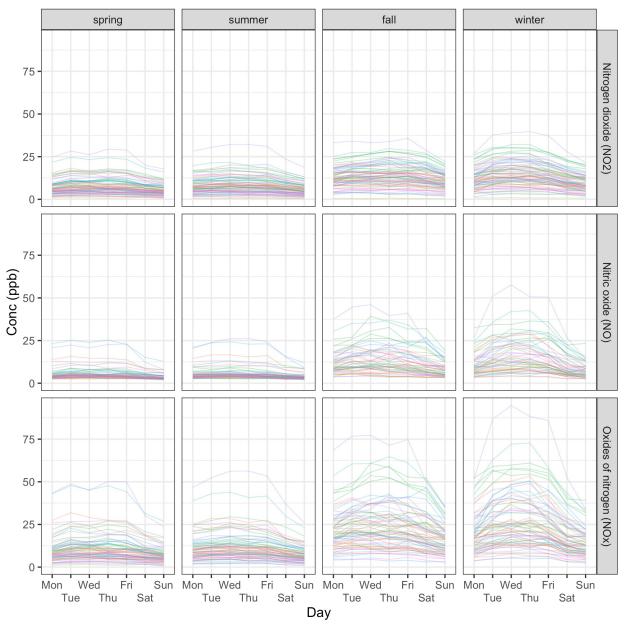


Figure S5. Concentration trends for NOx, NO, and NO2 by day and season at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

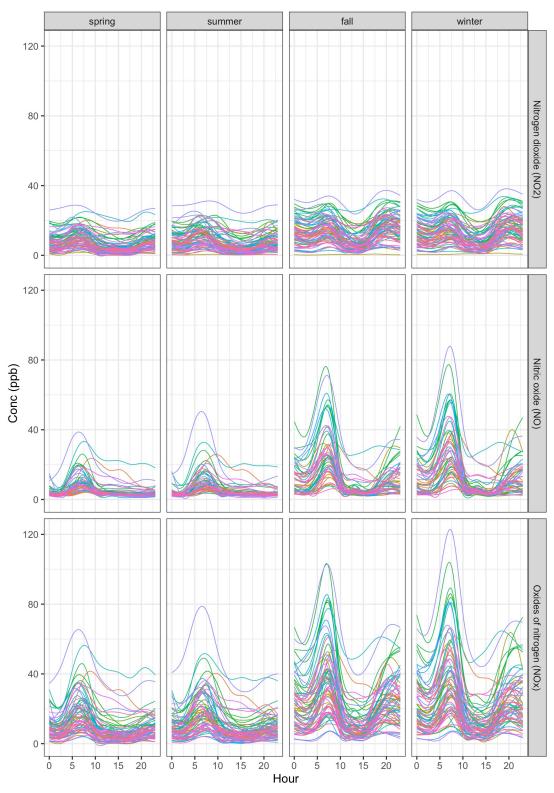


Figure S6. Concentration trends for NOx, NO, and NO2 by hour and season at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

3 Annual Average Estimates

Table S5. Distribution of annual average NOx estimates from various sampling approaches.¹

Design	Version	Type	N	Min	Q25	Q50	Q75	Max	SD
Balanced	All Hours (V1)	Long-Term	69	3.0	9.8	14.2	20.8	55.6	9.8
Balanced	All Hours (V1)	Short-Term	2070	1.9	9.2	13.7	21.2	69.5	10.3
Balanced	Most Hours (V2)	Long-Term	69	3.2	9.9	14.1	20.7	55.4	9.9
Balanced	Most Hours (V2)	Short-Term	2070	2.1	9.4	13.9	20.9	70.8	10.3
Balanced	Truncated (V3)	Long-Term	69	3.4	10.4	14.4	21.0	55.7	10.1
Balanced	Truncated (V3)	Short-Term	2070	2.1	9.8	14.7	21.4	66.9	10.6
Rush Hours	Winter, Summer (V4)	Long-Term	69	3.5	8.3	12.1	19.4	67.1	12.0
Rush Hours	Winter, Summer (V4)	Short-Term	2070	2.2	8.2	12.2	19.8	78.2	12.0
Rush Hours	Winter, Summer (V5)	Long-Term	69	4.6	12.3	18.8	29.6	75.9	14.5
Rush Hours	Winter, Summer (V5)	Short-Term	2070	3.1	12.0	18.1	29.0	95.7	14.8
Rush Hours	Spring, Fall (V6)	Long-Term	69	3.1	10.4	13.6	20.4	58.8	11.3
Rush Hours	Spring, Fall (V6)	Short-Term	2070	1.7	9.4	13.7	20.7	70.8	11.7
Rush Hours	Spring, Fall (V7)	Long-Term	69	4.4	10.6	15.7	20.2	55.7	10.0
Rush Hours	Spring, Fall (V7)	Short-Term	2070	2.3	10.4	15.3	20.9	69.5	10.4

Business Hours	Winter, Summer (V4)	Long-Term	69	1.6	5.5	8.1	12.8	54.6	10.6
Business Hours	Winter, Summer (V4)	Short-Term	2070	1.0	5.4	8.1	14.2	62.1	10.7
Business Hours	Winter, Summer (V5)	Long-Term	69	3.1	8.0	11.9	20.5	65.2	12.0
Business Hours	Winter, Summer (V5)	Short-Term	2070	2.0	8.1	11.8	19.9	73.0	12.0
Business Hours	Spring, Fall (V6)	Long-Term	69	1.6	5.4	7.9	12.2	53.3	9.8
Business Hours	Spring, Fall (V6)	Short-Term	2070	1.1	5.1	8.0	12.1	57.1	9.8
Business Hours	Spring, Fall (V7)	Long-Term	69	2.3	6.1	9.7	12.7	47.2	8.7
Business Hours	Spring, Fall (V7)	Short-Term	2070	0.9	6.2	9.6	13.1	53.9	8.7

 $[\]overline{{}^{1}}$ N = Total number of sites x number of campaigns.

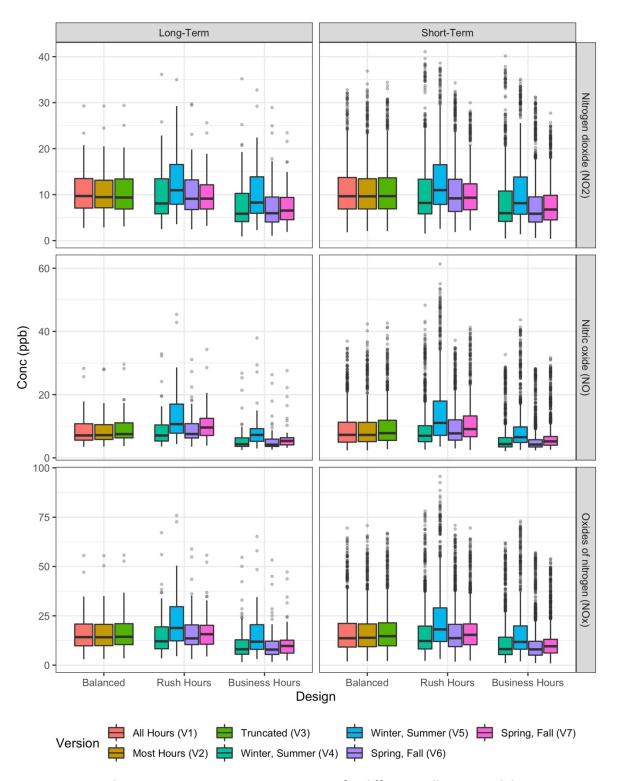


Figure S7. Annual average site concentration estimates for different pollutants and design versions. N=30 campaigns per design version x 69 sites for short-term approaches; N=1 campaign per design version x 69 sites for long-term approaches. Short-term approaches appear to be more variable (less precise), in large part because all 30 campaigns are represented in the boxplots.

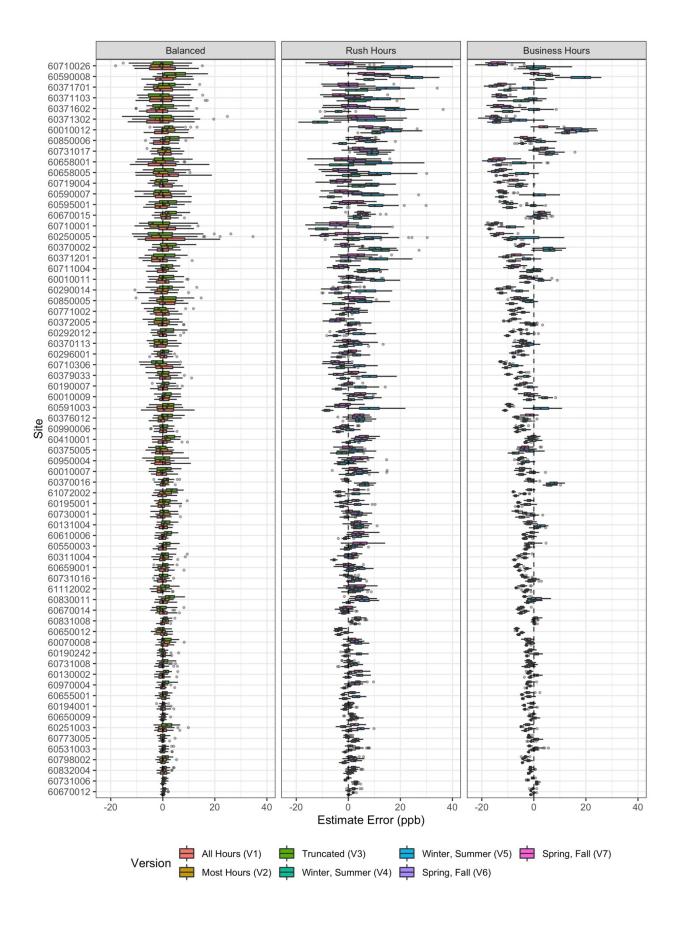


Figure S8. Site-specific NOx estimate error for short-term designs (N = 30 campaigns) as compared to the true estimates (long-term Balanced Design Version 1). All sites are included. Sites are arranged by the true NOx average, with higher concentrations higher up.

4 Model Predictions

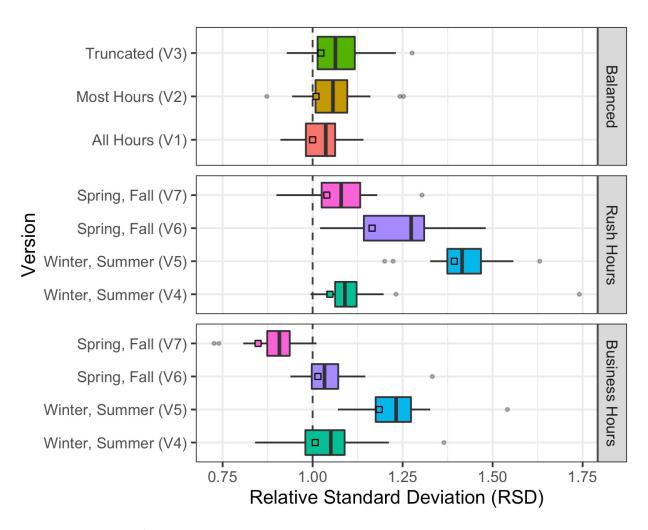


Figure S9. Variation of predictions across 69 sites by design relative to the gold standard predictions (relative standard deviation [RSD]). Boxplots are for short-term approaches (30 campaigns), squares are for long-term approaches (1 campaign). Values of 1 indicate that design predictions have the same standard deviation as the gold standard model predictions.

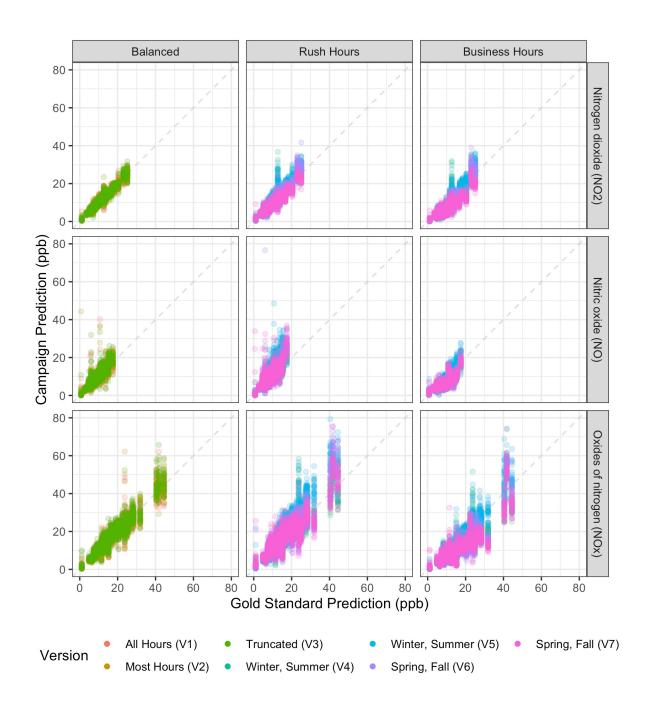


Figure S10. Scatterplot of cross-validated short-term predictions for 30 campaigns vs the gold standard predictions for NOx, NO, and NO2. Showing predictions below 80 ppb for clarity (see SI Figure S12 and Table S6 for predictions excluded).



Figure S11. Best fit lines of cross-validated short-term predictions for 30 campaigns vs the gold standard predictions for NOx, NO, and NO2.

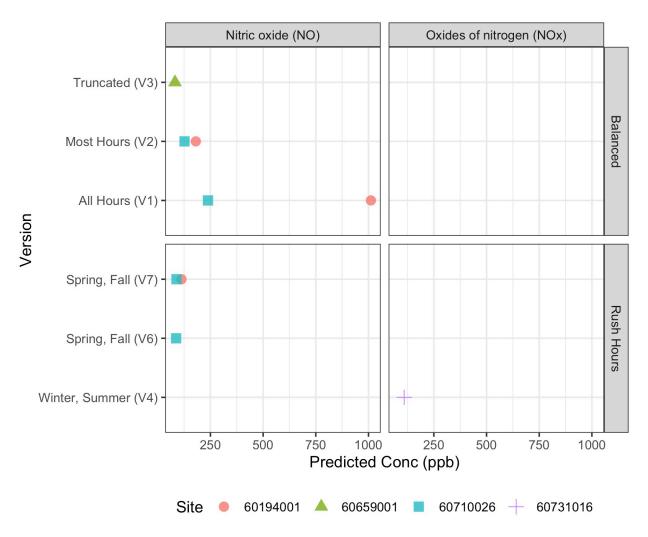
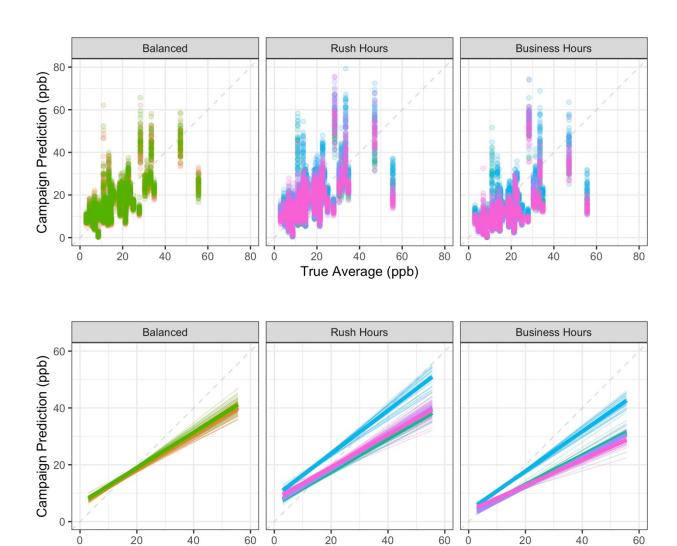



Figure S12. Predictions above 80 ppb excluded from prediction plots, if noted.

Table S6. Predictions above 80 ppb excluded from prediction plots, if noted¹

Parameter Name	Design Version		N	Prediction (ppb)
Oxides of nitrogen (NOx)	Rush Hours	Winter, Summer (V4)	1	109
Nitric oxide (NO)	Balanced	All Hours (V1)	2	238, 1012
Nitric oxide (NO)	Balanced	Most Hours (V2)	2	127, 181
Nitric oxide (NO)	Balanced	Truncated (V3)	1	82
Nitric oxide (NO)	Rush Hours	Spring, Fall (V6)	1	87
Nitric oxide (NO)	Rush Hours	Spring, Fall (V7)	2	89, 113

¹ N is the number of predictions.

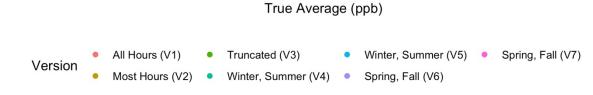


Figure S13. Scatterplots and best fit lines of cross-validated short-term predictions for 30 campaigns vs true average concentrations for NOx. Thin transparent lines are individual campaigns, colored by design version; thicker lines are the overall version trend. (One prediction is excluded for clarity from the Rush Hours Version 4 scatterplot at x=24 ppb, y=109 ppb [site 60731016] but is included in the line plots).

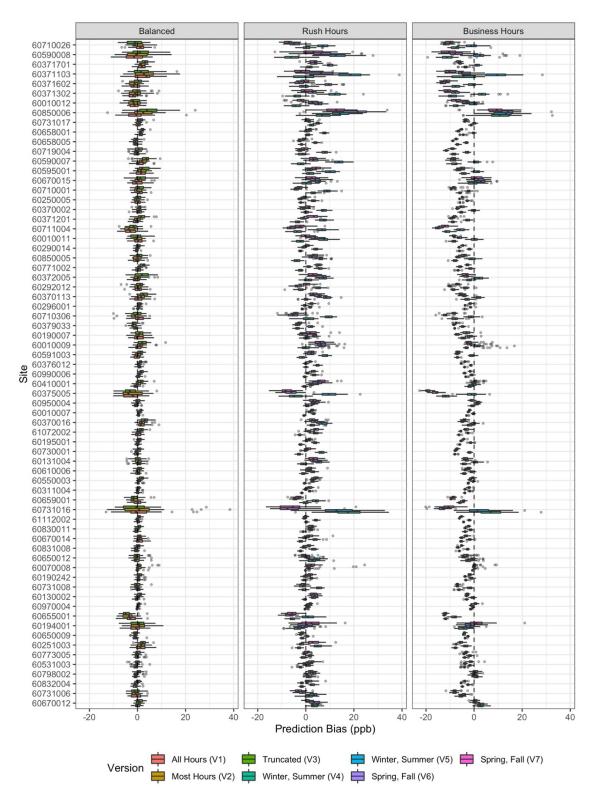


Figure S14. Site-specific NOx prediction biases for short-term designs (N = 30 campaigns) as compared to the gold standard (long-term Balanced Design Version 1) predictions for all sites. Sites are arranged by the true NOx measurement, with higher concentration sites higher up. One prediction bias for site 60731016 is excluded (86 ppb for Rush Hours Version 4) for clarity.

Table S7. Distribution of prediction bias for short-term approaches relative to the gold standard predictions1

Parameter Name	Design	N	Min	Q01	Median	IQR	Q99	Max
Oxides of nitrogen (NOx)	Balanced	6,210	-13.1	-6.9	0.2	2.4	7.9	38
Oxides of nitrogen (NOx)	Rush Hours	8,280	-16.6	-8.9	1.2	5.2	18.4	86
Oxides of nitrogen (NOx)	Business Hours	8,280	-22.7	-15.2	-3.8	5.3	12.8	33
Nitric oxide (NO)	Balanced	4,590	-10.5	-3.8	0.1	1.7	7.2	1,006 ²
Nitric oxide (NO)	Rush Hours	6,120	-7.9	-3.8	1.3	3.4	13.1	107
Nitric oxide (NO)	Business Hours	6,120	-10.6	-7	-1.8	3	4.2	10
Nitrogen dioxide (NO2)	Balanced	6,300	-6.9	-3	0.1	1.1	3.5	11
Nitrogen dioxide (NO2)	Rush Hours	8,400	-8.2	-4.7	0.1	2.3	6.6	24
Nitrogen dioxide (NO2)	Business Hours	8,400	-11.5	-7.5	-2.2	2.7	6.4	19

 $[\]overline{\ }^1$ N = the number of sites x 30 campaign repetitions x the number of versions per design 2 This maximum is the result of a very large outlier prediction

5 Model Assessment

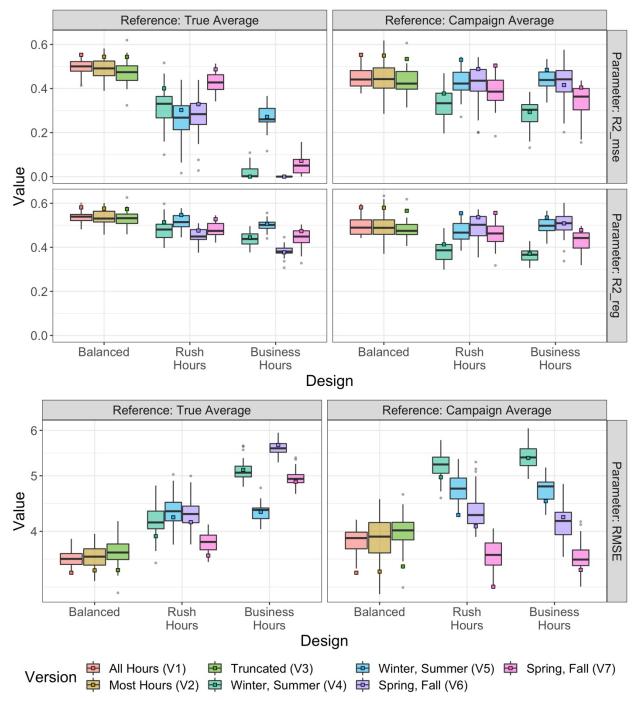


Figure S15. NO_2 Model performances (R^2_{MSE} , R^2_{reg} , and RMSE), as determined by each campaign's cross-validated predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its campaign averages. Boxplots are for short-term approaches (30 campaigns), while squares are for long-term approaches (1 campaign).

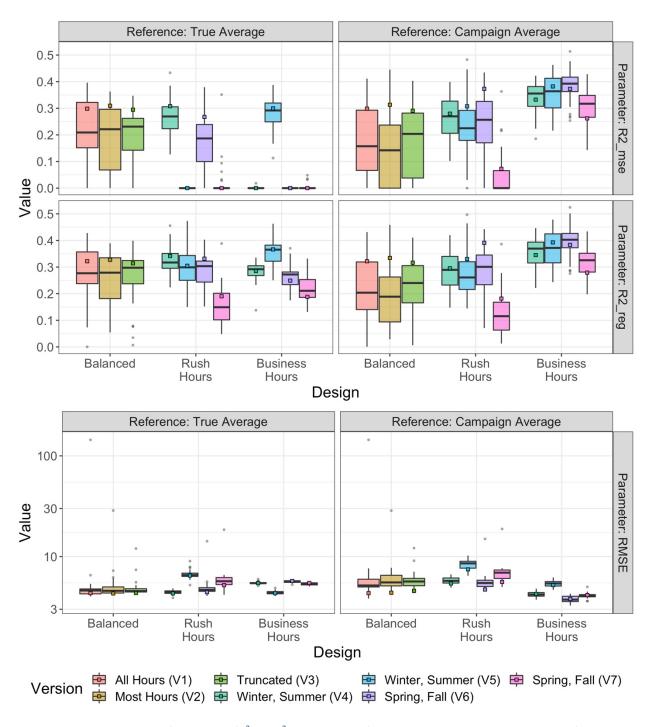


Figure S16. NO Model performances (R^2_{MSE} , R^2_{reg} , and RMSE), as determined by each campaign's cross-validated predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its respective campaign averages. Boxplots are for short-term approaches (30 campaigns), while squares are for long-term approaches (1 campaign). A few influential outliers influenced these performance statistics more so than for NOx and NO₂.

6 Sensitivity Analyses

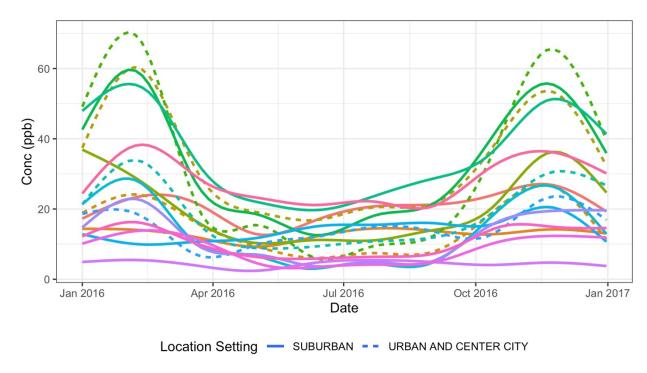


Figure S17. Concentration trends for NOx at AQS sites included in the Los Angeles-San Diego analysis (N=17). Colored smooth lines are individual sites.

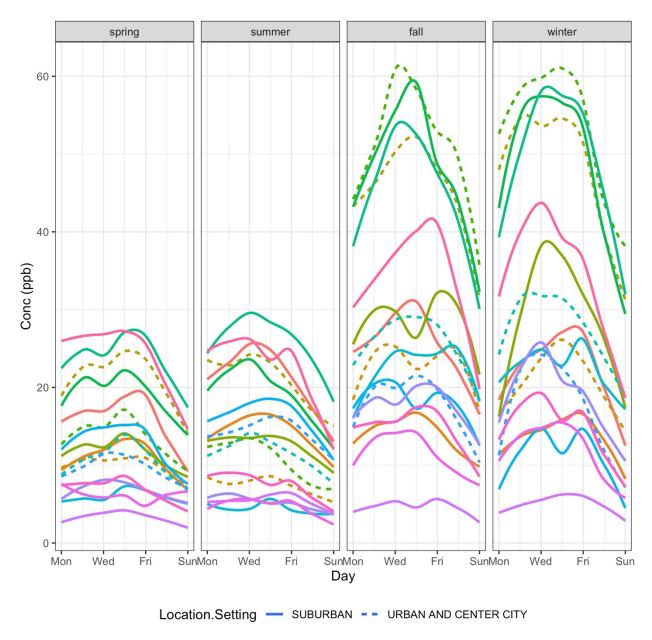


Figure S18. Concentration trends for NOx at AQS sites included in the Los Angeles-San Diego analysis (N=17) by day and season. Colored smooth lines are individual sites.

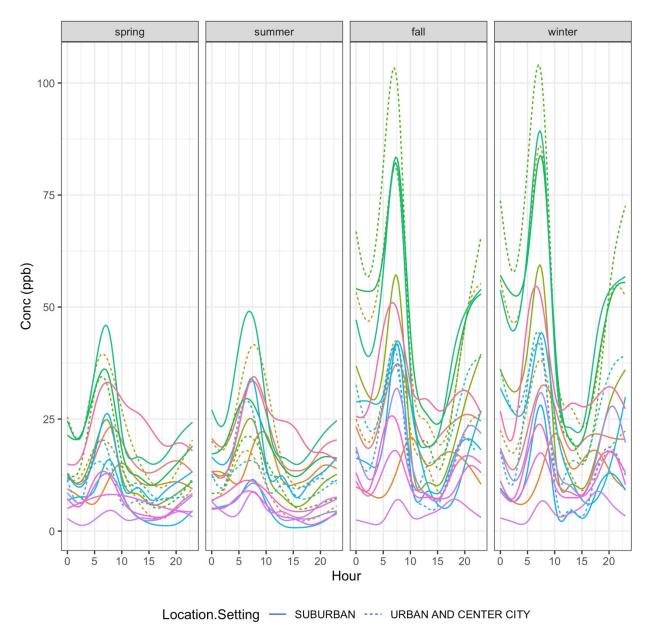


Figure S19. Concentration trends for NOx at AQS sites included in the Los Angeles-San Diego analysis (N=17) by hour and season. Colored smooth lines are individual sites.

7 References

- 1. Wickham, H., François, R., Henry, L. & Müller, K. *dplyr: A Grammar of Data Manipulation*. (2021).
- 2. Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). (2020).
- 3. Kahle, D. & Wickham, H. ggmap: Spatial Visualization with ggplot2. *R J.* **5**, 144–161 (2013).
- 4. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).
- 5. Kassambara, A. ggpubr: 'ggplot2' Based Publication Ready Plots. (2020).
- 6. Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. (2019).
- 7. Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2020).
- 8. Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B. & Simon, N. glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. (2019).
- 9. Zhu, H. kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. (2019).
- 10. Grolemund, G. & Wickham, H. Dates and Times Made Easy with lubridate. *J. Stat. Softw.* **40**, 1–25 (2011).
- 11. Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. (2014).
- 12. Bates, D. & Maechler, M. Matrix: Sparse and Dense Matrix Classes and Methods. (2019).
- 13. Wickham, H. modelr: Modelling Functions that Work with the Pipe. (2020).
- 14. Mevik, B.-H., Wehrens, R. & Liland, K. H. pls: Partial Least Squares and Principal Component Regression. (2019).
- 15. Henry, L. & Wickham, H. purrr: Functional Programming Tools. (2019).

- 16. Wickham, H., Hester, J. & Francois, R. readr: Read Rectangular Text Data. (2018).
- 17. Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. *R J.* **10**, 439–446 (2018).
- 18. Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. (2019).
- 19. Müller, K. & Wickham, H. tibble: Simple Data Frames. (2021).
- 20. Wickham, H. & Henry, L. tidyr: Tidy Messy Data. (2020).
- 21. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
- 22. Schuetzenmeister, A. & Dufey, F. VCA: Variance Component Analysis. (2019).