Annex 1

Full Search Strategy

In order to frame the main research question, we applied the PICO (Participant-Intervention-Comparator-Outcomes) framework to define our research question. The search terms were arranged using the boolean logic.

P=population

I=vaccine

C=controls (unvaccinated)

O=effectiveness in CoVID19 prevention (RR)

Search terms: COVID19 vaccine [AND] effectiveness [OR] efficacy

Last conducted on: 11/05/2021

1. PubMed

(((effectiveness OR efficacy OR Real World OR Phase 3 OR Phase 4)) AND (("Vaccination"[Mesh] OR "Immunization Programs"[Mesh] OR "Vaccines"[Mesh] OR vaccin*[tiab] OR immunization*[tiab] OR immunisation*[tiab]))) AND ((("COVID-19"[Mesh] OR "SARS-CoV-2"[Mesh] OR "COVID-19 Vaccines"[Mesh] OR "COVID-19 Serological Testing"[Mesh] OR "COVID-19 Nucleic Acid Testing"[Mesh] OR "SARS-CoV-2 variants" [Supplementary Concept] OR "COVID-19 drug treatment" [Supplementary Concept] OR "COVID-19 serotherapy" [Supplementary Concept] OR "2019-nCoV" OR "2019nCoV" OR "cov 2" OR "Covid-19" OR "sars coronavirus 2" OR "sars cov 2" OR "SARS-CoV-2" OR "severe acute respiratory syndrome coronavirus 2" OR "covID-19" OR "COVID-19" OR "2019 ncov" OR "2019nCoV" OR "corona virus disease 2019" OR "COVID-19" OR "COVID-19" OR "nCov 2019" OR "ncov2" OR "new corona virus" OR "new coronavirus 2" OR "sars CoV-2" OR "sovere acute coronavirus 2" OR "SARS-COV-2" OR "SARS-COV-2" OR "SARS Coronavirus 2" OR "COVID-19" OR "COVID-19" OR "2019 ncov" OR "2019nCoV" OR "corona virus disease 2019" OR "cov2" OR "COVID-19" OR "ncov 2019" OR "ncov2" OR "new corona virus" OR "new coronavirus 2" OR "SARS-COV-2" OR "SARS Coronavirus 2" OR "SARS Coronavirus 2" OR "COVID-19" OR "ncov 2019" OR "ncov2 OR "COVID-19" OR "ncov2 OR "SARS Coronavirus 2" OR "sars coronavirus 2" OR "Novel coronavirus 2" OR "SARS Coronavirus 2" OR "SARS Coronavirus 2" OR "SARS-COV-2" OR "SARS Coronavirus 2" OR "SARS-COV-2" OR "Novel coronavirus 2" OR "SARS Coronavirus 2" OR "SARS-COV-2" OR "SARS-COV-2" OR "SARS-COV-2" OR "SARS-COV-2" OR "SARS Coronavirus 2" OR "SARS-COV-2" OR "SARS

Search	Query	Results									
#1	Search: (("COVID-19"[Mesh] OR "SARS-CoV-2"[Mesh] OR "COVID-19 Vaccines"[Mesh]	130,245									
	OR "COVID-19 Serological Testing"[Mesh] OR "COVID-19 Nucleic Acid Testing"[Mesh]										
	OR "SARS-CoV-2 variants" [Supplementary Concept] OR "COVID-19 drug treatment"										
	[Supplementary Concept] OR "COVID-19 serotherapy" [Supplementary Concept] OR										
	"2019-nCoV" OR "2019nCoV" OR "cov 2" OR "Covid-19" OR "sars coronavirus 2" OR										
	"sars cov 2" OR "SARS-CoV-2" OR "severe acute respiratory syndrome coronavirus 2"										
	OR "coronavirus 2" OR "COVID 19" OR "COVID-19" OR "2019 ncov" OR "2019nCoV" OR										
	"corona virus disease 2019" OR "cov2" OR "COVID-19" OR "COVID19" OR "nCov 2019"										
	OR "nCoV" OR "new corona virus" OR "new coronaviruses" OR "novel corona virus" OR										
	"novel coronaviruses" OR "SARS Coronavirus 2" OR "SARS2" OR "SARS-COV-2" OR										
	"Severe Acute Respiratory Syndrome Coronavirus 2"))										
#2	Search: ("Vaccination"[Mesh] OR "Immunization Programs"[Mesh] OR	447,082									
	"Vaccines"[Mesh] OR vaccin*[tiab] OR immunization*[tiab] OR immunisation*[tiab])										
#3	Search: (effectiveness OR efficacy OR Real World OR Phase 3 OR Phase 4)	10,214,491									

#4	Search: #1 AND #2 AND #3 Filters: Clinical Trial, Meta-Analysis, Randomized Controlled						
	Trial, Systematic Review, Review						

2. MedRxiv

https://www.medrxiv.org/search/%2528effectiveness%252Bor%252Befficacy%252Bor%252Breal%252Bworld%252Bor%252Bphase%252B3%252Bor%252Bphase%252B4%2529%252Band%252Bor%252Bor%252Band%252Bvaccine

Search	Query	Results
	"(covid-19 or sars-cov-2) and vaccine and (effectiveness OR efficacy OR Real World OR	2,390
	Phase 3 OR Phase 4)"	

3. SSRN

https://papers.ssrn.com/sol3/results.cfm?RequestTimeout=50000000

Search	Query	Results
	covid-19 and vaccine and effectiveness	40

4. Authorea

https://www.authorea.com/preprints

Search	Query	Results
	VACCINE + SARS-COV-2	7

5. Clinical Trials

https://clinicaltrials.gov/ct2/results?term=vaccine+%28effectiveness+or+efficacy%29&cond=covid+19+or+s ars-cov-2&Search=Clear&age_v=&gndr=&type=&rslt=

Search	Query	Results
	(covid-19 or sars-cov-2) AND vaccine AND (effectiveness or efficacy)	186

6. Cochrane Library

https://www.cochranelibrary.com/advanced-search?cookiesEnabled

Search	Query	Results
	(covid19 vaccine) or (sars-cov-2 vaccine) and effectiveness	201

7. COVID-NMA

https://covid-nma.com/vaccines/mapping/

Search	Query	Results
	vaccines	33

Annex 2

Fig.5) PRISMA Flow Diagram

N	First Author	Country	Study Design	Vaccine	Population (N)	Population type
1	Abu-Raddad	Qatar	Test Negative-Case-	Comirnaty (BNT162b2)	3,734	General population
2	Amit	Israel	Retrospective	Comirnaty (BNT162b2)	9,109	Healthcare workers
3	Angel	Israel	Retrospective	Comirnaty (BNT162b2)	6,710	Healthcare workers
4	Benenson	Israel	Retrospective	Comirnaty (BNT162b2)	6,252	Healthcare workers
5	Britton	USA	Retrospective Cohort	Comirnaty (BNT162b2)	463	Residents of long-term care facilities
6	Corchado	USA	Matched Cohort	Janssen (Ad26.COV2.S)	24,145	General population
7	Dagan	Israel	Matched Observational	Comirnaty (BNT162b2)	1,193,236	General population
8	Daniel	USA	Retrospective Cohort	Comirnaty (BNT162b2) Moderna (mRNA-1273)	23,234	General population (symptomatic)
9	Druri	UK	Cohort	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	627,383	General population
10	Fabiani	Italy	Retrospective Cohort	Comirnaty (BNT162b2)	6,423	Healthcare workers
11	Gras Valenti	Spain	Case-Control Study	Comirnaty (BNT162b2)	268	Healthcare workers
12	Haas	Israel	Cohort	Comirnaty (BNT162b2)	281,903	General population
13	Hall	UK	Cohort	Comirnaty (BNT162b2)	23,324	Healthcare workers
14	Hyams	UK	Test Negative Case Control	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	434	Elderly patients
15	Jones	UK	Cross-Sectional	Comirnaty (BNT162b2)	8,819	Healthcare workers
16	Lopez-Bernal	UK	Test Negative Case Control	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	156,930	Elderly population
17	Lumley	UK	Cohort	Comirnaty (BNT162b2)	23,411	Healthcare workers
18	Mason	UK	Cohort	Comirnaty (BNT162b2)	301,461	Elderly population
19	Menni	υк	Prospective Observational	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	627,383	General population
20	Monge	Spain	Cohort	Comirnaty (BNT162b2)	299,209	Residents in long-term care facilities (LTCF)
21	Mouststen- Helms	Denmark	Retrospective Cohort	Comirnaty (BNT162b2)	370,079	Residents in long-term care facilities (LTCF) and Healthcare workers
22	Pawlosky	USA	Retrospective Cohort	Comirnaty (BNT162b2), Moderna (mRNA-1273)	62,138	Residents in long-term care facilities (LTCF) and Healthcare workers
23	Pritchard	UK	Cohort	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	373,402	General population
24	Sansone	Italy	Cohort	Comirnaty (BNT162b2)	6,904	Healthcare workers
25	Shotri	UK	Cohort	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	10,412	Residents of Long-Term Care Facilities (LTCF)
26	Swift	USA	Cohort	Comirnaty (BNT162b2), Moderna (mRNA-1273)	71,152	Healthcare workers
27	Tande	USA	Retrospective Cohort	Comirnaty (BNT162b2)	39,156	General propulation
28	Tara	USA	Cohort	Comirnaty (BNT162b2) Moderna	7,109	Healthcare workers
29	Tenforde	USA	Case-Control	Comirnaty (BNT162b2), Moderna (mRNA-1273)	417	Elderly patients
30	Thompson	USA	Cohort	Comirnaty (BNT162b2) Moderna (mRNA-1273)	3,950	Healthcare workers
31	Vasileious	Scotland	Cohort	Comirnaty (BNT162b2), Vaxzevria (ChAdOx1/AZD1222)	4,409,611	General population

Table 3) Characteristics of 31 selected studies.

n	Author	Selection	Comparability	Outcome	Exposure	Total score
1	Abu-Raddad	3	1	2		6
2	Amit	2	1	2		5
3	Angel	4	2	2		8
4	Benenson	2	1	2		5
5	Britton	2	1	2		5
6	Corchado	4	2	1		7
7	Dagan	3	1	2		6
8	Daniel	2	1	2		5
9	Druri	3	1	2		6
10	Fabiani	3	1	2		6
11	Gras Valenti	2	2		2	6
12	Haas	3	1	2		6
13	Hall	4	1	2		7
14	Hyams	3	1		2	6
15	Jones	2	1	2		5
16	Lopez-Bernal	1	1		2	6
17	Lumley	3	1	2		6
18	Mason	3	1	2		6
19	Menni	3	1	2		6
20	Monge	3	1	3		7
21	Mouststen-Helms	3	1	2		6
22	Pawlosky	3	1	2		6
23	Pritchard	4	2	2		8
24	Sansone	2	0	1		3
25	Shotri	4	1	2		7
26	Swift	3	1	3		7
27	Tande	3	1	2		6
28	Tara	3	1	1		5
29	Tenforde	2	2		2	6
30	Thompson	2	1	2		5
31	Vasileious	3	1	2		6

 Table 4) Quality assessment Newcastle Ottawa Scale (NOS).

Annex 3 Meta-analysis: between-study heterogeneity

A3.1 Partially vaccinated, first dose effectiveness, any Sars-Cov2 positive PCR

Table 5) Outliers, partially vaccinated. The outliers test identified which study's confidence interval did not overlap with the confidence interval of the random pooled effect. Concerning the meta-analysis on partially vaccinated (any positive PCR), seven studies presented an extreme effect size estimate.

Identified outliers (random-effects model)									
"Daniel", "Hall", "Shotri A", "Pritchard", "Swift", "Abu-Raddad". "Abu-Raddad"									
Results with outliers removed									
		RR [95%-CI %]		W(fixed) %	W(random)	exclude			
Amit	0.2302	[0.1706;	0.3107]	1.3	7.2				
Benenson	0.2217	[0.1584;	0.3101]	1.0	7.0				
Britton	0.1483	[0.0951;	0.2314]	0.6	6.3				
Dagan	0.1846	[0.1719;	0.1982]	23.1	8.2				
Daniel	0.6987	[0.5591;	0.8731]	0.0	0.0	*			
Hall	0.0075	[0.0059;	0.0096]	0.0	0.0	*			
Lopez Bernal A70	0.1892	[0.1747;	0.2049]	18.3	8.2				
Lopez Bernal B70	0.2066	[0.1918;	0.2226]	21.0	8.2				
Lopez Bernal A80	0.4081	[0.3794;	0.4389]	22.0	8.2				
Pawloski	0.1487	[0.1279;	0.1728]	5.2	8.0				
Tenforde	0.5707	[0.3805;	0.8560]	0.7	6.6				
Shotri A	0.7130	[0.6042;	0.8413]	0.0	0.0	*			
Shotri B	0.4422	[0.3802;	0.5143]	5.1	8.0				
Pritchard	0.0357	[0.0323;	0.0393]	0.0	0.0	*			
Swift	0.7328	[0.5975;	0.8988]	0.0	0.0	*			
Angel	0.5949	[0.2781;	1.2725]	0.2	4.3				
Abu Raddad	0.8283	[0.7870;	0.8717]	0.0	0.0	*			
Abu Raddad	0.9080	[0.8717;	0.9458]	0.0	0.0	*			
Jones A	0.2355	[0.1125;	0.4930]	0.2	4.4				
Jones B	0.1270	[0.0519;	0.3109]	0.1	3.7				
Fabiani	0.3554	[0.1863;	0.6782]	0.3	5.0				
Gras Valenti	0.5470	[0.3811;	0.7850]	0.9	6.8				
	Meta	-analysis wi	ith outliers	removed					
Number of studies combined:	k = 15								
	I	RR [95%-CI 9	%]	z	p-value				
Fixed effect model	0.2397	[0.2317;	0.2481]	-81.99	0				
Random effects model	0.2679	[0.2130;	0.3369]	-11.27	< 0.0001				
Quantifying heterogeneity:									
tau^2 = 0.1657 [0.0822; 0.612	7]; tau = (0.4070 [0.28	67; 0.7827]						
l^2 = 97.0% [96.0%; 97.7%]; H	= 5.73 [5.	00; 6.56]							
Test of heterogeneity:		Q	d.f.	p-value					
		459.09	14	< 0.0001					
Details on meta-analytical me	ethod:								
- Inverse variance method									
- DerSimonian-Laird estimator	for tau^2	2							
- Jackson method for confidence interval of tau ² and tau									

Fig.6) Forest plot, partially vaccinated. Any positive PCR RR \geq 14 days after first dose. Outliers excluded, RE IV method. Identified outliers: "Daniel", "Hall", "Shotri A", "Pritchard", "Swift", "Abu-Raddad A", "Abu-Raddad B". The outlying studies were still displayed. However, their weight in the meta-analysis has been set to 0%; therefore, they were excluded from pooling. Overall RR=0.27 and RRR=73%. Heterogeneity: τ^2 = 0.1657 [0.0822; 0.6127]; tau = 0.4070 [0.2867; 0.7827]; I² = 97.0% [96.0%; 97.7%]; H = 5.73 [5.00; 6.56]. Test of heterogeneity: Q=459.09 (d.f.= 14 p-value < 0.0001). The updated RE RR was 0.23[0.2130; 0.3369], with RRR=77% compared to unvaccinated.

Partially vaccinated, any positive PCR, outliers excluded

	Expe	rimental		Control	Weight	Weight	Risk Ratio	Risk Ratio
Study	Events	Total	Events	Total	(fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% CI
Amit	78	7214	89	1895	1.3%	7.2%	0.23 [0.17; 0.31]	+
Benenson	40	5297	213	6252	1.0%	7.0%	0.22 [0.16; 0.31]	-4
Britton	25	376	39	87	0.6%	6.3%	0.15 [0.10; 0.23]	-
Dagan	872	488019	5775	596618	23.1%	8.2%	0.18 [0.17; 0.20]	•
Daniel	112	6144	234	8969	0.0%	0.0%	0.70 [0.56; 0.87]	
Hall	66	13716	902	1405	0.0%	0.0%	0.01 [0.01; 0.01]	
Lopez Bernal A70	587	10544	15287	51955	18.3%	8.2%	0.19 [0.17; 0.20]	
Lopez Bernal B70	672	11052	15287	51955	21.0%	8.2%	0.21 [0.19; 0.22]	
Lopez Bernal A80	650	4378	8988	24706	22.0%	8.2%	0.41 [0.38; 0.44]	•
Pawloski	193	31069	1298	31069	5.2%	8.0%	0.15 [0.13; 0.17]	-
Tenforde	18	62	146	287	0.7%	6.6%	0.57 [0.38; 0.86]	
Shotri A	161	2861	723	9160	0.0%	0.0%	0.71 [0.60; 0.84]	
Shotri B	207	5931	723	9160	5.1%	8.0%	0.44 [0.38; 0.51]	•
Pritchard	417	373402	11697	373402	0.0%	0.0%	0.04 [0.03; 0.04]	
Swift	98	3210	997	23931	0.0%	0.0%	0.73 [0.60; 0.90]	
Angel	37	5761	8	741	0.2%	4.3%	0.59 [0.28; 1.27]	<u>↓</u>
Abu-Raddad A	892	2133	18075	35801	0.0%	0.0%	0.83 [0.79; 0.87]	
Abu-Raddad B	1329	2909	20177	40103	0.0%	0.0%	0.91 [0.87; 0.95]	
Jones A	8	2010	56	3314	0.2%	4.4%	0.24 [0.11; 0.49]	<u> </u>
Jones B	5	4867	113	13970	0.1%	3.7%	0.13 [0.05; 0.31]	
Fabiani	9	138	169	921	0.3%	5.0%	0.36 [0.19; 0.68]	
Gras Valenti	39	138	31	60	0.9%	6.8%	0.55 [0.38; 0.79]	+
Total (fixed effect, 95% CI)		981231		1285761	100.0%		0.24 [0.23; 0.25]	le la
Total (random effects, 95% CI)						100.0%	0.27 [0.21; 0.34]	•
Heterogeneity: Tau ² = 0.1657; Chi ²	= 459.09	df = 14 (F	P < 0.01);	$l^2 = 97\%$			The second contract of the second	
1070 EX								0.01 0.1 1 10 100

Fig.7a) Influence analysis. Partially vaccinated, any positive PCR. Influence analysis studied the extreme values in the graphs through different influence measures. Each subplot graphs included the influence estimates for each study of our meta-analysis. Arbitrary cut-offs define an influential case, which is displayed in red.[21] "Hall" resulted as the most influential in partially vaccinated (any positive PCR) meta-analysis.

Fig.7b) Baujat plot. Partially vaccinated, any positive PCR. Contribute to overall heterogeneity Q (x) and effect size(y). "Pritchard", "Abu Raddad B" and "Hall" were the most influential on the overall heterogeneity. "Abu Raddad B" contributed the most to the pooled result.

Fig.8) Leave-One-Out Analysis. Partially vaccinated, any positive PCR. The first plot shows that by omitting "Abu-Raddad B" study, the I2 is slightly reduced. Moreover, "Swift", "Daniel" and "Britton" contributed to the overall heterogeneity. In the second plot the overall effect estimate changed with two studies removed. In particular, by removing "Pritchard" the RR increased to 0.29, while RR increased to 0.32 after removing "Hall".

Fig.9) GOSH Diagnostics. Partially vaccinated, any positive PCR. GOSH plots did not show clear patterns in our data. The effect size distribution was homogeneous, in contrast, the heterogeneity curve presented an asymmetric distribution with a sharp peak. The three algorithms, k -means, DBSCAN and the Gaussian Mixture Model, detected up to eleven clusters which might potentially contribute to the pooled imbalance, and all of them identified the study "Hall" (6) as contributing to the overall heterogeneity.

GOSH Diagnostics

- Number of K-means clusters detected: 3

- Number of DBSCAN clusters detected: 11

- Number of GMM clusters detected: 9 Identification of potential outliers

K-means: Study 6

DBSCAN: Study 6, Study 14, Study 11, Study 9, Study 10, Study 21, Study 1, Study 8

Gaussian Mixture Model: Study 6, Study 14, Study 11, Study 9, Study 10, Study 21, Study 1, Study 8

A3.2 Fully vaccinated, any Sars-Cov2 positive PCR

Table 6) Outliers, fully vaccinated. The outliers function in full vaccination protocol meta-analysis detectedseven outliers.

Identified outliers (random-effects model)											
"Degen" "Hell" "Develophi" "Deitchord" "Cwiff" "Aby Dedded All "Aby Dedded D"											
Results with outliers removed											
Results with outliers ren	IOVEU			\A/(fived) 9/	\A//wandama)	avaludad					
Pononcon	0.0504	[95%-CI %]	0 00911			excluded					
Britton	0.0504	[0.0259;	0.0981]	5.2	10.9						
Degen	0.0514	[0.0238;	0.1108]	3.9	10.3	*					
Dagan	0.0130	[0.0104;		0.0	0.0						
Daniel	0.0189	[0.0070;	0.0507]	2.4	8.9	*					
Hall	0.0078	[0.0039;	0.0155]	0.0	0.0						
Lopez Bernai B80	0.1614	[0.1283;	0.2031]	44.2	13.0	*					
Pawloski	0.3638	[0.3037;	0.4360]	0.0	0.0	*					
Bouton	0.0304	[0.0187;	0.0494]	9.9	11.9						
Tenforde	0.1035	[0.0153;	0.6994]	0.6	4.7						
Pritchard	0.0062	[0.0049;	0.0078]	0.0	0.0	*					
Sansone	0.1504	[0.1104;	0.2049]	24.4	12.7						
Swift	0.0164	[0.0114;	0.0235]	0.0	0.0	*					
Angel	0.1448	[0.0756;	0.2773]	5.5	11.0						
Abu Raddad A	0.1917	[0.1473;	0.2495]	0.0	0.0	*					
Abu Raddad B	0.4027	[0.3533;	0.4592]	0.0	0.0	*					
Corchado	0.2338	[0.0745;	0.7337]	1.8	8.0						
Fabiani	0.0316	[0.0110;	0.0903]	2.1	8.6						
	Meta-a	inalysis with	n outliers re	emoved							
Number of studies comb	ined: k = 10										
	RR [95%-CI %]			z	p-value						
Fixed effect model	0.1109	[0.0952;	0.1291]	-28.26	< 0.0001						
Random effects model	0.0735	[0.0440;	0.1228]	-9.97	< 0.0001						
Quantifying heterogene	ity:										
tau^2 = 0.5132 [0.1894; 2	2.4139]; tau = 0.7	164 [0.4352	; 1.5537]								
I^2 = 87.3% [78.6%; 92.4	%]; H = 2.80 [2.16	; 3.63]									
Test of heterogeneity:											
	Q	d.f.	p-value								
	70.61	9	<0.0001								
Details on meta-analytic	al method:										
- Inverse variance metho	d										
- DerSimonian-Laird estir	nator for tau^2										
- Jackson method for cor	- Jackson method for confidence interval of tau^2 and tau										

Fig.10) Forest plot. Fully vaccinated, any positive PCR test RR \geq 7 days after full vaccination schedule fulfilment. Outliers exluded, RE, IV method. Identified outliers: "Dagan", "Hall", "Pawloski", "Pritchard", "Swift", "Abu Raddad A", "Abu Raddad B". The RE reduced meta-analysis showed an overall RR=0.07 (p<0.0001), therefore, the RRR of any positive PCR approached 93% one week after the full vaccination protocol. The I² heterogeneity shrunk (I2=87.3% τ 2= 0.5132 [0.1894; 2.4139]), but the heterogeneity test was still significant (Q=70.61, p<0.0001).

Fully vaccinated, any positive PCR, outliers excluded

	Expe	rimental		Control	Weight	Weight	Risk Ratio	Risk Ratio
Study	Events	Total	Events	Total	(fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% CI
Benenson	9	5239	213	6252	5.2%	10.9%	0.05 [0.03; 0.10]	-
Britton	7	304	39	87	3.9%	10.3%	0.05 [0.02; 0.11]	
Dagan	55	392560	6100	592486	0.0%	0.0%	0.01 [0.01; 0.02]	
Daniel	4	8121	234	8969	2.4%	8.9%	0.02 [0.01; 0.05]	!i
Hall	8	1605	902	1405	0.0%	0.0%	0.01 [0.00; 0.02]	
Lopez Bernal B80	69	1175	8988	24706	44.2%	13.0%	0.16 [0.13; 0.20]	—
Pawloski	159	31069	437	31069	0.0%	0.0%	0.36 [0.30; 0.44]	
Bouton	17	5913	329	3481	9.9%	11.9%	0.03 [0.02; 0.05]	
Tenforde	1	19	146	287	0.6%	4.7%	0.10 [0.02; 0.70]	
Pritchard	72	373402	11697	373402	0.0%	0.0%	0.01 [0.00; 0.01]	
Sansone	40	6904	48056	1247583	24.4%	12.7%	0.15 [0.11; 0.20]	
Swift	30	44011	997	23931	0.0%	0.0%	0.02 [0.01; 0.02]	
Angel	19	5372	17	696	5.5%	11.0%	0.14 [0.08; 0.28]	
Abu Raddad A	50	515	16354	32293	0.0%	0.0%	0.19 [0.15; 0.25]	
Abu Raddad B	179	877	19396	38273	0.0%	0.0%	0.40 [0.35; 0.46]	
Corchado	3	1779	128	17744	1.8%	8.0%	0.23 [0.07; 0.73]	
Fabiani	4	5182	26	1064	2.1%	8.6%	0.03 [0.01; 0.09]	
Total (fixed effect, 95% CI) Total (random effects, 95% CI) Prediction interval		884047		2403728	100.0% 	 100.0%	0.11 [0.10; 0.13] 0.07 [0.04; 0.12] [0.01: 0.43]	<u> </u>
Heterogeneity: Tau ² = 0.5132; Chi ²	= 70.61, c	lf = 9 (P <	: 0.01); I ² :	= 87%			[]	
								0.01 0.1 1 10 100

Fig. 11a) Influence analysis. Fully vaccinated, any positive PCR. Influential analysis subplot graphs included the influence estimates for each study in fully vaccinated meta-analysis. No study exceeded the cut-offs to define an influential case; however, "Pritchard" study needed further investigation.[21]

Fig. 11b) Baujat plot. Fully vaccinated, any positive PCR. Contribute to overall heterogeneity (Q) and effect size. "Pritchard" and "Abu-Raddab B" contributed to the pooled imbalance. "Abu Raddad B" was the most influential on pooled effect size.

Fig.12) Leave one out analysis. Fully vaccinated, any positive PCR. The I² heterogeneity, printed in the first plot, slightly diminished after omitting "Pritchard", "Abu Raddad B", "Pawloski" and "Corchado". The first plot indicated how the omission of each study influenced the overall effect size estimate. Moreover, "Abu Raddad B" or "Pawloski" or "Corchado" omission reduced the RR and the upper 95%CI, while RR rose to 0.07 after removing "Hall" or "Pritchard".

Fig.13) GOSH Diagnostics. Fully vaccinated, any positive PCR. GOSH plots did not show any pattern. The effect size distribution is symmetric, in contrast, the heterogeneity curve (I²) is right skewed and a sharp peak. The three algorithms, k-means, DBSCAN and the Gaussian Mixture Model, detected up to 15 entries which might potentially contribute to the pooled imbalance, and all of them identified "Pritchard"(10) as contributing to the overall heterogeneity.

GOSH Diagnostics

- Number of K-means clusters detected: 3

- Number of DBSCAN clusters detected: 15

- Number of GMM clusters detected: 9

- Identification of potential outliers
- K-means: Study 10, Study 9
- DBSCAN: Study 15, Study 7, Study 14, Study 5, Study 13, Study 3, Study 10
 Gaussian Mixture Model: Study 15, Study 7, Study 14, Study 5, Study 13, Study 3, Study 10

A.3.3 At least one dose effectiveness, any Sars-Cov2 positive PCR

Table 7) Outliers, at least one dose, any positive PCR. In meta-analysis of individuals vaccinated with at least one dose, the outliers function detected nine extreme estimates.

Identified outliers (random-effects model)										
"Hall", "Lopez Bernal C80 A"	", "Moustsen He	lms R", "Paw	/loski", "Taı	nde", "Bouton", "M	onge", "Masor	ו", "Menni				
Results with outliers removed										
	R	R [95%-CI %]	W(fixed) %	W(random)	excluded				
Amit	0.2391	[0.1777;	0.3216]	1.6	10.5					
Benenson	0.2992	[0.2225;	0.4025]	1.6	10.5					
Britton	0.1899	[0.1266;	0.2847]	0.9	8.7					
Dagan	0.1520	[0.1419;	0.1629]	29.8	13.5					
Hall	0.0084	[0.0067;	0.0106]	0.0	0.0	*				
Lopez Bernal C70	0.2251	[0.2103;	0.2410]	30.6	13.5					
Lopez Bernal C80	0.4985	[0.4671;	0.5320]	0.0	0.0	*				
Lumley A	0.0879	[0.0649;	0.1192]	1.5	10.4					
Lumley B	0.0726	[0.0411;	0.1283]	0.4	6.4					
Moustsen Helms H	0.1264	[0.1120;	0.1427]	9.7	13.1					
Moustsen Helms R	0.0276	[0.0240;	0.0318]	0.0	0.0	*				
Pawloski	0.3979	[0.3452;	0.4586]	0.0	0.0	*				
Tande	0.4410	[0.3252;	0.5981]	0.0	0.0	*				
Bouton	0.0432	[0.0296;	0.0630]	0.0	0.0	*				
Monge	0.5751	[0.5623;	0.5882]	0.0	0.0	*				
Mason	0.5407	[0.4953;	0.5902]	0.0	0.0	*				
Menni A	0.3127	[0.3006;	0.3253]	0.0	0.0	*				
Menni B	0.1481	[0.1371;	0.1600]	23.8	13.5					
	Meta	-analysis wit	th outliers	removed						
Number of studies combi	ined: k = 9									
	RR [95%-CI %]			z	p-value					
Fixed effect model	0.1687	[0.1625;	0.1752]	-92.58	0					
Random effects model	0.1613	[0.1325;	0.1964]	-18.19	< 0.0001					
Quantifying heterogenei	ty:									
tau^2 = 0.0731 [0.0408; 0).5199]; tau = 0.2	2704 [0.2020	; 0.7210]							
I^2 = 94.9% [92.2%; 96.6	%]; H = 4.42 [3.5	8; 5.46]								
Test of heterogeneity:										
	Q	d.f.	p-value							
	156.58	8	<0.0001							
Details on meta-analytic	al method:									
- Inverse variance metho	d									
- DerSimonian-Laird estin	nator for tau^2									
- Jackson method for con	fidence interval	of tau^2 and	tau							

Fig.14) Forest plot. At least one dose, any positive PCR RR \geq 14 days after first dose. Outliers excluded, RE, IV method. Identified outliers: "Hall", "Lopez Bernal C80", "Moustsen Helms R", "Pawloski", "Tande", "Bouton", "Monge", "Mason", "Menni A". The reduced meta-analysis output showed an overall RR=0.16 with RRR= 84%. Heterogeneity: $\tau 2 = 0.0731 [0.0408; 0.5199]; \tau = 0.2704 [0.2020; 0.7210]; I^2 = 94.9\% [92.2\%; 96.6\%]; H = 4.42 [3.58; 5.46]. Test of heterogeneity: Q =156.58 (d.f.= 8; p-value< 0.0001).$

At least one dose, any positive PCR, outliers excluded

Fig. 15a) Influence analysis. At least one dose, any positive PCR. "Hall" (red dot) resulted as the most influential study as it exceeded the cut-offs to defined by Viechtbauer and Cheung in each subplot.[21]

Fig.15b) Baujat plot. At least one dose any positive PCR. Contribute to overall heterogeneity, Q (x) and effect size (y). "Hall" and ""Moustsen Helms R" and "Monge" contributed to the pooled imbalance. "Monge" was the most influential on pooled effect size.

Fig.16) Leave one out analysis. At least one dose, any positive PCR. The first plot displayed the change on the I2 heterogeneity attained by removing one study. The second plot indicated how the omission of each study influenced the overall RR estimate. The best result in both cases was achieved by omitting "Monge".

Fig.17) GOSH Diagnostics, at least one dose, any positive PCR. GOSH plots did not show any pattern and corroborated the outliers tests and the influence analyses. The effect size distribution was symmetric, while the heterogeneity curve (I^2) was right skewed. The three algorithms, k -means, DBSCAN and the Gaussian Mixture Model, detected up to eight entries which might contribute to the pooled imbalance, as well as to the overall heterogeneity, in particular "Hall" (5), "Monge" (15) and "Lopez Bernal C80" on \geq 80 years (7).

GOSH Diagnostics
Number of K-means clusters detected: 3
Number of DBSCAN clusters detected: 6
Number of GMM clusters detected: 8
Identification of potential outliers
K-means: Study 111, Study 15, Study 5
DBSCAN: Study 5, Study 7
Gaussian Mixture Model: Study 5, Study 7

A3.4 Sars-Cov2 effectiveness, symptomatic positive PCR

 Table 8)
 Outliers, partially vaccinated, symptomatic Sars-Cov-2 PCR. The outliers function identified

 "Pritchard".

Identified outliers (ra	Identified outliers (random-effects model)									
"Pritchard"										
Results with outliers	removed									
	RR	[95%-CI %]		W(fixed) %	W(random)	excluded				
Amit	0.0482	[0.0254;	0.0914]	0.6	12.0					
Dagan	0.6899	[0.6549;	0.7267]	91.6	14.5					
Hyams A	0.4217	[0.2703;	0.6577]	1.3	13.2					
Hyams B	0.3441	[0.1763;	0.6715]	0.6	11.9					
Pritchard	0.0270	[0.0231;	0.0317]	0.0	0.0	*				
Swift	0.5552	[0.4336;	0.7111]	4.1	14.1					
Angel	0.1078	[0.0673;	0.1726]	1.1	13.1					
Jones	0.2515	[0.0879;	0.7197]	0.2	9.4					
Fabiani	0.5753	[0.2985;	1.1086]	0.6	11.9					
Meta-analysis with or removed	utliers									
Number of studies co	mbined: k =8									
	RR [95%-CI									
	%]	10 010-	0 000 01	Z	p-value					
Fixed effect model	0.6503	[0,6187;	0.6836]	-16.93	< 0.0001					
model	0.2928	[0.1704;	0.5029]	-4.45	< 0.0001					
Quantifying heteroge	neity:									
tau^2 = 0.5259 [0.236	52; 4.0041]; tau	= 0.7252 [0).4860; 2.0	010]						
I^2 = 94.9% [91.9%; 9	96.7%]; H = 4.41	[3.52; 5.53	3]							
Test of										
heterogeneity:										
	Q	d.f.	p-value							
	136.23	7	<0.0001							
Details on meta-analy	ytical method:									
- Inverse variance met	thod									
- DerSimonian-Laird e	stimator for tau	ı^2								
- Jackson method for	confidence inte	rval of tau'	2 and tau							

Fig.18) Forest plot. Partially vaccinated, symptomatic Covid-19 PCR RR \geq 14 days after first dose. Outliers excluded, RE, IV method. The RE reduced meta-analysis was significant (p< 0.0001) with an overall RR=0.29 and RRR= 71%.Heterogeneity: τ 2=0.5259[0.2362; 4.0041]; τ = 0.7252 [0.4860; 2.0010]; I2 = 94.9% [91.9%; 96.7%]; H = 4.41 [3.52; 5.53]. Test of heterogeneity: Q=136.23 (d.f.=7; p-value< 0.0001).

Partially vaccinated, symptomatic PCR, outliers excluded

Fig.19a) Influence analysis. Partially vaccinated, symptomatic positive Sars-Cov-2 PCR. "Pritchard" (red dot) results as the most influential study as it exceeds the cut-offs defined by Viechtbauerand Cheung in any subplot. [21]

Fig.19b) Baujat plot. Partially vaccinated, symptomatic PCR. Contribute to overall heterogeneity, Q (x) and effect size (y). "Pritchard" study contributed to the pooled imbalance. "Dagan" was the most influential on pooled effect size.

Fig.20) Leave one out analysis. Partially vaccinated, symptomatic PCR. The first plot displays the change on the I2 heterogeneity attained by removing one study at each step. The best result on the pooled imbalance was achieved by omitting "Pritchard". The second plot indicates how the omission of "Dagan" influenced the overall RR estimate.

Fig.21) GOSH Diagnostics. Partially vaccinated, symptomatic PCR. GOSH plots did not show any pattern, but a fatter right tail on the effect size distribution that was ultimately symmetric. The heterogeneity curve (I2) was right skewed with a sharp peak. The three algorithms, k -means, DBSCAN and the Gaussian Mixture Model, detected up to six clusters which might potentially contribute to the overall heterogeneity, including "Pritchard"(5).

GOSH Diagnostics

- Number of K-means clusters detected: 3
- Number of DBSCAN clusters detected: 5
- Number of GMM clusters detected: 6
- Identification of potential outliers
- K-means: Study 5
- DBSCAN: Study 3, Study 2
- Gaussian Mixture Model: Study 3, Study 2

Tab.9) Outliers fully vaccinated, symptomatic Sars-Cov-2 PCR. The outliers function identified four entries in fully vaccinated meta-analysis: "Pritchard", "Swift", "Abu-Raddad B", "Abu-Raddad C".

Identified outliers (random-effects model)												
"Pritchard", "Swift", "Abu-Raddad B", "Abu-Raddad C"												
Results with outliers removed												
	RR	[95%-CI %]		W(fixed) %	W(random)	excluded						
Dagan	0.0911	[0.0546;	0.1520]	20.3	27.9							
Pritchard	0.0021	[0.0012;	0.0036]	0.0	0.0	*						
Swift	0.0131	[0.0086;	0.0200]	0.0	0.0	*						
Angel	0.0273	[0.0128;	0.0582]	9.2	24.4							
Abu Raddad A	0.1678	[0.1266;	0.2223]	67.1	30.4							
Abu Raddad B	0.3598	[0.3111;	0.4162]	0.0	0.0	*						
Abu Raddad C	0.4001	[0.3481;	0.4599]	0.0	0.0	*						
Fabiani	0.1401	[0.0396;	0.4957]	3.3	17.3							
Meta-analysis with outliers removed												
Number of studies combined:	k =8											
	RR [95%-CI %]		z	p-value							
Fixed effect model	0.1246	[0,0989;	0.1569]	-17.70	< 0.0001							
Random effects model	0.0881	[0.0402;	0.1927]	-6.08	< 0.0001							
Quantifying heterogeneity:												
tau^2 = 0.5049 [0.0877; 9.530	7]; tau = 0.7105	[0.2961; 3.0	0872]									
I^2 = 85.8% [65.3%; 94.2%]; H	= 2.66 [1.70; 4.	16]										
Test of heterogeneity:												
	Q	d.f.	p-value									
	21 18	3	<0 0001									
Details on meta-analytical me	thod:	5	.0.0001									
- Inverse variance method												
- DerSimonian-Laird estimator	for tau^2											
- Jackson method for confiden	ce interval of ta	u^2 and tau										

Fig.22) Forest plot. Fully vaccinated, symptomatic Covid-19 PCR RR \geq 7 days after second dose. Outliers excluded, RE, IV method. Identified outliers: "Pritchard", "Swift", "Abu-Raddad B", "Abu Raddad C". Overall RR=0.09, RRR=91%. Heterogeneity: τ 2 = 0.5049 [0.0877; 9.5307]; τ = 0.7105 [0.2961; 3.0872]; I2= 85.8% [65.3%; 94.2%]; H = 2.66 [1.70; 4.16]. Test of heterogeneity: Q= 21.18 (d.f.=3; p-value< 0.0001).

Fully vaccinated, symptomatic PCR, outliers excluded

	Expe	rimental		Control	Weight	Weight	Risk Ratio	Risk Ratio
Study	Events	Total	Events	Total	(fixed)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% CI
Dagan	16	109261	174	108242	20.3%	27.9%	0.09 [0.05; 0.15]	
Pritchard	12	361705	5993	373402	0.0%	0.0%	0.00 [0.00; 0.00]	
Swift	22	43981	876	22934	0.0%	0.0%	0.01 [0.01; 0.02]	
Angel	8	5372	38	696	9.2%	24.4%	0.03 [0.01; 0.06]	
Abu Raddad A	51	51324	962	162434	67.1%	30.4%	0.17 [0.13; 0.22]	-
Abu Raddad B	201	51324	1768	162434	0.0%	0.0%	0.36 [0.31; 0.42]	
Abu Raddad C	222	51324	1756	162434	0.0%	0.0%	0.40 [0.35; 0.46]	
Fabiani	4	5186	6	1090	3.3%	17.3%	0.14 [0.04; 0.50]	- <u>+-</u>
Total (fixed effect, 95% CI)		679477		993666	100.0%		0.12 [0.10; 0.16]	•
Total (random effects, 95% Cl) Heterogeneity: Tau ² = 0.5049: Chi ²	= 21.18. c	ff = 3 (P <	: 0.01): I ²	= 86%	-	100.0%	0.09 [0.04; 0.19]	
								0.01 0.1 1 10 100

Fig.23a) Influence analysis. Symptomatic positive Sars-Cov-2 PCR, fully vaccinated. "Pritchard" (red dot) resulted as the most influential study as it exceeded the cut-offs defined by Viechtbauerand Cheung in any subplot.[21]

23

Fig.23b) Baujat plot. Fully vaccinated, symptomatic PCR. Contribute to overall heterogeneity, Q (x) and effect size (y). "Pritchard" and "Swift" studies contributed to the pooled imbalance. "Abu Raddad C" was the most influential on the pooled effect size.

Fig.24) Leave one out analysis. Fully vaccinated, symptomatic PCR. The first plot displayed the change on the I2 heterogeneity attained by removing one study at each step. "Pritchard" was the most influential on the pooled imbalance, while "Abu Raddad" affected the overall RR estimate.

24

Fig.25) GOSH Diagnostics. Fully vaccinated, symptomatic PCR. GOSH plots did not show any pattern, The effect size distribution curve was symmetric. The heterogeneity curve (I2) was right skewed with a sharp peak. The three algorithms, k -means, DBSCAN and the Gaussian Mixture Model, detected up to eight clusters which might potentially contribute to the overall heterogeneity, including "Pritchard"(5).

Annex 4

A4.1 Subgroup analysis

Tab.10) Random and Mixed model, any positive PCR RR

Partially vaccinated, ar	ny positive l	PCR	-			-			
Madal		Subgroups	N	Results for sul	bgroups	-	Between	groups he	terogeneity
woder		Subgroups	IN .	RR [95%-CI]	12	τ2	Q	df(Q)	p-value
Mixed model	Vaccine	BNT162b2	16	0.2781 [0.1800; 0.4298]	99.60%	0.7443	6.07	3	0.1083
		ChAdOx1	2	0.2889 [0.0871; 0.9579]	98.90%	0.7443			
		BNT162b2/mRNA-1273	3	0.3933 [0.1463; 1.0575]	98.80%	0.7443			
		BNT162b2/ChAdOx1	1	0.0357 [0.0066; 0.1939]					
	Quality	NOS ≤6	15	0.2985 [0.1986; 0.4485]	99.60%	0.6113	0.21	1	0.6438
		NOS >6	7	0.2131 [0.0543; 0.8367]	99.70%	3.3748			
	Age	< 69 years	15	0.2394 [0.1259; 0.4554]	99.80%	1.5669	0.74	1	0.3909
		≥ 69 years	7	0.3317 [0.2278; 0.4828]	98.60%	0.2424			
	Lineage	B.1.1.7	8	0.1895 [0.0917; 0.3918]	99.70%	1.039	3.21	3	0.3606
		B.1.1.7/non B.1.1.7	5	0.2147 [0.0875; 0.5266]	99.70%	1.039			
		not specified	8	0.3615 [0.1763; 0.7415]	97.10%	1.039			
		B.1.351	1	0.9080 [0.1231; 6.6974]					
Random Effect model		BNT162b2	16	0.2781[0.1794;0.4310]		0.7549	116.47	3	< 0.0001
		ChAdOx1	2	0.2885[0.1256;0.6629]		0.3565			
	Vaccine	BNT162b2/mRNA-1273	3	0.3942[0.1210;1.2838]		1.0692			
		BNT162b2/ChAdOx1	1	0.0357[0.0323;0.0393]					
	Quality	NOS ≤6	15	0.2985[0.1986;0.4485]		0.6113	0.21	1	0.6438
	Quality	NOS >6	7	0.2131[0.0543;0.8367]		3.3748			
	4	< 69 years	15	0.2394[0.1259;0.4554]		1.5669	0.74	1	0.3909
	Age	≥ 69 years	7	0.3317[0.2278;0.4828]		0.2424			
		B.1.1.7	8	0.1894[0.0946;0.3792]		0.9447	36.34	3	< 0.0001
	Lineage	B.1.1.7/non B.1.1.7	5	0.2148[0.0750;0.6147]		1.4303			
	Lineage	not specified	8	0.3618[0.2039;0.6422]		0.6506			
		B.1.351	1	0.9080[0.8717;0.9458]					
Fully vaccinated, any p	ositive PCR								
Mixed model	Vaccine	BNT162b2	11	0.0628 [0.0261; 0.1511]	98.40%	2.1113	3.21	3	0.3609
		BNT162b2/mRNA-1273	4	0.0639 [0.0144; 0.2844]	98.90%	2.1113			
		BNT162b2/ChAdOx1	1	0.0062 [0.0004; 0.1072]					
		Ad26.COV2.S	1	0.2338 [0.0109; 5.0306]					
	Quality	NOS ≤6	11	0.0785 [0.0383; 0.1609]	98.50%	1.3935	1.66	1	0.1973
		NOS >6	6	0.0332 [0.0111: 0.0991]	95.90%	1.2835			
	Age	< 69 vears	13	0.0479 [0.0182: 0.1256]	99.30%	3.0726	2.29	1	0.1304
	5	≥ 69 years	4	0.1200 [0.0597; 0.2412]	65.00%	0.2931			
	Lineage	B.1.1.7	4	0.0786 [0.0190: 0.3240]	95.90%	2.0252	3.27	3	0.3515
	U	B.1.1.7/non B.1.1.7	5	0.0285 [0.0081: 0.1005]	98.60%	2.0252	-		
		not specified	7	0.0632 [0.0206: 0.1934]	97.70%	2.0252			
		B 1 351	1	$0.4027 [0.0247 \cdot 6.5721]$					
Random Effect model	Vaccine	BNT162b2	11	0.0631 [0.0281: 0.1416]		1 7775	67.41	3	< 0.0001
Nandom Enect model	vaccine	BNT162b2	4	0.0646 [0.0092: 0.4548]		3 7392	07.41	5	< 0.0001
		BNT162b2/ChAdOx1	1	0.0040 [0.0032, 0.4348]					
			1	0.0002 [0.0045, 0.0078]					
	Quality	NOS <6	11	0.0785 [0.0383: 0.1609]		1 3935	1 66	1	0 1973
	Quanty		6	0.0332 [0.0111.0.0991]		1 6474	1.00	-	0.1373
	Age	< 69 years	13	0.0479 [0.0182: 0.1256]		3.0726	2.29	1	0.1304
	0-	≥ 69 years	4	0.1200 [0.0597: 0.2412]		0.2931			
	Lineage	B.1.1.7	4	0.0810 [0.0323: 0.2031]		0.817	33.99	3	< 0.0001
	0-	B.1.1.7/non B.1.1.7	5	0.0284 [0.0081; 0.0996]		1.9969			
		not specified	7	0.0634 [0.0151; 0.2658]		3.4732			
		B.1.351	1	0.4027 [0.3533; 0.4592]					
At least one dose, any	positive PC	R							
Mixed model	Vaccine	BNT162b2	12	0.1473 [0.0946; 0.2292]	99.60%	0.5994	2.24	2	0.3256
		BNT162b2/mRNA-1273	4	0.2622 [0.1215; 0.5656]	98.50%	0.5994			-
		ChAdOx1	2	0.1061 [0.0350: 0.3214]	83.10%	0.5994			
	Quality	NOS ≤6	16	0.1793 [0.1206: 0.2666]	99.40%	0.6388	2.35	1	0.1252
L		-							

		NOS >6	2	0.0711 [0.0233; 0.2165]	99.90%	0.6388			
	Age	< 69 years	12	0.1325 [0.0879; 0.1998]	99.30%	0.5076	2.53	1	0.1116
		≥ 69 years	6	0.2395 [0.1311; 0.4375]	99.80%	0.5585			
	Lineage	B.1.1.7	4	0.1523 [0.0690; 0.3362]	99.80%	0.6484	2.2	2	0.3325
		B.1.1.7/non B.1.1.7	5	0.1059 [0.0514; 0.2184]	95.00%	0.6484			
		not specified	9	0.2081 [0.1224; 0.3538]	99.80%	0.6484			
Random Effect model	Vaccine	BNT162b2	12	0.1473 [0.0939; 0.2310]		0.6218	3.68		0.1588
		BNT162b2/mRNA-1273	4	0.2646 [0.1402; 0.4994]		0.4039			
		ChAdOx1	2	0.1099 [0.0551; 0.2190]		0.2114			
	Quality	NOS ≤6	16	0.1800 [0.1296; 0.2499]		0.432	0.2		0.6541
		NOS >6	2	0.0696 [0.0011; 4.3786]		8.9219			
	Age	< 69 years	12	0.1325 [0.0879; 0.1998]		0.5076	2.53		0.1116
		≥ 69 years	6	0.2395 [0.1311; 0.4375]		0.5585			
	Lineage	B.1.1.7	4	0.1518 [0.0602; 0.3827]		0.8863	3.13		0.2096
		B.1.1.7/non B.1.1.7	5	0.1070 [0.0629; 0.1822]		0.3366			
		not specified	9	0.2081 [0.1250; 0.3464]		0.5975			

Tab.11) Random and Mixed model, symptomatic PCR RR

Partially vaccinated, sy	mptomatic	PCR							
Madal		Subarouse	N	Results for sul	ogroups		Between-	groups he	eterogeneity
woder		Subgroups	IN	RR [95%-CI]	12	τ2	Q	df(Q)	p-value
Mixed model	Vaccine	BNT162b2	6	0.2488 [0.1035; 0.5980]	96.20%	1.1044	4.96	3	0.1748
		ChAdOx1	1	0.3441 [0.0395; 3.0002]					
		BNT162b2/ChAdOx1	1	0.0270 [0.0034; 0.2134]					
		BNT162b2/mRNA-1273	1	0.5552 [0.0697; 4.4200]					
	Quality	NOS ≤6	6	0.3007 [0.0875; 1.0332]	93.60%	2.2707	0.76	1	0.3823
		NOS >6	3	0.1172 [0.0211; 0.6514]	99.50%	2.2707			
	Age	< 69 years	7	0.1860 [0.0468; 0.7385]	99.60%	3.384	1.08	1	0.2993
		≥ 69 years	2	0.3962 [0.2736; 0.5737]	0.00%	0			
	Lineage	B.1.1.7	3	0.2498 [0.0226; 2.7633]	89.10%	4.4369	0.13	2	0.9384
		B.1.1.7/non B.1.1.7	2	0.1367 [0.0074; 2.5364]	99.90%	4.4369			
		not specified	4	0.2504 [0.0308; 2.0320]	94.10%	4.4369			
Random Effect model	Vaccine	BNT162b2	6	0.2488 [0.1035; 0.5980]	96.20%	1.1044	437.47	3	< 0.0001
		ChAdOx1	1	0.3441 [0.1763; 0.6715]					
		BNT162b2/mRNA-1273	1	0.0270 [0.0231; 0.0317]					
		BNT162b2/ChAdOx1	1	0.5552 [0.4336; 0.7111]					
	Quality	NOS ≤6	6	0.3062 [0.1465; 0.6400]	93.60%	0.7447	0.69	1	0.4071
		NOS >6	3	0.1173 [0.0137; 1.0027]	99.50%	3.5694			
	Age	< 69 years	7	0.1860 [0.0468; 0.7385]	99.60%	3.384	1.08	1	0.2993
		≥ 69 years	2	0.3962 [0.2736; 0.5737]	0.00%	0			
	Lineage	B.1.1.7	3	0.2482 [0.1001; 0.6152]	89.10%	0.5695	0.13	2	0.936
		B.1.1.7/non B.1.1.7	2	0.1367 [0.0057; 3.2685]	99.90%	5.242			
		not specified	4	0.2526 [0.0776; 0.8228]	94.10%	1.3278			
Fully vaccinated, symp	tomatic PC	R	-						
Mixed model	Vaccine	BNT162b2	6	0.1603 [0.0966; 0.2661]	94.90%	0.3245	48.24	2	< 0.0001
		BNT162b2/mRNA-1273	1	0.0131 [0.0040; 0.0432]					
	a 10	BNT162b2/ChAdOx1	1	0.0021 [0.0006; 0.0072]					
	Quality	NOS ≤6	5	0.2156 [0.1279; 0.3633]	93.00%	0.2922	52.21	1	< 0.0001
		NOS >6	3	0.0087 [0.0043; 0.0174]	94.60%	0.2922	0.00		0.0757
	Lineage	B.1.1.7	2	0.0684 [0.0025; 1.8450]	94.80%	5.5699	0.69	3	0.8757
		B.1.1.7/non B.1.1.7	3	0.0427 [0.0029; 0.6248]	99.40%	5.5699			
		not specified	2	0.0413 [0.0015; 1.1598]	91.80%	5.5699			
Developer Effective del		B.1.351	1	0.3598 [0.0035; 36.8088]			120.00	2	
Random Effect model	vaccine	BN 116202	6	0.1603 [0.0966; 0.2661]	94.90%	0.3245	129.86	3	< 0.0001
		BNT16262/MRNA-1273	1	0.0131 [0.0086; 0.0200]					
	0	BN1162b2/ChAdOX1	1	0.0021 [0.0012; 0.0036]			40.47	4	
	Quality	NOS ≤6	5	0.2214 [0.1435; 0.3416]	93.00%	0.1911	18.17	1	< 0.0001
		NUS >6	3	0.0089 [0.0022; 0.0366]	94.60%	1.4624		-	
	Lineage	В.1.1.7	2	0.0701 [0.0118; 0.4152]	94.80%	1.565	8.61	3	0.035
		B.1.1.7/non B.1.1.7	3	0.0426 [0.0022; 0.8254]	99.40%	6.8062			
		not specified	2	0.0396 [0.0039; 0.4023]	91.80%	2.5779			
		B.1.351	1	0.3598 [0.3111; 0.4162]					

A4.2 Publication bias

d) Symptomatic positive PCR partially vaccinated

-1.184

-2.948

0.2751005

0.02567738

-18.21 - 4.5

e) Symptomatic positive PCR fully vaccinated -18.76 - -3.78

-6.858

-11.271

Fig. 26) Funnel plot and Eggers' test. Any positive PCR (a, b, c). Symptomatic PCR (d, e). The contourenhanced funnels included three colours signifying the significance level into which the effects size of each study fell. The dots' distribution was overall quite sparse and concentrated at the upper half of the funnel except "Tenforde" at the bottom.

