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Abstract4

Barrett’s esophagus containing intestinal metaplasia predisposes to cancer, yet5

the majority of cases are undiagnosed. The length of a Barrett’s segment is a6

key indicator of cancer risk, but measuring it has so far relied on endoscopy,7

which is expensive and invasive. Cytosponge-TFF3 is a minimally-invasive test8

that identifies intestinal metaplasia for endoscopic confirmation. We report a9

machine learning technique to quantify the extent of intestinal metaplasia and10

predict Barrett’s segment length from whole-slide image tile counts automat-11

ically generated from Cytosponge-TFF3 histology slides. Utilizing data from12

529 patients, our segment length prediction model achieves an average valida-13

tion fold accuracy of 0.84. Applying this algorithm to an independent test set14

of 162 patients from a screening trial shows a precision of 0.90 for identify-15

ing short-segment disease. This advance will enable higher-risk patients to be16

prioritized for endoscopy while saving more than half of Cytosponge-TFF3-17

positive patients from endoscopy in the screening setting.18
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Main19

Esophageal adenocarcinoma (EAC) is the sixth leading cause of cancer-related death with an20

abysmal 5-year survival of 13%, usually only manifesting at a late stage (1,2). Barrett’s esoph-21

agus (BE) is a precursor to EAC and its high prevalence in the Western world (3, 4) makes it22

an attractive target for early detection of EAC. Traditionally, BE has been diagnosed with an23

invasive endoscopy of the upper gastrointestinal tract. The Cytosponge is a minimally inva-24

sive alternative to endoscopy consisting of a soluble vegetarian capsule containing a compacted25

sponge tethered to a thread (5) (fig. 1a). The patient swallows the capsule, and once in the26

proximal stomach, the capsule dissolves and the spherical sponge expands. The sponge is with-27

drawn using the thread and collects several million cells from the upper stomach and esophagus28

along its passage. Sections of tissue retrieved by the sponge are stained with H&E and trefoil29

factor 3 (TFF3) (fig. 1a), the diagnostic biomarker for intestinal metaplasia (IM) in Cytosponge-30

TFF3 (6).31

Reviewing stained Cytosponge histology can be time consuming and our recent work has32

shown that a deep learning triage approach on a digitized whole-slide image (WSI) of the TFF333

slide (fig. 1a) performs the tasks of pathologists with high accuracy and can reduce pathologist34

workload by 57% (7). This was a substantial step forward to making the Cytosponge-TFF335

test widely applicable, but a major limitation remained: although BE is a precursor to cancer,36

not all BE cases carry the same risk (8, 9). Risk of cancer progression in BE can be estimated37

by two clinical predictors: the first one is the presence of intestinal metaplasia (IM) defined38

by mucin-containing cells called goblet cells, which our previous work was able to identify39

automatically from Cytosponge slides (7). The second one is the length of the BE segment,40

measured by the Prague classification as the circumferential (C) and maximal (M) distance the41

Barrett’s segment reaches from the gastroesophageal junction (10, 11) (fig. 1b). The presence42
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of IM and the length of the Barrett’s segment dictates whether regular endoscopic surveillance43

or monitoring is required (11, 12). However, neither routine pathology review nor our novel44

automated predictor measure Barrett’s segment length (which is usually only attainable via45

endoscopy) and in all cases endoscopy follow-up is required if IM (TFF3 positivity) is detected46

in the Cytosponge sample.47

Of all patients with a TFF3-positive Cytosponge test, 59% had a diagnosis of BE containing48

IM confirmed across a range of lengths (M length <1 to 15 cm) and in patients with no visible49

Barrett’s (M0), 33% had IM of the cardia identified from a single cardia biopsy (13). Currently,50

100% of TFF3-positive patients are sent for endoscopy. Better identification of the 41% of51

TFF3-positive patients who do not end up having BE upon endoscopy could deprioritize a52

substantial fraction of TFF3-positive patients from invasive endoscopy and the large amount of53

resources required to perform them.54

To address this challenge, we asked whether it would be possible to use machine learning on55

Cytosponge-TFF3 to quantify the extent of IM, and correlate that quantity with Prague length56

measurements (fig. 1c). This would provide a composite biomarker of both extent of IM and57

a segment length estimate from the Cytosponge-TFF3 test alone. This biomarker could have a58

substantial impact on patient management: patients at higher cancer risk could be prioritized59

for endoscopy, and those patients likely to have focal cardia IM or a very short segment could60

be discharged to be followed up with further Cytosponge tests without requiring an endoscopy61

confirmation.62

To develop a composite biomarker, we took the raw output of the deep learning-based63

Cytosponge-TFF3 IM-prediction model (7) (the count of the number of tiles considered TFF3/IM-64

positive by the model) for whole slide images of 529 Cytosponge patients in the BEST2 trial (14).65

We correlated these counts with the Prague C and M lengths from the subsequent endoscopy.66

Consistent with our expectation, we found that the quantity of IM from the Cytosponge-TFF367
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Figure 1: Overview of Cytosponge-TFF3 preparation, Prague classification, and computational
pipeline (a) The Cytosponge collects cells from the esophagus including Barrett’s cells if they are
present. After the patient swallows the capsule attached to a thread, the capsule dissolves in the stomach,
where the sponge spherical expands. Pulling the sponge by the thread collects cells from the upper stom-
ach and esophagus. The cells are washed off the sponge, processed into a pellet, embedded in paraffin,
cut, and stained with TFF3, and put on a slide. Slides are then scanned into whole-slide images (WSIs),
which can then be broken up into thousands of smaller images (“tiles”). These tiles are labeled by a
pathologist for the presence of goblet cells indicating intestinal metaplasia and a convolutional neural
network is trained to perform this classification task from these labels. (b) A diagram showing how
the C and M lengths of the Prague classification criteria for segment length measurement are found. C
(circumferential) denotes distance from the proximal margin of the gastric cardial folds to the proximal
margin of the circumferential BE segment, and M (maximal) describes the distance to the most proximal
extent of the segment. GOJ = gastroesophageal junction. (c) The number of tiles classified as showing
intestinal metaplasia (TFF3-positive) for slides in the training set are used to train a logistic regression
model to predict the Barrett’s segment length. Length measurements are in centimeters.
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assay as assessed by deep learning showed a highly significant correlation with segment length.68

For Prague C and M lengths for the 529 TFF3-positive BEST2 patients, there was a Spearman’s69

rank correlation coefficient of 0.73 for C length and 0.77 for M length. A positive relationship70

is also visible when we plot the Prague C and M lengths against log of the TFF3-positive tile71

counts for the 529 patients (fig. 2e–f).72

As a control, we took the raw output of the Cytosponge-H&E model from (7) for identifying73

tiles containing gastric tissue but no TFF3-positive tiles. As the presence of gastric tissue in a74

Cytosponge sample merely indicates that the device traversed through the lower esophageal75

sphincter into the stomach, it is expected that there should be little to no correlation between76

these gastric tile count and the Prague C and M lengths. Indeed, for the same 529 BEST277

patients, Spearman’s rank correlation coefficients between these tile counts and the C length78

was −0.024, and for M length was −0.046, confirming the null hypothesis for the control79

setting in comparison to IM tile count.80

We next asked if the significant correlation between automatically identified IM quantity81

and the Barrett’s segment length could be leveraged in an optimized prediction model. We82

compared two strategies: one was to predict C and M lengths as continuous values (regression-83

based approach) and the other one was to bin C and M lengths according to clinically relevant84

thresholds (classification-based approach) where particular importance is placed on Barrett’s85

segments with C lengths greater than or equal to 1 cm, and M lengths greater than or equal to 386

cm in accordance with current Barrett’s diagnostic literature (11,12,15,16). In both approaches87

the IM tile counts derived from machine learning applied to the Cytosponge-TFF3 test was the88

sole independent variable.89

In the regression-based approach, we found that a zero-inflated Poisson (ZIP) regression90

model (17) yielded the best fit for the data (see Methods). We performed 5-fold cross validation91

on our 529 BEST2 patient cohort, all of whom underwent a Cytosponge followed by an oral92
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endoscopy. The ZIP models achieved a mean fold R2 error of 0.40 for predicting C length and93

0.40 for predicting M length (by comparison, Poisson regression without accounting for zero94

inflation achieves mean fold R2 errors of 0.22 for C length and 0.23 for M length). These results95

were not promising for clinical application.96

In the classification-based approach, which takes advantage of established clinical thresh-97

olds, we trained a logistic regression model to classify whether or not a patient’s Barrett’s seg-98

ment had a C length at or above 1 cm or an M length at or above 3 cm (C≥1 or M≥3 vs. C<199

and M<3). With 5-fold cross validation, the mean class-balanced validation accuracy of the100

logistic regression was 0.84 (0.82 unbalanced accuracy), the mean validation precision of the101

diagnostically positive class was 0.95, the recall 0.74, and the F1 score 0.83 (fig. 2g).102

Next we applied this model for categorizing the segment length to the 162 patients from the103

BEST3 study (13) as an independent test set. It is important to note the differences between104

the clinical trials BEST2 and BEST3. BEST3 was a screening randomized controlled screen-105

ing trial, in which patients on anti-reflux medication who had not been endoscoped in the past106

5 years were invited for a Cytosponge test. Patients with a TFF3-positive result were invited107

for an endoscopy to confirm the presence of endoscopically visible columnar epithelium with108

IM on biopsy. It therefore includes patients with cardia IM and short Barrett’s segments who109

would not fulfill the guidelines for surveillance monitoring (13). By contrast, BEST2 was a110

case-control cohort study in secondary care which recruited cases with known Barrett’s esoph-111

agus undergoing surveillance (14). This cohort is therefore biased towards patients with longer112

segments requiring monitoring. Indeed, 315 of 529 BEST2 patients (59.5%) had segments with113

C≥1 cm or M≥3 cm, compared to just 48 of 162 BEST3 patients (29.6%). Hence, BEST2 is114

ideal for training the model and BEST3 for application in a screening setting in which the clin-115

ician needs to evaluate the risk to benefit ratio of performing an endoscopy to confirm Barrett’s116

esophagus.117
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When applied to patients in BEST3 with a TFF3-positive Cytosponge result the model had118

a precision of 0.90 for the short-segment class (80/89). The model incorrectly predicts 34119

patients to have a long-segment disease however the higher number of TFF3-positive tiles may120

reflect more extensive intestinal metaplasia including IM of the stomach—also a pre-malignant121

condition (18). Crucially, endoscoping only the 73 patients the model predicted to have long122

segments (39 true positives and 34 false positives) would allow for 55% of test set patients123

(89/162) to avoid endoscopy while only missing 5.6% of patients with long-segment disease124

(9 false negatives of 162). In view of this high precision for predicting short-segment disease,125

and the low cancer risk associated with focal cardia IM and short-segment Barrett’s a repeat126

Cytosponge after an interval (e.g., three years) would seem a good alternative to endoscopy.127

Our results show that not only is there a correlation between intestinal metaplasia quantifica-128

tion from the Cytosponge-TFF3 test and Barrett’s segment length, but that a clinically relevant129

segment length cutoff is predictable with high accuracy from this quantification. This estab-130

lishes IM quantification as a relevant new biomarker for consideration in Barrett’s patients, as131

opposed to the binary classification currently used by pathologists or by the machine learning132

model reported previously (7).133

In standard pathology reporting from glass slides it has not been feasible to quantify the134

degree of IM previously. However, since our predictions are gleaned from an entirely automated135

machine learning pipeline, this suggests that the incorporation of these new biomarkers into136

existing Barrett’s diagnosis and monitoring pathways should be readily achievable.137

There is a big push towards more systematic screening for Barrett’s esophagus to improve138

outcomes from esophageal cancer (8, 12–14). In doing so, every effort must be made to max-139

imize the benefits and reduce the harms of screening. Hence, clinical investigations that ensue140

from a positive screening result should spare patients at very low risk for cancer and be af-141

fordable for the health care system. If Cytosponge was adopted for screening on a population142
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Figure 2: Data and logistic regression results (a) A stacked-bar histogram of the machine-learning
derived TFF3-positive tile counts of BEST2 patients who underwent the Cytosponge-TFF3 test. Patients
with 0 TFF3-positive tiles excluded from plot. (b) A stacked-bar histogram like (a) except only showing
a TFF3-positive tile count range of 0–50. Patients with 0 TFF3-positive tiles excluded from plot. (c)
A histogram of the ground truth Prague C lengths of BEST2 patients. Patients with 0 TFF3-positive
tiles excluded from plot. (d) A histogram of the ground truth Prague M lengths of 529 BEST2 patients.
Patients with 0 TFF3-positive tiles excluded from plot. (e) A box-and-whiskers plot showing the log
of TFF3-positive tile count vs. Prague C length for 529 BEST2 patients. (f) A box-and-whiskers plot
showing the log of TFF3-positive tile count vs. Prague M length for 529 BEST2 patients. (g) Accuracy,
class-balanced accuracy, precision, recall, and F1 results of 5-fold cross-validation on 529 BEST2 pa-
tients applied to a logistic regression model for predicting whether or not the patient’s Barrett’s segment
had C length greater than or equal to 1 cm or M length greater than or equal to 3 cm. L (“long segment”)
stands for the C≥1 or M≥3 class; S (“short segment”) stands for the C<1 and M<3 class. (h) Results of
training a model like that of (g), except training on all 529 BEST2 patients without cross-validation and
then inferring on a 162-patient test set of BEST3 patients. BEST3 results shown.
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scale, deep-learning based IM quantification from Cytosponge-TFF3 and the accompanying143

Barrett’s segment prediction could help focus endoscopy on those who need it most. A similar144

approach could also be applied to Barrett’s surveillance procedures using Cytosponge or endo-145

scopic biopsies to quantify the degree of IM as part of a cancer risk score. Overall, these results146

are progress towards stratifying patients at increased cancer risk for expedient endoscopy while147

saving lower-risk patients from more invasive procedures as well as the resources for perform-148

ing them.149

Methods150

The deep learning model to elucidate the number TFF3-positive tiles comes from a deep learn-151

ing pipeline described in full in (7), and making use of PathML to perform the tiling task (19).152

Cytosponge samples with an H&E slide showing inadequate amounts of gastric tissue (as de-153

termined automatically in (7)) were excluded. The logistic regression model for predicting154

segment length from IM tile count was implemented with the glm() function in the R pro-155

gramming language, and the Spearman’s correlation was performed with R’s cor() function.156

Zero-inflated Poisson regression was performed with R’s pscl library (20). Plots were gener-157

ated with Python’s matplotlib library.158

Documented code with instructions for running the analyses shown in this paper, includ-159

ing generating diagnostic plots for the regression model, can be found at the following public160

repository: https://github.com/markowetzlab/barretts-segment-lengt161

h-predictor.162

Code availability163

The data and fully documented code to perform all of the analyses of this paper can be found164

at this public repository in the form of two illustrative Jupyter notebooks: https://github165
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.com/markowetzlab/barretts-segment-length-predictor.166
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