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Uterine leiomyomata (UL) are the most common benign tumours of the female genital 35 
tract with an estimated lifetime incidence of up to 70%1. To date, 7 genome-wide 36 
association studies (GWASs) have identified 35 loci predisposing to UL. To improve the 37 
understanding of the underlying genetic pathways, we conducted the largest genetic 38 
association study of UL to date in 426,558 European women from FinnGen and a 39 
previously published UL meta-GWAS2. We identified 36 novel and replicated 31 40 
previously reported loci. Annotations of the potential candidate genes suggest 41 
involvement of smooth muscle cell (SMC) differentiation and/or proliferation-42 
regulating genes in modulating UL risk. Our results further advocate that genetic 43 
predisposition to increased fat-free mass may be causally related to UL risk, 44 
underscoring the involvement of altered muscle tissue biology in UL pathophysiology. 45 
Overall, our findings provide novel insights into genetic risk factors related to UL, 46 
which may aid in developing novel treatment strategies. 47 

UL are hormone-driven benign neoplasms of the uterus composed mostly of SMC and 48 
fibroblasts with a profound component of extracellular matrix (ECM). UL are present in 49 
single or multiple numbers, with size ranging from millimeters to 20 cm or more in 50 
diameter3. In 25-50% of women with ULs, the enlarged and deformed uterus can cause 51 
symptoms such as heavy or prolonged menstrual bleeding resulting in anemia, reduced 52 
fertility, and pregnancy complications4. Major risk factors for UL are family history, African 53 
ancestry, increasing age up to menopause, and nulliparity5. Also, metabolic factors, including 54 
hypertension and increased body mass index (BMI), have been reported in association with 55 
UL susceptibility6. Familial aggregation, twin studies, and disparity in prevalence between 56 
different ethnic groups suggest that genetic factors modulate UL risk7-10. 57 

Until recently, the focus in the genetics of UL has been on somatic rearrangements, and key 58 
driver variations in MED12, FH, HMGA2 and COL4A6-COL4A5 have been reported11. To 59 
add understanding to the heritable genetic underpinnings, we conducted two sets of fixed-60 
effect, inverse-variance weighted meta-analyses with data from FinnGen (18,060 cases and 61 
105,519 female controls) and 1) a previously published UL meta-GWAS2 totaling 53,534 62 
cases and 373,024 female controls in ‘META-1’ and 2) the UK Biobank totaling 33,244 63 
cases and 311,271 controls in ‘META-2’. META-1 was restricted to publicly available 64 
10,000 variants from the previous meta-GWAS2, wheras the META-2 included 10,693,588 65 
variants across the genome. In META-1, we identified 63 loci associating with UL at 66 
p<5x10-8 (Figure 1, Table S1); of these, 32 were novel (Table 1). In META-2, we identified 67 
51 loci out of which 4 had not been associated with UL risk in prior GWASs or in META-1 68 
(Figure 1, Table 1, Table S2). Regional association plots of the novel loci are presented in 69 
Figures S1-S36. There was no evidence of inflation in the test statistics (Figure S37). LD 70 
score (LDSC) regression-derived SNP-based heritability was estimated to be 0.099 (standard 71 
error=0.01) on the liability scale. Characterization of the genome-wide results of META-2 72 
suggested that the key UL associated variants were mostly intronic (Figure 2A). Genes 73 
associated with UL risk (Figure 2B) were significantly enriched on pathways related to gonad 74 
development, positive regulation of growth, and cellular senescence (Figure 2C) and they 75 
were mostly expressed in uterus, cervix, and fallopian tube (Figure 2D). In two of the novel 76 
loci, we found evidence that altered gene expression mediates UL association (Figures S38-77 
S40). 78 

Previous GWAS findings2,12-17 have indicated that genetic factors altering pathways involved 79 
in estrogen signalling, Wnt signalling, transforming growth factor (TGF)-β signalling, and 80 
cell cycle progression are associated with UL risk18. The novel loci identified in this study 81 
further underscore the involvement of pathways regulating SMC proliferation in modulation 82 
of UL risk. Many of these pathways are interrelated: for example, both estrogen and 83 
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progesterone increase the secretion of Wnt ligands from myometrial or leiomyoma SMC, 84 
which promotes cell proliferation and tumorigenesis via activation of β-catenin19. Steroid 85 
hormones also influence the production of ECM via signalling through the TGF-β family of 86 
ligands and receptors that are highly expressed in multiple fibrotic conditions20-26 and 87 
contribute to the fibrotic phenotype seen in UL24,25,27-29. We identified multiple loci with 88 
potential candidate genes functioning in one or more of these pathways, and, in the following, 89 
we describe some of our key findings with the focus on loci involved in regulation of SMC 90 
proliferation. 91 

A central finding is the novel association at 17p12 harbouring myocardin (MYOCD; Figure 92 
S27). Myocardin is a transcription factor expressed in smooth muscle tissues, including most 93 
prominently arteries and colon, but also uterus (Figure S41), and it is required for SMC 94 
differentiation30. The expression of myocardin has been shown to be downregulated in UL 95 
tissue compared with normal myometrium31. Also, it has been proposed that the loss of 96 
myocardin function may be a key factor in driving SMC proliferation in UL31; however, there 97 
are no reported GWAS associations implicating myocardin until now. The lead variants near 98 
MYOCD are intergenic variants with no strong evidence of altered regulatory consequences 99 
(Table S3) and, thus, a possible association-driving mechanism remains inconclusive. We 100 
identified another myocardin-related novel UL risk association near ‘myocardin-induced 101 
smooth muscle cell lncRNA, inducer of differentiation’ (MYOSLID), a transcriptional target 102 
of myocardin32 (Figure S6). RegulomeDB33 annotation provided robust evidence that the 103 
association lead variant is a regulatory variant (Table S4) altering binding of multiple 104 
transcription factors (Table S5), including Fos proto-oncogene (FOS) that has been shown to 105 
be downregulated in UL34. To add yet another example of a myocardin-related UL risk loci, a 106 
well-established UL risk association at 22q13.12,12,16,35,36 locates near ‘myocardin related 107 
transcription factor A’ (MRTFA; also known as MKL1), a gene interacting with myocardin37. 108 
Also, expression of MRTFA/MKL1 has been shown to be downregulated in UL-related 109 
deletions at 22q38. 110 

Others have suggested that loss of myocardin function may account for the differentiation 111 
defects of human leiomyosarcoma cells during malignant transformation39: downregulation 112 
of myocardin resulted in lower expression of cyclin dependent kinase inhibitor 1A 113 
(CDKN1A; also known as p21), a mediator of cell cycle G1 phase arrest, which facilitated 114 
cell cycle progression. We identified a novel UL association at 6p21.2 near CDKN1A (Figure 115 
S13); the association lead variants locate on intergenic region with possible regulatory 116 
consequences (Table S6). Previous evidence suggests that CDKN1A is among the genes, the 117 
expression of which correlates with UL size40. Another novel UL association at 20q13.31 118 
harbours RNA binding motif protein 38 (RBM38; Figure S29) that specifically binds to and 119 
regulates the stability of CDKN1A transcripts37. In this locus, the UL risk-increasing 120 
rs13039273-C associates with lower RBM38 expression in ovary (p=8.7x10-6)(Table S7, 121 
Figure S42; eQTL in uterus p=2.2x10-3). Relevant to UL, a variant in the same locus 122 
(rs760640162) has been previously associated with ‘pregnancy examination and test’ 123 
(p=5.97x10-15) in the UK Biobank41,42. Interestingly, estrogen receptor (ER)α has been shown 124 
to inhibit expression of myocardin31, suggesting that the ability of myocardin-CDKN1A-125 
signalling to inhibit cell cycle progression may be impaired in tissues enriched with ERα. 126 
Taken together our findings and previous evidence, it seems highly probable that 127 
downregulation of myocardin-CDKN1A signalling increases the risk of UL.  128 

We used an automated LDSC regression pipeline43 to evaluate the genetic correlations (rg) of 129 
UL with other traits (Figure 2; Table S8). The most robustly correlated traits were seen for 130 
other gynecological traits, such as bilateral oophorectomy (rg=0.74, p=1.05x10-25), 131 
hysterectomy (rg=0.62, p=3.24x10-19), age at menarche (rg=-0.18, p=1.40x10-9), excessive 132 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.20.21262098doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262098
http://creativecommons.org/licenses/by-nd/4.0/


frequent and irregular menstruation (rg=0.51, p=5.66x10-7), having had menopause (rg=-0.33, 133 
p=2.31x10-5), and usage of hormonal replacement therapy (rg=0.20, p=5.54x10-5). Strong 134 
correlations were also seen between UL and anthropometric and metabolic measures, 135 
including whole body fat-free mass (rg=0.11, p=4.21x10-5), high blood pressure (rg=0.15, 136 
p=4.58x10-6), and serum triglyceride level (rg=0.16, p=4.80x10-5). Genetic susceptibility for 137 
UL was also correlated with genetic susceptibility for multiple psychiatric or mood-related 138 
traits, including depressive symptoms (rg=0.20, p=3.31x10-5) or neuroticism score (rg=0.14, 139 
p=3.88x10-5). 140 

To estimate the causal relationships between UL and the key traits showing significant rg 141 
with UL, we applied two-sample Mendelian randomization. Our results suggest that genetic 142 
tendency to accumulate fat-free mass may be causally linked to higher risk of UL 143 
(p=2.37x10-3; Figure 3; Table S9). In line with this, the higher impedance of whole body (i.e., 144 
a bioelectrical measure used for estimating body composition; lower muscle mass leads to 145 
higher impedance) was causally associated with a lower risk of UL (p=1.05x10-3). When 146 
considering the null causal effect of whole-body fat mass on UL risk (p=0.46), it seems 147 
apparent that the nominally significant (p=8.40x10-3) causal effect of BMI on UL in the 148 
present study and the previously reported associations of BMI with UL risk44-46 arise from the 149 
increased lean body mass rather than fat mass. Although we did not observe horizontal 150 
pleiotropy, the causal estimates were heterogenic for many key traits (Table S9), suggesting 151 
that all the underlying genetic pathways may not function in a consistent manner – thus, these 152 
results need to be interpreted with caution. However, in the leave-one-out sensitivity analyses 153 
all causal estimates were consistently positive (higher fat-free mass was causally associated 154 
with higher risk of UL) or negative (higher impedance was causally associated with lower 155 
risk of UL) suggesting that there is no single variant driving the causal associations (Figures 156 
S50-S63). Regarding most of the gynecological traits, the causal direction with UL was not 157 
clear (Table S9), suggesting that the shared molecular factors predispose to multiple 158 
gynecological complications simultaneously instead of one being causal to another. Of note, 159 
we replicated the previously reported finding of genetic predisposition to UL being causal to 160 
excessive menstrual bleeding2 (p=1.07x10-4). 161 

The discovered causal relationship between genetic tendency to accumulate fat-free mass and 162 
UL risk provides a novel perspective on UL-related pathophysiology. UL are considered 163 
estrogen-dependent, and UL have higher ERα expression compared with normal uterine 164 
myometria47,48. ERs are expressed in a variety of tissues, including all musculoskeletal 165 
tissues49. In females, muscle mass and strength are closely coupled with estrogen status: girls 166 
begin to gain muscle mass after the onset of puberty50 whereas in older age during 167 
perimenopausal and postmenopausal periods, muscle strength declines considerably51,52. If 168 
estrogen enhances muscle growth53, the observed causal relationship between fat-free mass 169 
and UL risk could arise secondary to high estrogen contributing to the muscle growth. Many 170 
of the newly identified candidate genes, however, directly regulate cell proliferation – thus, it 171 
remains possible that the estrogen-rich environment, due to sexual maturity, may trigger 172 
excess SMC growth resulting in ULs in women who are genetically susceptible to build up 173 
muscle. 174 

Currently, the only essentially curative treatment for UL is hysterectomy, which underscores 175 
the high demand for the development of alternative effective therapies. Our findings double 176 
the number of known UL risk loci and, thus, the herein presented results provide several 177 
potential targets for translational research to develop pharmacologic interventions for UL. 178 
Therapies targeted at myocardin-CDKN1A signalling or, considering the causal evidence, 179 
other factors regulating muscle growth may hold the greatest potential.180 
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Table 1. Novel UL risk loci. 81 

The table reports novel distinct loci (more than 1Mb apart) containing at least one variant identified to be associated with UL at p<5x10-8 in a meta-analysis of 82 
53,534 UL cases and 373,024 female controls from FinnGen and a previously published meta-GWAS of UL2 (META-1) and in a meta-analysis of 33,244 UL 83 
cases and 311,271 female controls from FinnGen and the UK Biobank (META-2). 84 

Locus Chr:Pos (hg38) Nearest gene(s) Candidate gene(s) rsID EA EAF OR (95% CI) P-value HetPVal FIN enr. 
Novel loci in META-1          
  1q43 1:241860596 EXO1 EXO1, FH rs4149909 G 0.03 1.13 (1.08-1.18) 1.16E-08 0.265 1.03 
  1q44 1:244151650 ZBTB18, C1orf100 ZBTB18, AKT3 rs2183478 G 0.18 1.07 (1.05-1.09) 1.75E-11 0.774 1.57 
  1q44 1:248897507 PGBD2 ZNF692 rs4335411 A 0.76 1.06 (1.04-1.08) 4.12E-10 0.376 0.98 
  2p14 2:66863235 MEIS1 MEIS1 rs17631680 C 0.10 0.93 (0.91-0.95) 1.93E-10 0.127 0.96 
  2q11.2 2:99454113 REV1 REV1 rs13392042 G 0.58 1.05 (1.03-1.06) 4.21E-11 0.217 1.21 
  2q33.3 2:207258660 MYOSLID, KLF7 MYOSLID rs10804157 C 0.44 1.04 (1.03-1.05) 1.04E-08 0.143 0.87 
  2q37.3 2:241720139 ING5 ING5 rs34766121 T 0.24 1.06 (1.04-1.08) 5.02E-10 0.278 1.03 
  3p26.1 3:4674530 ITPR1 ITPR1 rs3804984 C 0.38 0.95 (0.93-0.96) 8.06E-15 0.021 1.42 
  3p24.2 3:24213259 THRB THRB rs1010961 A 0.45 1.04 (1.03-1.06) 1.64E-10 0.109 0.98 
  3q27.2 3:185807411 IGF2BP2 IGF2BP2 rs13060777 G 0.26 1.05 (1.04-1.07) 1.14E-11 0.595 1.10 
  4q23 4:99031559 METAP1 EIF4E, ADH5 rs1037475 G 0.57 1.04 (1.03-1.05) 8.38E-09 0.707 0.95 
  5q31.1 5:133099880 HSPA4 HSPA4 rs4367292 T 0.27 0.96 (0.94-0.97) 2.49E-08 0.882 1.15 
  6p21.2 6:36653670 CDKN1A CDKN1A rs10456443 A 0.20 0.95 (0.93-0.96) 2.67E-10 0.039 0.91 
  6q21 6:109054915 SESN1 SESN1 rs11153158 C 0.13 0.93 (0.92-0.95) 1.05E-10 0.243 1.19 
  7p14.3 7:33008785 FKBP9, NT5C3A NT5C3A, BBS9 rs4723230 T 0.80 1.05 (1.03-1.07) 4.68E-08 0.946 1.03 
  7q31.31 7:121132432 CPED1 WNT16 rs12706314 A 0.53 1.04 (1.03-1.06) 2.69E-10 0.777 0.89 
  7q32.3 7:130935964 LINC-PINT LINC-PINT rs35908158 C 0.08 1.08 (1.05-1.10) 1.60E-08 0.883 1.41 
  8p12 8:30452819 RBPMS RBPMS rs13275869 C 0.49 0.96 (0.95-0.97) 8.64E-09 0.520 0.98 
  8q24.21 8:128506035 LINC00824 LINC00824 rs1516980 C 0.25 0.96 (0.94-0.97) 2.72E-08 0.987 0.76 
  9q22.2 9:89639982 GADD45G GADD45G rs28508285 G 0.09 1.07 (1.04-1.09) 1.49E-08 0.362 1.05 
  10p12.31 10:21517903 SKIDA1 DNAJC1 rs946711 C 0.33 1.05 (1.03-1.06) 2.96E-10 0.460 0.96 
  10q23.31 10:88331783 RNLS RNLS rs1426619 T 0.45 1.04 (1.03-1.06) 4.92E-09 0.653 1.09 
  11q23.2 11:112703765 LOC1053694962 LOC105369496 rs10891420 C 0.42 1.05 (1.03-1.06) 1.38E-10 0.019 1.16 
  15q23 15:67922458 SKOR1 PIAS1 rs12148374 C 0.44 0.96 (0.95-0.97) 1.37E-09 0.832 1.10 
  16q12.1 16:50059327 HEATR3 BRD7 rs12599260 A 0.73 1.05 (1.04-1.07) 1.09E-11 0.002 1.08 
  16q12.1 16:51447685 AC007344.1 AC007344.1 rs66998222 A 0.19 0.94 (0.93-0.96) 7.53E-12 0.345 0.79 
  17p12 17:12652500 MYOCD MYOCD rs12601765 T 0.30 1.04 (1.03-1.06) 3.08E-08 0.400 1.17 
  19p12 19:22032639 ZNF257 ZNF257 rs8105767 G 0.30 1.05 (1.03-1.06) 2.63E-09 0.143 1.15 
  20q13.31 20:57441016 CTCFL RBM38, BMP7 rs13039273 C 0.46 1.04 (1.03-1.06) 3.08E-09 0.874 1.22 
  20q13.33 20:63638397 STMN3 SLC2A4RG rs75691080 T 0.10 0.92 (0.90-0.95) 7.79E-11 0.044 1.25 
  21q22.12 21:35072824 RUNX1 RUNX1 rs2834747 G 0.30 0.96 (0.94-0.97) 1.44E-08 0.711 1.17 
  22q12.3 22:36287509 MYH9, APOL1 MYH9 rs9610482 T 0.19 1.06 (1.04-1.08) 7.89E-11 0.354 0.94 
Novel loci in META-2          
  2p11.2 2:86458018 KDM3A KDM3A rs573520030 T 0.99 0.62 (0.53-0.74) 3,87E-08 0.918 1.83 
  4p11 4:49085558 CWH43 OCIAD1 rs538533131 A 0.99 0.53 (0.43-0.65) 2,61E-09 0.002 1.15 
  10q25.1 10:106821670 SORCS1 SORCS1 rs12247648 T 0.03 1.26 (1.17-1.36) 3,86E-09 0.825 39.55 
  Xp11.23 X:46904059 JADE3,RP2 SLC9A7 rs6611312 T 0.53 1.05 (1.03-1.07) 2,54E-08 0.355 1.07 

Chr, chromosome; Pos, position (build 38); EA, effect allele; EAF, effect allele frequency; OR, odds ratio; CI, confidence interval; P, p-value; HetPVal, p-value for heterogeneity; FIN enr, 85 
Finnish enrichment (calculated as FIN AF / NFEE AF in the Genome Aggregation Database (gnomAD), where FIN AF is the Finnish allele frequency and NFEE AF is the non-Finnish-non-86 
Estonian European allele frequency). ‘Nearest gene(s)’ reports the gene closest to the association lead variant. ‘Candidate gene(s)’ indicates the biologically most relevant gene within 1Mb 87 
window around the association lead variant. 88 
 89 
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Figure 1. A combined Manhattan plot of UL associations in META-1 and META-2. 190 

We conducted UL GWAS in FinnGen and, subsequently, two sets of meta-analyses with data 191 
from a previously published UL meta-analysis2 and the UK Biobank, adding up to 53,534 UL 192 
cases and 373,024 female controls in META-1 (top) and 33,244 UL cases and 311,271 193 
female controls in META-2 (bottom), respectively. Blue color denotes novel UL risk loci 194 
identified in META-1, and red color indicates novel loci identified in META-2 that were not 195 
associated previously with UL risk in prior GWASs or META-1. Black and grey colours 196 
indicate odd and even chromosome numbers, respectively. The red dashed lines correspond 197 
to the threshold for genome-wide significance (p<5x10-8).  198 
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Figure 2. Variant summary and gene set-based results using summary statistics from 199 
META-2. 200 

A) The proportions of ‘independent genome-wide significant variants’ and ‘variants in LD 201 
with independent significant variants’ having corresponding functional annotation. Bars are 202 
colored according to -log2(enrichment) relative to all variants in the reference panel. B) A 203 
Manhattan plot of the gene-based test computed by MAGMA54. The input variants were 204 
mapped to 19,920 protein coding genes and, thus, significance was considered at p<2.51x10-6 205 
(0.05/19,920); only 87 genes with p-values below this threshold are plotted. Blue and red 206 
colours indicate odd and even chromosome numbers, respectively. C) MAGMA54 gene-set 207 
enrichment analysis was performed for curated gene sets and GO terms available at 208 
MsigDB55. The plot shows the results for significantly enriched pathways (pBonferroni<0.05). 209 
D) Results of MAGMA54 tissue expression analysis testing a positive relationship between 210 
tissue-specific gene expression profiles and disease-gene associations. Tissue-specific gene-211 
expression data were from GTEx (v8)56. All data plotted in Figure 2 A-D were produced 212 
using FUMA57.  213 
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Figure 3. Genetic correlations (rg) of UL with other traits. 214 

The analyses were completed using an automated LD score regression pipeline available at 215 
http://ldsc.broadinstitute.org/43. Statistical significance was considered at p<6x10-5 (0.05/830, 216 
where 830 is the number of traits tested). The results of traits that showed significant rg with 217 
UL are plotted (more results are provided in Table S8). Traits are named as reported in the 218 
LD Hub output.  219 
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Figure 4. Causal relationships between UL and body composition measures. 220 

We estimated causal relationships between UL and the key traits showing significant genetic 221 
correlation with UL using two-sample Mendelian randomization implemented in 222 
‘TwoSampleMR’ R library58,59. Bi-directional causal estimates were obtained by using 223 
summary statistics provided by the MRC Integrative Epidemiology Unit (IEU) GWAS 224 
database and UL GWAS results obtained in FinnGen in the present study to extract genetic 225 
instruments for other, mostly UKBB-based, traits and UL, respectively. LD pruning was 226 
completed using European population reference, threshold of r2=0.001, and clumping 227 
window of 10kb. Statistical significance was considered at p<3x10-3 (0.05/19, where 19 is the 228 
number of traits tested; black diamonds). The plot shows the causal estimates obtained using 229 
inverse variance weighted method for key body composition measures (more results are 230 
provided in Table S9; the scatter plots for the body composition measures can be found in 231 
Figures S43-S49, and the results of the leave-one-out sensitivity analyses are showin in 232 
Figures S50-S63).  233 
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Methods 234 

Study populations 235 

FinnGen (www.finngen.fi/en) is a public-private partnership project launched in 2017 with 236 
an aim to improve human health through genetic research. The project utilizes genome 237 
information from a nationwide network of Finnish biobanks that are linked with digital health 238 
records from national hospital discharge (available from 1968), death (1969-), cancer (1953-239 
), and medication reimbursement (1995-) registries using the unique national personal 240 
identification codes. Ultimately, the data resource will cover roughly 10% of the Finnish 241 
population. We studied data from 123,579 female participants (18,060 UL cases and 105,519 242 
female controls) from FinnGen Preparatory Phase Data Freeze 5. UL cases were required to 243 
have an entry of ICD-10: D25, ICD-9: 218, or ICD-8: 21899, and participants who had no 244 
records of these entries were deemed as controls. The Coordinating Ethics Committee of the 245 
Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen study protocol Nr 246 
HUS/990/2017. 247 

The FinnGen study is approved by Finnish Institute for Health and Welfare (THL), approval 248 
number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, 249 
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, 250 
THL/1721/5.05.00/2019, Digital and population data service agency VRK43431/2017-3, 251 
VRK/6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA) KELA 252 
58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and Statistics 253 
Finland TK-53-1041-17.  254 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data 255 
Freeze 5 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, 256 
BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, Finnish Red Cross Blood 257 
Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank AB17-5154, 258 
Biobank Borealis of Northern Finland_2017_1013,  Biobank of Eastern Finland 1186/2018, 259 
Finnish Clinical Biobank Tampere MH0004, Central Finland Biobank 1-2017, and 260 
Terveystalo Biobank STB 2018001.  261 

FibroGENE is consortium of conventional, population-based and direct-to-consumer cohorts 262 
that was assembled to replicate and identify UL risk variants. In the study by Gallagher et al., 263 
they studied data from 35,474 UL cases and 267,505 female controls including participants 264 
from four population-based cohorts (Women’s Genome Health Study, WGHS; Northern 265 
Finland Birth Cohort, NFBC; QIMR Berghofer Medical Research Institute, QIMR; the UK 266 
Biobank, UKBB) and one direct-to-consumer cohort (23andMe) Detailed descriptions of 267 
cohorts and sample selections are available in Supplementary Methods2. 268 

The UK Biobank is a large national and international health resource following the health 269 
and wellbeing of 500,000 male and female volunteer participants, enrolled at ages from 40 to 270 
69 60. The study began in 2006 with the aim to follow the participants for at least 30 years 271 
thereafter. Information has been collected from participants during recruitment using 272 
questionnaires on socioeconomic status, lifestyle, family history and medical history. 273 
Participants have also been followed up for cause-specific morbidity and mortality through 274 
linkage to disease registries, death registries, and hospital admission records. For this study, 275 
altogether 220,936 women of European ancestry were considered. Based on both hospital-276 
linked medical records and self-report (interview with research nurse), women with a history 277 
of UL were selected as cases (n=15,184), while controls (n=205,752) had no previous history 278 
of UL. Informed consent was obtained from all participants. The UKBB project is approved 279 
by the North West Multi-Centre Research Ethics Committee. 280 
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Genotyping, imputation, and quality control 281 

In FinnGen, genotyping of the samples was performed using Illumina and Affymetrix arrays 282 
(Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa Clara, CA, USA). Sample 283 
quality control (QC) was performed to exclude individuals with high genotype missingness 284 
(>5%), ambiguous gender, excess heterozygosity (±4SD) and non-Finnish ancestry. 285 
Regarding variant QC, all variants with low Hardy-Weinberg equilibrium (HWE) p-value 286 
(<1e-6), high missingness (>2%) and minor allele count (MAC)<3 were excluded. Chip 287 
genotyped samples were pre-phased with Eagle 2.3.5 with the number of conditioning 288 
haplotypes set to 20,000. Genotype imputation was carried out by using the Finnish 289 
population-specific SISu v3 reference panel with Beagle 4.1 (version 08Jun17.d8b) as 290 
described in the following protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. In post-291 
imputation QC, variants with imputation INFO<0.6 were excluded. 292 

In UK Biobank, genotyping of samples was performed either on the Affymetrix UK BiLEVE 293 
or Affymetrix UK Biobank Axiom array. The UK Biobank genotype data passed centralised 294 
quality control and was imputed by the UKBB team up to the HRC reference panel61. 295 

GWAS 296 

The UL GWAS in FinnGen was completed using the Scalable and Accurate Implementation 297 
of Generalized (SAIGE) software62. The association models were adjusted for age, sex, the 298 
first 10 genetic principal components, and genotyping batch, and only variants with minimum 299 
allele count of 5 were included in the analysis. 300 

Given the extensive relatedness in the UK Biobank data, a linear mixed model (LMM) was 301 
utilised for association testing that accounts for population structure and model the related 302 
individuals, including genotyping array, age and BMI as covariates as implemented in Bolt-303 
LMM V2.3. 304 

Meta-analyses 305 

Two sets of fixed-effect, inverse-variance weighted meta-analyses (implemented in 306 
METAL63) were performed: the results obtained in FinnGen were meta-analyzed with 1) the 307 
top 10,000 most significant variants associating with UL in a published GWAS2 (META-1) 308 
and 2) UL GWAS results obtained in the UKBB. Statistical significance was considered at 309 
the standard genome-wide significance level (p<5x10-8). Genomic inflation factor was 310 
estimated using an automated LD score (LDSC) regression pipeline43. 311 

Characterization of association signals 312 

We used a web-based platform FUMA57 to perform functional annotations of the GWAS 313 
results: we completed functional gene mapping and gene-based association and enrichment 314 
tests using the genome-wide UL associations from META-2 (FinnGen and UKBB) and 315 
predefined lead variants as reported in Table S2. FUMA identifies variants showing genome-316 
wide significant association (p<5x10-8) with the study trait and, among the significant 317 
variants, identifies variants in low LD (r2<0.6) as ‘independent significant variants’ and 318 
further identifies variants in LD (r2>0.6) with the ‘independent significant variants’; 319 
ANNOVAR64 annotations are performed for all these variants to obtain information on the 320 
functional consequences of the key variants. MAGMA54, also implemented in FUMA, was 321 
used to perform gene-based association testing and gene-set enrichment analyses: gene-based 322 
p-values were computed for protein-coding genes by mapping variants to genes and 323 
subsequent enrichment analyses were performed for the significant genes using 4728 curated 324 
gene sets and 6166 GO terms as reported in MsigDB55. 325 
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To further characterize the potential UL candidate gene(s) according to biological relevance, 326 
we annotated all genes within ±1Mb window from the association lead variant. We explored 327 
information provided by GenBank37 and UniProt65 to determine functions of the genes. To 328 
complement the information available in these databases, a broad literature search was 329 
performed to identify previous work published regarding to the genes of interest. 330 

In each locus, we explored the associations of the lead variant with gene expression levels in 331 
the Genotype-Tissue Expression (GTEx) Portal; GTEx was accessed during 02/10/2021-332 
02/11/2021. To further test if altered gene expression mediates UL risk associations, we used 333 
a method proposed by Zhu et al.66 as implemented in Complex Traits Genetics Virtual Lab 334 
(CTG-VL)67; we performed these tests using genome-wide UL results from META-2 and 335 
tissue-specific gene expression data (GTEx, V7) for uterus and whole blood. We further used 336 
RegulomeDB33 to discover regulatory elements overlapping with the intergenic variants in 337 
the novel loci showing genome-wide significant association with UL risk. Here, significant 338 
results for the novel loci are reported. 339 

SNP-based heritability and genetic correlations 340 

The SNP-based heritability (h2
SNP) of UL was estimated using LDSC regression implemented 341 

in LDSC software68. Population prevalence of 0.30 (as in 2) and sample prevalence of 0.11 342 
were used to estimate h2

SNP on liability scale. We further applied LDSC to estimate genetic 343 
correlation (rg) of UL with other traits using LD Hub43, a web interface for performing 344 
automated LDSC regression. As recommended, we excluded the major histocompatilibity 345 
complex region from the analyses43. We tested rg between UL and all 830 traits available in 346 
the LD Hub database and, thus, statistical significance was considered at p<6x10-5 347 
(0.05/830). 348 

Mendelian randomization 349 

To test for causal inferences between UL and the key traits showing significant rg with UL, 350 
we performed bi-directional two-sample Mendelian randomization. These analyses were 351 
completed using ‘TwoSampleMR’ R library58 (https://mrcieu.github.io/TwoSampleMR/). To 352 
avoid possible bias from overlapping samples, we extracted genetic instruments for UL from 353 
the GWAS results obtained in FinnGen, and for other traits from the GWAS database 354 
provided by the MRC Integrative Epidemiology Unit (IEU) available at 355 
https://gwas.mrcieu.ac.uk/ and integrated in TwoSampleMR. LD pruning was completed 356 
using European population reference, threshold of r2=0.001, and clumping window of 10kb, 357 
as set as default in ‘clump_data’ function; the numbers of SNPs available for the analyses are 358 
listed in Table S9. Inverse variance weighted (IVW) method was considered as a primary 359 
analysis, and MR Egger estimates were derived in sensitivity analyses: the estimates were 360 
required to be to a matching direction with the IVW-estimates and Egger intercepts were 361 
evaluated to assess horizontal pleiotropy. Cochran’s Q statistics were derived using 362 
‘mr_heterogeneity’ function to test for heterogeneity. To screen for highly influential variants 363 
that could drive the association for example due to horizontal pleiotropy, we performed 364 
leave-one-out analyses using ‘mr_leaveoneout’ function. Statistical significance for the 365 
causal effects was considered at p<3x10-3 (0.05/19) to correct for 19 traits tested. 366 
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