Supplementary Information

Table of Contents

Supplementary Note 1.	Associations between 737 lead SNPs with lipid species and metabolites in previous studies.	2
Supplementary Note 2.	Regional association plots for lipid loci that colocalize with coronary artery disease.	4
Supplementary Note 3.	Comparison of estimated lipidomic effect sizes	48
Supplementary References		49
References		

Supplementary Note 1: Associations between 737 lead SNPs with lipid species and metabolites in previous studies. We identified 35 previous studies that had reported one or more of our 737 lead SNPs or a proxy (R²>0.8) (Supplementary Table 13); details below.

Author or database	PMID or DOI	Sample size	Method	# lipids/metabolites	Ethnicity	Reference
Burkhardt, R.	26401656	2,107	MS	96 AA, AC	Central European	1
Chai, J.F.	31628463	1,954	MS/MS	136 AA, AC	Chinese	2
Chasman, D.I.	19936222	17,296	NMR	17 lipoproteins	European	3
Davis, J.	29084231	8,372	NMR	68 lipid and lipoprotein subclasses	Finnish	4
Demirkan, A.	22359512	4,034	ESI-MS/MS	153 lipids	European	5
Draisma, H.	26068415	7,478	ESI-FIA-MS/MS	129 metabolites	European	6
Feofanova, E.	29610217	1,552/1,872	GC-MS, LC-MS	102 circulating lipid- related metabolites	European, African- American	7
Gieger, C.	19043545	284	ESI-MS/MS	363 metabolites	Southern German	8
Harshfield, E.	10.1101/2020. 10.16.20213520	5,662/13,814	DI-HRMS	360 lipids	Pakistani, European	9
Hartiala, J.	26822151	1,985/1,895	ESI-MS/MS	plasma betaine levels	European	10
Hicks, A.A.	19798445	4,400	ESI-MS/MS	33 sphingolipids, and 43 matched metabolite ratios	European	11
Hong, M.G.	23281178	402/489	UHPLC-MS	6,138 unique molecular features	Swedish	12
Ни, Ү.	28298293	3,521/12,020	TLC-GC	Unclear number of Monounsaturated FA	Chinese, European	13
Illig, T.	20037589	1,809/422	HPLC-ESI- MS/MS	163 metabolic traits	European	14
Inouye, M.	22916037	6,600	NMR	130 metabolite measures	European	15
Kalsbeek, A.	29652918	2,400	GC	22 FA and 15 FA ratios	Framingham Heart Study Offspring Cohort	16
Kettunen, J.	22286219	8,330	NMR	216 serum metabolic traits	Finnish	17
Kettunen, J.	27005778	24,925	NMR	123 metabolic traits	European	18
Krumsiek, J.	23093944	1,768	UHPLC- MS/MS, GC- MS/MS	486 metabolic traits (including 213 unknowns)	German	19
Long, T.	28263315	1,960	UHPLC-MS/MS	644 metabolites	European	20
Lotta, L.	27898682	16,596	MS/MS, GC- MS, UHPLC- MS/MS	Branched-chain AA	European	21
Lotta, L.	33414548	8,569 - 86,507	FIA-ESI- MS/MS, UHPLC-ESI-MS, NMR	174 metabolites	European	22
Mittelstrass, K.	21852955	3,381	HPLC-MS/MS	131 metabolites	South German	23
Nicholson, G.	21931564	211	NMR, FIA-ESI- MS/MS	526 metabolite peaks	European	24
Raffler, J.	26352407	3,861/1,691	NMR	15,379 targeted and untargeted metabolic traits	European	25
Rhee, E.	23823483	2,076	HPLC-ESI- MS/MS	217 metabolites	European	26
Shin, S.	24816252	7,824	HPLC-MS/MS, GC-MS/MS	486 metabolites (including 177 unknown)	European	27
SNIPA	25431330	-	-	-	Various	28

Suhre, K.	21886157	1,768/1,052	UHPLC-	276 metabolites	European	29
			MS/MS, GC-			
			MS/MS			
Tabassum, R.	31551469	2,181	DI-HRMS	141 lipids	European	30
Teslovich, T.	29481666	8,545	NMR	9 AA	Finnish	31
Tukiainen, T.	22156771	8,330	NMR	117 metabolites	Finnish	32
Xie, W.	23378610	957/341	Unclear	14 metabolites	European	33
Yet, I.	27073872	1,001	MS	605 metabolites	European	34
Yu, B.	27884205	1,872/1,552	GC-MS, LC-MS	70 AA	African American, European American	35

Mass-spectrometry, MS; Tandem mass-spectrometry, MS/MS; High-resolution mass-spectrometry, HRMS; Nuclear magnetic resonance, NMR; Electrospray ionization, ESI; Gas chromatography, GC; (Ultra-)High performance liquid chromatography, (U)HPLC; Thin-layer chromatography, TLC; Flow-injection/infusion analysis, FIA; Direct infusion, DI; Amino acids, AA; Acyl-carnitines, AC; Fatty acids, FA;

Supplementary Note 2: Regional association plots for lipid loci that colocalize with coronary artery

disease. We identified 47 putative shared causal variants from colocalization analysis of lipid loci (Supplementary Table 16). Shown is the regional association plot of coronary artery disease³⁶ and up to the top four lipid species that show evidence of colocalization (H3+H4 > 0.8; H4/H3 > 10). Regions were isolated from the 737 lead SNPs, with a window of 400 KB centred on the lead SNP. The indicated candidate SNP was the genetic variant with the largest posterior probability. Marker colours indicate linkage disequilibrium with the candidate SNP (obtained from the 1000 Genome European dataset). Colocalization sensitivity analysis was performed for the top colocalization, assessing the posterior probability of H0-H4 for different values of prior p_{12} . Shaded regions indicate the value of p_{12} which produces posterior probabilities of H3+H4 > 0.8 and H4/H3 > 10.

CE(18:1) - Chr 1 (55305731-55705623)

CE(20:2) - Chr 1 (55305731-55705623)

12

10

alue)

log₁₀(p-

Total HexCer - Chr 1 (109621861-110020621)

HexCer(d18:1/24:1) - Chr 1 (109621861-110020621)

DG(18:0_18:1) - Chr 1 (230097883-230497633)

DG(18:1_18:1) - Chr 1 (230097883-230497633)

TG(54:2) [NL-18:0] - Chr 1 (230097883-230497633)

Total DG - Chr 1 (230097883-230497633)

TG(54:2) [NL-18:0] - Chr 1 (230100836-230499925)

TG(54:3) [NL-18:1] - Chr 1 (230100836-230499925)

DG(16:0_18:1) - Chr 1 (230100836-230499925)

DG(18:0_18:1) - Chr 1 (230100836-230499925)

PC(16:0_18:0) - Chr 2 (21086225-21485848)

CE(20:2) - Chr 2 (21086225-21485848)

21.3 Position on chr2 (Mb)

21.2

21.4

100

80

CAD - Chr 2 (23700054-24099798)

TG(50:2) [NL-18:2] - Chr 6 (31386131-31785228)

CE(18:0) - Chr 7 (44381979-44780274)

Posterior probabilities

SM(d18:0/22:0) - Chr 8 (126279544-126678921)

Posterior probabilities

PC(36:0) - Chr 8 (126288808-126688215)

Posterior probabilities

Hex3Cer(d18:1/22:0) - Chr 9 (107386294-107786017)

Hex3Cer(d18:1/24:0) - Chr 9 (107386294-107786017)

Hex3Cer(d18:1/24:1) - Chr 9 (107465986-107865928)

Posterior probabilities

CE(18:0) - Chr 9 (135941932-136341776)

LPC(16:1) [sn1] - Chr 10 (101875936-102275471)

LPC(16:1) [sn2] - Chr 10 (101875936-102275471)

AC(16:1) - Chr 10 (101875936-102275471)

100

60

40

0

← SEC318

DG(18:1_18:2) - Chr 11 (116386360-116785341)

CE(16:2) - Chr 11 (116386360-116785341)

TG(54:2) [NL-18:0] - Chr 11 (116391073-116789849)

DG(18:0_18:1) - Chr 11 (116391073-116789849)

TG(54:1) [NL-18:1] - Chr 11 (116391073-116789849)

CE(22:6) - Chr 11 (116391073-116789849)

TG(54:4) [NL-18:0] - Chr 11 (116407583-116807368)

TG(54:4) [NL-18:2] - Chr 11 (116407583-116807368)

CE(16:1) - Chr 11 (116407583-116807368)

РОСЗ

116.7

-APOA1

APOAL-AS

100

80 8

60

40

116.8

TG(54:2) [NL-18:0] - Chr 11 (116448927-116848857)

DG(18:1_18:3) - Chr 11 (116448927-116848857)

TG(54:4) [NL-18:0] - Chr 11 (116448927-116848857)

CE(22:0) - Chr 11 (116462788-116862245)

Cer(d18:2/24:1) - Chr 12 (121216911-121616464)

PC(36:0) - Chr 12 (121216911-121616464)

Cer(d17:1/24:1) - Chr 12 (121216911-121616464)

25

100

80

60

40

20

P2RX7→

121.6

Re

SM(d18:0/22:0) - Chr 12 (121217765-121616464)

Posterior probabilities

CAD - Chr 15 (58481406-58880051)

PE(18:0_18:1) - Chr 15 (58481406-58880051)

Posterior probabilities

PE(18:1_18:2) - Chr 15 (58483611-58882792)

PE(16:0_16:0) - Chr 15 (58483611-58882792)

58.5

50

40

alue) 06

v-d)⁰¹Bol

10

58.7 Position on chr15 (Mb)

58.6

PE(16:0_18:2) - Chr 15 (58483611-58882792) 15:58683366 Candidate

100

80

60

40

20

LIPC-

58.8

-LIPC-ASI

CAD - Chr 15 (58524080-58923206)

PE(15-MHDA_22:6) - Chr 15 (58524080-58923206)

PE(18:0_20:3) (b) - Chr 15 (58524080-58923206)

PE(15-MHDA_20:4) - Chr 15 (58524080-58923206)

CAD - Chr 15 (58524080-58923206)

LPE(20:4) [sn1] - Chr 15 (58524080-58923206)

DG(18:1_20:4) - Chr 15 (58524080-58923206)

LPE(22:6) [sn2] - Chr 15 (58524080-58923206)

PG(34:2) - Chr 15 (58524080-58923790)

PE(18:0_20:4) - Chr 15 (58524080-58923790)

PE(38:5) (a) - Chr 15 (58524080-58923790)

Total PC - Chr 15 (58532076-58930416)

416) PC(P-16:0/16:1) - Chr 15 (58532076-58930416)

PC(18:1_18:1) - Chr 15 (58532076-58930416)

LPE(20:4) [sn1] - Chr 15 (58532076-58931039)

TG(56:6) [NL-20:4] - Chr 15 (58532076-58931039)

PC(16:0_16:0) - Chr 16 (56787107-57185761)

PC(P-16:0/16:1) - Chr 16 (56787882-57185761)

12

Total PC(O) - Chr 16 (56787882-57185761)

16:56987369

- 100

CE(18:0) - Chr 16 (56787882-57187761)

TG(O-52:2) [NL-16:0] - Chr 16 (56787882-57187761)

PC(O-38:5) - Chr 16 (56787882-57187761)

100

PC(O-16:0/16:0) - Chr 16 (56787882-57187761)

PC(16:0_18:3) (a) - Chr 16 (56790343-57188778)

Posterior probabilities

TG(O-50:1) [NL-16:0] - Chr 16 (56793346-57192310)

Total TG(O) - Chr 16 (56793346-57192310)

PC(0-40:7) (a) - Chr 16 (56793346-57192310)

PC(18:2_18:2) - Chr 16 (56793346-57192310)

Posterior probabilities

TG(O-50:1) [NL-16:0] - Chr 16 (56794590-57193448)

Posterior probabilities

Total SM - Chr 19 (10988818-11388151)

SM(d18:1/16:0) - Chr 19 (10988818-11388151)

12

10

8

log10(p-6 0.6

Total COH - Chr 19 (10988818-11388151) 19:11188247 Candidate

100

80

60

40 Tate

Re

Cer(d16:1/24:1) - Chr 19 (19166890-19566255)

Posterior probabilities

LPC(20:3) [sn1] - Chr 19 (19179819-19579046)

PC(18:1_20:3) - Chr 19 (19179819-19579046)

43

DG(18:1_20:4) - Chr 19 (19208076-19607564)

DG(18:2_20:4) - Chr 19 (19208076-19607564)

Posterior probabilities

Cer(d18:1/24:0) - Chr 19 (19260686-19660523)

TG(50:2) [NL-18:1] - Chr 19 (19260686-19660523)

Total Cer - Chr 19 (19295556-19693426)

Cer(d18:1/24:1) - Chr 19 (19295556-19693426)

Cer(d17:1/24:1) - Chr 19 (19295556-19693426)

40

CE(16:0) - Chr 19 (45212381-45610846)

45.4 Position on chr19 (Mb)

45.5

. 45.3

CE(18:2) - Chr 19 (45212381-45610846)

Supplementary Note 3: Comparison of estimated lipidomic effect sizes. To assess the impact of adjusted for clinical lipid traits or to assess the difference between adjusted and mtCOJO GWAS results, we calculated t-statistics for the difference in beta-coefficients.

$$t = \frac{\beta_{STD} - \beta_{ADJ}}{\sqrt{SE(\beta_{STD})^2 + SE(\beta_{ADJ})^2}}$$

Where β_{ADJ} and β_{STD} are the estimated genetic effects from models with and without adjustment for clinical lipid traits, respectively. SE(β) is the estimated standard error of the estimates.

Supplementary References

- 1. Burkhardt, R. *et al.* Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood. *PLoS Genet* **11**, e1005510 (2015).
- 2. Chai, J.F. *et al.* Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer's and Parkinson's diseases. *Hum Mol Genet* **29**, 189-201 (2020).
- 3. Chasman, D.I. *et al.* Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. *PLoS Genet* **5**, e1000730 (2009).
- 4. Davis, J.P. *et al.* Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. *PLoS Genet* **13**, e1007079 (2017).
- 5. Demirkan, A. *et al.* Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. *PLoS Genet* **8**, e1002490 (2012).
- 6. Draisma, H.H.M. *et al.* Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. *Nat Commun* **6**, 7208 (2015).
- 7. Feofanova, E.V. *et al.* Sequence-Based Analysis of Lipid-Related Metabolites in a Multiethnic Study. *Genetics* **209**, 607-616 (2018).
- 8. Gieger, C. *et al.* Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. *PLoS Genet* **4**, e1000282 (2008).
- Harshfield, E.L. *et al.* Genome-wide analysis of blood lipid metabolites in over 5,000 South Asians reveals biological insights at cardiometabolic disease loci. *medRxiv*, 2020.10.16.20213520 (2020).
- 10. Hartiala, J.A. *et al.* Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. *Nat Commun* **7**, 10558 (2016).
- 11. Hicks, A.A. *et al.* Genetic determinants of circulating sphingolipid concentrations in European populations. *PLoS Genet* **5**, e1000672 (2009).
- 12. Hong, M.G. *et al.* A genome-wide assessment of variability in human serum metabolism. *Hum Mutat* **34**, 515-24 (2013).
- 13. Hu, Y. *et al.* Discovery and fine-mapping of loci associated with MUFAs through trans-ethnic meta-analysis in Chinese and European populations. *J Lipid Res* **58**, 974-981 (2017).
- 14. Illig, T. *et al.* A genome-wide perspective of genetic variation in human metabolism. *Nat Genet* **42**, 137-41 (2010).
- 15. Inouye, M. *et al.* Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. *PLoS Genet* **8**, e1002907 (2012).
- 16. Kalsbeek, A. *et al.* A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort. *PLoS One* **13**, e0194882 (2018).
- 17. Kettunen, J. *et al.* Genome-wide association study identifies multiple loci influencing human serum metabolite levels. *Nat Genet* **44**, 269-76 (2012).
- 18. Kettunen, J. *et al.* Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. *Nat Commun* **7**, 11122 (2016).
- 19. Krumsiek, J. *et al.* Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. *PLoS Genet* **8**, e1003005 (2012).
- 20. Long, T. *et al.* Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. *Nat Genet* **49**, 568-578 (2017).
- Lotta, L.A. *et al.* Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. *PLoS Med* 13, e1002179 (2016).
- 22. Lotta, L.A. *et al.* A cross-platform approach identifies genetic regulators of human metabolism and health. *Nat Genet* **53**, 54-64 (2021).

- 23. Mittelstrass, K. *et al.* Discovery of sexual dimorphisms in metabolic and genetic biomarkers. *PLoS Genet* **7**, e1002215 (2011).
- 24. Nicholson, G. *et al.* A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. *PLoS Genet* **7**, e1002270 (2011).
- Raffler, J. *et al.* Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality. *PLoS Genet* 11, e1005487 (2015).
- 26. Rhee, E.P. *et al.* A genome-wide association study of the human metabolome in a community-based cohort. *Cell Metab* **18**, 130-43 (2013).
- 27. Shin, S.Y. *et al.* An atlas of genetic influences on human blood metabolites. *Nat Genet* **46**, 543-550 (2014).
- 28. Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: an interactive, genetic variant-centered annotation browser. *Bioinformatics* **31**, 1334-6 (2015).
- 29. Suhre, K. *et al.* Human metabolic individuality in biomedical and pharmaceutical research. *Nature* **477**, 54-60 (2011).
- 30. Tabassum, R. *et al.* Genetic architecture of human plasma lipidome and its link to cardiovascular disease. *Nat Commun* **10**, 4329 (2019).
- 31. Teslovich, T.M. *et al.* Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. *Hum Mol Genet* **27**, 1664-1674 (2018).
- 32. Tukiainen, T. *et al.* Detailed metabolic and genetic characterization reveals new associations for 30 known lipid loci. *Hum Mol Genet* **21**, 1444-55 (2012).
- 33. Xie, W. *et al.* Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. *Diabetes* **62**, 2141-50 (2013).
- 34. Yet, I. *et al.* Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms. *PLoS One* **11**, e0153672 (2016).
- 35. Yu, B. *et al.* Whole genome sequence analysis of serum amino acid levels. *Genome Biol* **17**, 237 (2016).
- 36. van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. *Circ Res* **122**, 433-443 (2018).