
1 
 

Comprehensive genetic analysis of the human lipidome identifies novel loci controlling lipid homeostasis 

with links to coronary artery disease 

Gemma Cadby1,*, Corey Giles2,3,*, Phillip E Melton4, Kevin Huynh2,3, Natalie A Mellett2, Thy Duong2, Anh 

Nguyen2, Michelle Cinel2, Alex Smith2, Gavriel Olshansky2,3, Tingting Wang2,3, Marta Brozynska2, Mike 

Inouye2, Nina S McCarthy5, Amir Ariff6, Joseph Hung7,8,9, Jennie Hui9,10, John Beilby9,10, Marie-Pierre Dubé11, 
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Abstract 

We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify 

genetic variants associated with lipid species that are putatively in the mechanistic pathway to coronary 

artery disease (CAD). We quantified 596 lipid species in serum from 4,492 phenotyped individuals from the 

Busselton Health Study. In our discovery GWAS we identified 667 independent loci associations with these 

lipid species (479 novel), followed by meta-analysis and validation in two independent cohorts. Lipid 

endophenotypes (134) identified for CAD were associated with variation at 186 genomic loci.  Associations 

between independent lipid-loci with coronary atherosclerosis were assessed in ~456,000 individuals from 

the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P<1x10-3), 43 loci were associated 

with at least one of the 134 lipid endophenotypes. The findings of this study illustrate the value of 

integrative biology to investigate the genetics and lipid metabolism in the aetiology of atherosclerosis and 

CAD, with implications for other complex diseases. 
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Introduction 

Lipids comprise thousands of individual species, spanning many classes and subclasses. Genome-wide 

association studies (GWAS) of lipid species can provide novel insights into human physiology, inborn errors 

of metabolism and mechanisms for complex traits and diseases. Dyslipidaemia, a broad term for disordered 

lipid and lipoprotein, is a major risk factor for atherosclerotic cardiovascular disease and a therapeutic 

target for the primary and secondary prevention of coronary artery disease (CAD)1,2. Defined by elevated 

low-density lipoprotein cholesterol (LDL-C) and triglycerides with decreased high-density lipoprotein 

cholesterol (HDL-C) – these ‘clinical lipid’ measures provide only a partial view of the complex lipoprotein 

structures and their metabolism. Lipidomic technologies can now measure hundreds of individual 

molecular lipid species that make up the human lipidome, providing a more complete snapshot of the 

underlying lipid metabolism occurring within an individual. 

Genome-wide association studies have uncovered thousands of genetic variants linked to traditional clinical 

lipids (LDL-cholesterol, HDL-cholesterol, triglycerides)3,4. Genes implicated at these loci show functional 

links between lipid levels and CAD5. The human lipidome is heritable and predictive of CAD, furthering our 

understanding of the biology of CAD6. The individual lipid species that make up the lipidome are biologically 

simpler measures that may reside closer to the causal action of genes, making them valuable 

endophenotypes for gene identification. Genetic interrogation of the human lipidome may therefore reveal 

further genetic variants that play a role in lipid metabolism and CAD. 

Compared with other complex traits, relatively few genomic loci have been associated with lipid species in 

GWAS of the human serum/plasma lipidome7-17, although these studies have generally interrogated a 

restricted subset of lipid species. The serum lipidome is complex and consists of many isobaric and isomeric 

species that share elemental composition but are structurally distinct. Existing lipidomic studies often 

employ techniques that provide poor resolution of these species, limiting their biological interpretation. We 

have recently expanded our lipidomic platform to better characterise isomeric lipid species, now measuring 

596 lipids from 33 classes18. Our methodology focuses on the precise measurement of a broad number of 

lipid and lipid-like compounds, utilising extensive chromatographic separation. 

Here, we report a GWAS of 596 targeted lipid species (across 33 lipid classes) in an Australian population-

based cohort of 4,492 individuals, validation of significant loci in two independent cohorts and meta-

analysis of all results. Using robust procedures, we disentangle genetic effects of lipid species from 

lipoproteins. Integration of multiple datasets, including expression quantitative trait loci (eQTL), 

methylation QTL (meQTL), and protein QTL (pQTL), and in-depth analysis of significant loci highlights 

putative susceptibility genes for CAD. We demonstrate robust associations between lipid species and CAD 

using genetic correlations, polygenic risk scores and phenotypic associations. Many lipid-associated loci 
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show pleiotropy with CAD in colocalization analysis. Assessment of loci with coronary atherosclerosis in 

456,486 UK Biobank participants reveals novel associations, independent of clinical lipid measures. 

 

Results  

Lipidomic profiling. We measured 596 individual lipid species within 33 lipid classes, covering the major 

glycerophospholipid, sphingolipid, glycerolipid, sterol and fatty acyl classes in serum and plasma samples 

from three independent cohorts (Supplementary Tables 1-3). Assay performance was monitored using 

pooled plasma quality control samples, enabling determination of coefficient of variation (%CV) values for 

each lipid class and species. In the Busselton Health Study (BHS) discovery cohort, the median %CV was 

8.6% with 570 (95.6%) lipid species showing a %CV less than 20%. All lipids were measured in every 

individual, with the exception of three values which were below the limit of detection. The lipidomic 

analysis of the Australian Imaging, Biomarker, and Lifestyle (AIBL) and Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) validation cohorts showed similar assay performance19.   

GWAS of the human serum lipidome. We performed a GWAS of the human serum lipidome (Figure 1), in 

the BHS discovery cohort of 4,492 individuals of European ancestry (Supplementary Tables 4-7 and Figure 

2) and a meta-analysis of the two validation cohorts, consisting of 670 and 895 individuals of European 

ancestry (Supplementary Table 8). We further performed a discovery meta-analysis of all three studies 

(Supplementary Table 9). All summary-level statistics are available at our data portal 

(https://metabolomics.baker.edu.au/).  

The discovery GWAS identified 2,279 independent SNP-lipid species associations, and 132 independent 

SNP-lipid class associations at a genome-wide significance (P<5.0x10-8; r2<0.1; Figure 2; Supplementary 

Table 8). All lipid classes and 543 (of 596; 91.1%) lipid species had at least one significant association. All 

significantly associated SNPs were in Hardy-Weinberg Equilibrium (HWE; all P≥1.53x10-4), and were 

relatively common (minor allele frequency; MAF<0.01: 4%; MAF>0.05: 91%, Supplementary Table 6). 

Overall, 667 independent SNPs were significantly associated across lipid outcomes (Supplementary Table 

10).  

Each SNP was associated with between 1 and 222 lipids (Extended data Fig. 1). SNPs associated with a large 

number of lipids were in regions known to be involved in lipid regulation, including FADS1/FADS2/FADS3, 

APOE, and LIPC. The most significant associations were observed between PC(18:0_20:4) and rs174564 

(FADS2; P=4.63x10-220) and between Cer(d19:1/22:0) and the intergenic SNP rs364585 (flanking SPTLC3; 

P=7.81x10-185). In fact, the most significant 26 SNP-lipid species associations were with SNPs in these two 

regions.  
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The median genomic inflation factors were 1.01 (range: 0.99-1.03), and 1.02 (range: 1.00-1.03) for lipid 

species and class analyses, respectively. SNP-based heritability estimates were moderately correlated 

(r=0.45) with lambda estimates, for each of the lipid species and classes (Extended data Fig. 2a), as 

expected20.  

SNP-lipid species associations are largely independent of clinical lipid measures. We performed additional 

analyses, adjusting for clinical lipids (total cholesterol, HDL-cholesterol, triglycerides), to identify SNP-lipid 

species associations independent of clinical lipid traits. The median genomic inflation factors were 1.01 

(range: 0.99-1.03), and 1.01 (range: 1.00-1.03) for lipid species and classes, respectively; with heritability 

estimates moderately correlated (r=0.51) with lambda estimates, for each of the lipid species and classes 

(Extended data Fig 2b). Adjustment for clinical lipids identified 2,424 independent SNP-lipid species 

associations, and 124 independent SNP-lipid class associations (Supplementary Table 9). There were 1,545 

SNP-lipid species and 72 SNP-lipid class associations that were significant in both the unadjusted and the 

adjusted analyses, with an R2 between beta coefficients of 0.93 (Figure 3; Supplementary Table 4 and 5). 

Adjustment for clinical lipids identified an additional 879 significant SNP-lipid species associations, for 387 

lipid species. However, 726 SNP-lipid species associations previously associated in the unadjusted analysis, 

fell below our significance threshold. Approximately 24% of these were lipid species in the classes 

cholesteryl ester (n=93), and phosphatidylcholine (n=81) (Supplementary Table 9). We also identified an 

additional 52 significant SNP-lipid class associations, particularly for trihexosylceramide (6 associations) and 

hexosylceramide (6 associations) classes. However, 60 SNP-lipid class associations, fell below our 

significance threshold, with the classes diacylglycerol, GM3 ganglioside, lysophosphatidylcholine, 

lysoalkenylphosphatidylethanolamine, phosphatidylcholine, alkylphosphatidylethanolamine, 

alkenylphosphatidylethanolamine, phosphatidylserine, sphingomyelin, and triacylglycerol no longer 

associated (P<5.0x10-8) with any genetic variants.  

Results from multi-trait conditional and joint (mtCOJO; Supplementary Tables 4 and 5) analyses using 

clinical lipid traits (total cholesterol, HDL-cholesterol, triglycerides) GWAS results from the UK Biobank, to 

minimise the risk of pleiotropy/collider bias introduced by heritable covariates, were largely consistent with 

those of the clinical lipid adjusted analysis (R2 of beta coefficients=0.91, Extended data Fig. 3). Comparison 

of the clinical lipid adjusted Z-scores and mtCOJO Z-scores identified three regions (APOE, 

FADS1/FADS2/FADS3, TMEM229B/PLEKHH1) with substantial differences (P<1.0x10-4) indicating the 

possibility of biased effect measures for the adjusted analyses in these regions. Overall, results were 

overwhelmingly consistent between mtCOJO and clinical lipid-adjusted analyses.  

Conditional analysis (sequentially conditioning on the lead SNP) identified 386 secondary signals (across 

both unadjusted and clinical lipid-adjusted analyses), associated with 163 lipid species/classes 

(Supplementary Table 7). Two regions, LIPC and ATP10D, each contained five independent signals 
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(PCONDITIONAL<5.0x10-8). The LIPC genomic region was strongly associated with phosphatidylethanolamine 

species and class, while ATP10D was associated with hexosylceramide species and class. The SPTLC3 region 

harboured four independent signals, strongly associating with sphingolipids containing a d19:1 sphingoid 

base.  

Associations validated in independent cohorts. For each lipid, significantly associated SNPs were linkage 

disequilibrium (LD)-clumped to remove variants in LD(r2>0.1). We assessed whether the 2,411 independent 

lipid species/class associations identified in the BHS discovery cohort (unadjusted analysis) were validated 

within a combined ADNI and AIBL validation cohort meta-analysis. There were 273 SNP-lipid associations 

not available for validation in the meta-analysis, either due to lipids not available in the ADNI and AIBL 

cohorts; missing SNPs (and proxies) on the imputation panel; or monomorphic/very low frequency MAF in 

ADNI/AIBL. Therefore, we attempted to validate the remaining 2,137 significant SNP-lipid associations 

(Supplementary Table 8). We considered a SNP-lipid association to be validated if i) the SNP was 

significantly associated (P<5x10-8) in the unadjusted BHS discovery GWAS; ii) the direction of effect was 

concordant between the validation meta-analysis and the BHS discovery analysis; and iii) the association 

was nominally significant (P<0.05; less conservative) or reached the Bonferroni significance threshold 

(P<2.34x10-5) in the validation meta-analysis. We identified 1,474 (69.2%) SNP-lipid associations that 

reached nominal significance (P<0.05), and 644 (30.1%) reaching Bonferroni-corrected significance. Almost 

all associations (>99%) had the same direction of effect, with a very strong correlation between validation 

meta-analysis and significant (P<5x10-8) discovery effect sizes (R2=0.53 overall, and R2=0.80 for SNPs with 

MAF > 0.05 in the BHS; Extended data Fig. 4).  

Discovery meta-analysis. At a stringent significance threshold of P<3.47x10-10 (5x10-8/144 effective lipid 

dimensions), the meta-analysis of all three studies identified 65,563 significant SNP-lipid associations 

(Supplementary Table 9), involving 499 lipid species/classes and 7,600 SNPs. We identified 5,658 new 

associations not observed in the BHS discovery GWAS alone, involving 352 lipids and 2,914 SNPs. The 

majority of these (n=5,543; 98%) showed some evidence of association in the BHS discovery GWAS (5x10-8< 

P <5x10-4). However, 89 associations were not nominally significant (P>0.05) in the BHS discovery GWAS, 

indicating that the effects observed in the meta-analysis were largely due to the AIBL and ADNI samples.  

Defining independent loci and genes controlling lipid homeostasis. For each lipid, significantly associated 

SNPs were LD-clumped to remove variants in LD (r2>0.1). Lead variants from the individual analyses (clinical 

lipid adjusted and unadjusted), including conditional analyses, were clumped if the index SNPs were in 

linkage disequilibrium (r2>0.1). We identified 3,361 independent loci-lipid associations, involving 610 lipid 

species/classes, each associated with between 1 and 30 independent SNPs. To identify genomic regions 

associated with lipid metabolism, a single dataset was produced by identifying the smallest P-value for each 

SNP, across all lipids and analyses.  LD-clumping of this dataset resulted in 667 independent genomic 
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regions (Supplementary Table 10). This procedure was repeated, including SNP-lipid associations passing 

our discovery meta-analysis significance threshold (P<3.47x10-10), resulting in 682 independent genomic 

regions, 612 of which overlap with those identified in BHS alone (737 in total). The variants within a 

genomic region and the lipids associated with those variants are collectively termed a genetically 

influenced lipotype. 

Identification of candidate genes within loci. Using the Prioritization of candidate causal Genes 

at Molecular QTLs (ProGeM) framework21 to prioritize candidate causal genes, biologically plausible genes 

were identified in 573 of the 737 genomic regions (Supplementary Tables 10-12), with an overlap of 498 

genomic regions between genetic-based (bottom-up) and biological knowledge (top-down) based 

approaches. A total of 2,321 SNP-gene pairs were identified, where the gene has previously been 

implicated in the regulation of metabolism or a molecular phenotype (Figure 4a). Of these genes, 970 

(41.8%) are present in lipid-metabolism specific databases.  

A total of 62 SNPs were annotated as either missense (n=59), stop gain (n=2), structural interaction (n=1), 

start loss (n=1), or splice donor (n=1) mutations. Of these, three were annotated as having a putative ‘high’ 

impact, and the remaining as ‘moderate’ impact. These SNPs are linked to 55 protein products (Figure 4b).  

Comparing our lead SNPs and proxies against previously published eQTL associations, 2,058 SNP-gene pairs 

were identified (Figure 4b). Published meQTL associations revealed 879 SNP-gene pairs, 587 (66.8%) of 

which replicated eQTL associations. In contrast to eQTL and meQTL, overlap of published pQTL associations 

were much less evident, with only 16 SNP-gene pairs identified (Figure 4c). In total, 18 SNP-gene pairs were 

identified with evidence from closest gene, protein consequences, eQTL and meQTL. The overlap of top-

down and bottom-up candidates supported the annotation of 1,031 SNP-gene pairs. 

Most SNP-lipid species associations were novel. Of the 737 lead variants (and their proxies), 228 (31%) had 

been reported in at least one of 35 previous metabolomic/lipidomic studies (Supplementary Note 1), 

resulting in 509 putatively novel genetically influenced lipotypes (Supplementary Table 13).  

Genetically influenced lipotypes overlap with coronary artery disease and cardiovascular disease related 

loci. We looked at overlap between 10 hard cardiovascular disease (CVD) points from the GWAS catalog 

and the lead SNP (or proxy) from each of the 737 regions, identifying a total of 23 lead SNPs, or their 

proxies, associated (P<5x10-8) with 10 hard CVD endpoints (Supplementary Table 14). The most frequently 

overlapping GWAS catalog hard CVD endpoints were CAD (n=14 SNPs), CVD (n=10 SNPs), coronary artery 

calcification (n=8 SNPs), and myocardial infarction (n=8 SNPs). Three additional lead SNPs were associated 

with CAD in the CARDIoGRAMplusC4D and UK Biobank meta-analysis. Eighty-four lead SNPs were 

associated with 101 CVD-related traits, including chronic kidney disease (n=18,) C-reactive protein (n=14), 

metabolic syndrome (n=12), body mass index (n=8), and systolic blood pressure (n=4).  As expected, lead 
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SNPs frequently overlapped with 186 lipid-related traits, with 99 lead SNPs or proxies observed in the 

GWAS catalog. 

Serum lipid species/classes are phenotypically and genetically associated with coronary artery disease. 

Using nominal significance (P<0.05), we identified 240 lipid species/classes phenotypically associated with 

incident CAD in the BHS (Figure 5a; Supplementary Table 15), with 11% in the positive direction. The 

strongest association was between TG(50:2)[NL-18:2] and incident CAD (0.311±0.046, P=1.74x10-11, FDR 

q=1.09x10-8). Overall, the most strongly associated lipid species were those in the triacylglycerol, 

diacylglycerol, phosphatidylethanolamine, and cholesteryl ester classes. 

We identified 265 lipid species/classes that showed a nominally significant (P<0.05) association with the 

CAD polygenic risk score22 in the BHS (Figure 5b; Supplementary Table 15). These were positive associations 

except for lipids in the alkenyl-phosphatidylcholine and alkenyl-phosphatidylethanolamine classes. The 

strongest association was observed for LPE(18:0) [sn2] (0.075±0.014, P=8.9x10-8, FDR q=5.59x10-5).  

Next, we estimated the genetic correlation between lipid species/classes and CAD. Using linkage 

disequilibrium score regression, we identified nominally significant genetic correlations (P<0.05) between 

199 lipid species/classes and CAD, with 50 of these negatively correlated (Figure 5c; Supplementary Table 

14). The strongest genetic correlations were between TG(51:2) [NL-16:0] (0.275±0.058, P=2.22x10-6, FDR 

q=8.94x10-4) and CAD.  

Overall, using a significance threshold of P<0.05, we identified 134 lipid species/classes that were 

significantly associated in each of the three analyses - association with incident CVD (phenotypic), CAD 

polygenic risk (PRS), and genetic correlation. Importantly, these lipid species/classes showed concordant 

directions of effects in all three analyses, defining these lipid species/classes as lipid endophenotypes for 

CAD. 

Colocalization analysis identified shared causal variants for coronary artery disease. We performed 

pairwise colocalization analysis, within each QTL, between lipid species and CAD to assess whether they 

share common causal variants (Supplementary Table 16). We identified evidence of 43 shared causal 

variants for CAD and any lipid species (Table 1; Supplementary Note 2). The strongest evidence was 

between CE(18:1) and CAD at the APOE rs7412 loci (H3+H4=1.00; H4/H3=1.17x1011). There was strong 

evidence for the sharing of this causal variant between CAD and 184 lipid species from 23 lipid classes (with 

and without clinical lipid adjustment). There was also strong evidence for rs603424, near a likely candidate 

SCD (Stearoyl-CoA desaturase), and 24 lipid species/classes (0.936<H3+H4<0.998; 16<H4/H3<1.8x103).  

Genetically influenced lipotypes were associated with coronary atherosclerosis in the UK Biobank. To 

further define pleiotropic effects between lipid species and CAD, we performed association analysis of 737 

lead SNPs and coronary atherosclerosis in 456,486 participants of the UK Biobank (Supplementary Table 
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17). Eleven of the lipid-associated SNPs had genome-wide significant (P<5x10-8) associations with coronary 

atherosclerosis. Adjustment for clinical lipids (total cholesterol, HDL cholesterol, triglycerides) increased 

this number to 17; however, adjustment for clinical lipids using mtCOJO, which is free of the bias 

introduced by heritable covariates, resulted in only 14 associations with coronary atherosclerosis. 

Importantly, 11 of these associations were sub-genome wide significant in the initial analysis, suggesting 

the presence of strong pleiotropy in these regions. After comparing effect estimates between the standard 

GWAS and mtCOJO clinical lipid adjusted analysis, eight lead SNPs (with P<5x10-8 in the standard GWAS) 

showed opposite direction of associations. These regions contain prototypical lipid/lipoprotein regulating 

genes, such as APOE, CETP, LDLR, and PCSK9. Interestingly, for all lead SNPs with marginal association with 

coronary atherosclerosis (P<1.0x10-3; with and without conditioning on clinical lipids), 43 (81%) were 

associated with lipid endophenotypes for CAD.  

Discussion  

By integrative analysis of the human lipidome and CAD phenotypes, we have identified putative causal 

genes for CAD, providing evidence for a causal role of these lipid species in the development of CAD. Our 

high resolution genome-wide association analyses of the human lipidome has identified 737 independent 

genomic regions associated with lipid metabolism, of which 509 represent novel genetic loci. This is a 

substantial increase over previous studies with similar or larger sample sizes7,10,23. Our expanded lipidomic 

platform utilises extensive chromatographic separation to increase the diversity of measured lipid species 

and distinguish lipid isomers and isotopes over those measured in previous studies. Combined with the 

extended pedigree study design of the BHS, we identify many rare/low-frequency variants with large effect 

sizes.  

The majority (69.2%) of the 2,137 SNP-lipid associations identified in our discovery GWAS were validated in 

a meta-analysis of two independent cohorts. Adjustment for clinical lipids (both as standard covariates and 

mtCOJO analysis), confirmed that the majority of SNP-lipid associations observed were not acting directly 

through clinical lipids (i.e. associations were not the result of mediated pleiotropy). Meta-analysis of all 

three studies identified an additional 5,658 SNP-lipid associations (from 122 loci) - involving 352 lipid 

species - that were not identified in the BHS discovery GWAS alone. Overall, nearly all lipid species (95%) 

had at least one genome-wide significant SNP association, highlighting the genetic contribution to lipid 

metabolism and homeostasis.  

We identified 134 lipid species/classes showing consistent and significant associations with CAD when 

assessed with genetic correlation, phenotypic association, and PRS association. These lipids are potential 

endophenotypes for CAD, which can facilitate the identification of susceptibility genes. Of those loci 

associated with this subset of lipids, we identified 32 regions with evidence of shared causal genetic effects 
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(colocalization) with lipids and CAD. We assessed the association of lipid-loci with coronary atherosclerosis 

in ~456,000 individuals of the UK Biobank, considering independence of clinical lipid traits. A total of 53 loci 

showed evidence of association (P<1x10-3) in at least one analysis. Of these, 43 loci were associated with at 

least one of the 134 lipid species identified above.  

Our lipidomic profiling provided improved resolution and precision in measurement of lipid species. Prior 

studies examined lipid phenotypes that were mixtures of similar, but distinct species; lacked structural 

characterization of lipid species; or were contaminated through isotopic overlap. Many of the associations 

between lipid species and prototypical lipid regulating genes observed in our study - such as FADS1/FADS2, 

APOE and LDLR - have been reported in earlier GWAS7-15,17,23. With our expanded lipidomic profile, we have 

built on these earlier studies, identifying many new loci associated with lipid species and classes. Previous 

studies, containing mis-annotation of lipid species, report associations between SNPs in the FADS region 

and sphingomyelin species as containing a mono-unsaturated (16:1, 18:1 or 20:1) n-acyl chain8,12. Here, we 

show the associations of sphingomyelins with SNPs in the FADS region is disproportionally with species 

containing the d18:2 sphingoid base. This is supported by recent experimental evidence, suggesting FADS3 

is a ceramide specific desaturase, targeting the sphingoid bases24,25. Early dogma suggested the dominant 

isoform of sphingomyelins was d18:1 leading to the aforementioned annotations (i.e. SM(d18:1/16:1)). 

However, chromatographic separation and characterisation identifies the predominant species as 

SM(d18:2/16:0)18. While these associations are not novel per se, the additional specificity of our lipidomics 

methodology extends across all lipid species and classes, leading to greater confidence in defining true 

relationships. 

We also observed strong associations between specific sphingolipid isoforms and variants in the SPTLC3 

gene region. Serine palmitoyltransferase long chain base subunits (SPTLC) are a series of enzymes 

responsible for the de novo synthesis of sphingolipids through condensation of serine with palmitoyl-CoA. 

Three mammalian isoforms have been identified (SPTLC1-3), which form a heterodimer in situ, of which 

SPTLC1 is requisite for function26. The subunit SPTLC3 was discovered more recently and was thought to 

facilitate the synthesis of shorter-chain sphingolipids27. However, we identify strong associations of SNPs in 

the SPTLC3 region with atypical sphingolipids, containing a d19:1 sphingoid base (Supplementary Table 5). 

This supports the recent report that SPTLC3 has broader substrate specificity, with capacity to metabolise 

branched isomers of palmitate (anteiso-branched-C16)26 leading to the synthesis of d19:1 sphingoid bases. 

The atypical structure of these sphingolipids has previously led to mis-annotation resulting in reported 

associations of SPTLC3 with hydroxylated sphingomyelins10,13,14, when hydroxylated sphingomyelins in the 

n-acyl chain are unlikely to exist in human plasma28.  

Many genes associated with CAD risk were identified as also associated with lipid species and classes, 

including HMGCR, PCSK9 and LDLR (Table 1), thereby providing new avenues for investigation into causal 
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pathways. We also provide new evidence to support causal roles for genes not reaching genome wide 

significance, and identify possible mechanisms linking these genes to CAD; we identified strong associations 

between ten independent signals in the LIPC/ALDH1A2/AQP9 region with phosphatidylethanolamine, lyso-

phosphatidylethanolamine, and phosphatidylglycerol lipid species independent of clinical lipids. Two lead 

variants were associated with functional consequences, including a start loss for ALDH1A2 and a missense 

variant for LIPC. The LIPC gene on chromosome 15 encodes hepatic lipase, which is functionally described 

as a triglyceride lipase and as possessing phospholipase A1 activity (hydrolyses sn-1 fatty acid from 

phospholipids). The role of hepatic lipase in lipoprotein remodelling is complex, being intimately involved in 

HDL-, IDL-, and chylomicron remnant-metabolism29. Consequently, the role of hepatic lipase in 

cardiovascular disease risk has been controversial, with both pro- and anti-atherogenic mechanisms 

identified29,30. These mechanisms are often viewed through the lens of lipoprotein kinetics. However, the 

associations of variants in the LIPC region with phosphatidylethanolamine species are independent of 

lipoprotein metabolism (Supplementary Tables 4 and 5) – notionally as these lipids are direct substrates for 

hepatic lipase. Interestingly, the strength of association of LIPC variants with coronary atherosclerosis is 

considerably increased when conditioned on clinical lipids (both standard adjustment and mtCOJO 

analyses; Figure 7c, Supplementary Table 17) further supporting a direct mechanistic link. Phenotypically, 

phosphatidylethanolamine species are associated with incident CAD (Supplementary Table 15), with a 

direction of effect concordant with the SNP associations (Figure 7a). Visual comparison of regional 

association plots and SNP effect scatter plot supports consistent effects (Figure 7b and 7d). We selected 

independent SNPs (r2<0.05) in the LIPC region associated with the phosphatidylethanolamine class and 

assessed the similarity of effects with CAD (Figure 7d). Inverse-variance weighted meta-analysis of SNP 

effects using Generalised Summary-data-based Mendelian Randomisation (GSMR) support strong 

pleiotropy consistent with a causal relationship (Figure 7e).   

Angiopoietin-like 3 (ANGPTL3) has been implicated in CAD risk, with a deficiency being associated with 

cardioprotective effects31-33. ANGPTL3 acts as an inhibitor to two other lipases, lipoprotein lipase (LPL) and 

endothelial lipase (LIPG); loss of function mutations in ANGPTL3 have been linked to hypolipidemia33. We 

recently identified a rare frameshift deletion (rs398122988) associated with decreased ANGPTL3 protein 

levels in extended Mexican American families34; the variant was also associated with a ~1.3 standard 

deviation decrease in phosphatidylinositol species. In this study, we validate this observation, with SNPs in 

the ANGPTL3 region associated with a decrease in phosphatidylinositol species, again these associations 

persisted even after adjustment for clinical lipids (total cholesterol, HDL-C, triglycerides). Interestingly, we 

also observe associations of phosphatidylinositol species with SNPs in the LIPG region. Commonly, 

phosphatidylinositol species have been studied for their intracellular messaging roles following 

phosphorylation of the inositol ring by kinases, including PI-3-kinase, which lead to downstream cardio-

metabolic effects35. However, the role of phosphatidylinositol species in CVD risk is still largely unknown; 
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we have previously observed the change in the ratio of phosphatidylinositol to phosphatidylcholine species 

as a predictor of CVD risk reduction from statin treatment36. Further work is now required to unravel the 

role on phosphatidylinositol in mediating the effect of these genes on CVD risk.   

In summary, using our expanded lipidomic profiling platform, we have investigated the largest number of 

targeted lipid species in a GWAS, and have reported significant genetic associations with lipid species that 

have not previously been reported in any genetic association studies to date. Our strategy to use lipid 

species as endophenotypes in the search for CVD genes is the ‘tip of the iceberg’. We have previously 

reported phenotypic associations of lipid species with other complex traits, including diabetes37, 

Alzheimer’s disease19, and atrial fibrillation38; we believe the same integrative genomics approach may now 

be used to elucidate the mechanistic underpinnings of lipid metabolism in these and other complex 

diseases. These data now represent a valuable resource for the future exploration of the genetic analysis of 

the lipidome to identify lipid metabolic pathways and regulatory genes associated with complex disease 

and identify new therapeutic targets. To this end we provide all summary statistics and an online 

searchable resource of association plots of lipid species and classes with genetic variants and regional 

association plots with individual lipid species and classes (https://metabolomics.baker.edu.au/). 

 

Methods 

Study populations. Participants in the discovery cohort (n=4,492) were all participants of the 1994/95 

survey of the long-running epidemiological study, the BHS, for whom genome-wide SNP data, extensive 

longitudinal phenotype data, and blood serum were available. The BHS is a community-based study in 

Western Australia that includes both related and unrelated individuals (predominantly of European 

ancestry), and has been described in more detail elsewhere39-41. Informed consent was obtained from all 

participants and the 1994/95 health survey was approved by the University of Western Australia Human 

Research Ethics Committee (UWA HREC). The current study was also approved by UWA HREC 

(RA/4/1/7894) and the Western Australian Department of Health HREC (RGS03656).  

The two validation cohorts used in this study were the AIBL study42 and the ADNI study43; both of which 

were established to discover biomarkers, health and lifestyle factors for the development, early detection, 

and tracking of Alzheimer’s disease. The AIBL study is a longitudinal study which recruited 1,112 individuals 

aged over 60 years within Australia. Time points for blood/data collection were every 18 months from 

baseline. For each individual, lipidomic data obtained from the earliest blood collection was used. At 

baseline, 768 individuals were characterized as cognitively normal, 133 with mild cognitive impairment and 

211 with Alzheimer’s disease. The ADNI study is a longitudinal study, starting in 2004 and recruited 800 

individuals at baseline, from sites across the United States of America and Canada. Serum samples obtained 
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at baseline were analysed. Study data analysed here were obtained from the ADNI database, which is 

available online (http://adni.loni.usc.edu/). For the lipidomics analysis, the AIBL study was deemed low risk 

(The Alfred Ethics Committee; Project 183/19), and the ADNI study was deemed ‘research not involving 

human subjects’ (Duke Institute review board; ID:Pro00053208). 

Lipidomic profiling. Targeted lipidomic profiling was performed using liquid chromatography coupled 

electrospray ionization-tandem mass spectrometry to quantify 596 lipid species from 33 lipid classes, from 

non-fasting blood serum (BHS discovery) and non-fasting blood plasma (ADNI and AIBL validation). 

Lipidomic profiling of each cohort was performed using the methodology described by Huynh et al. and has 

been described previously18,44. Briefly, 10μL of serum was spiked with an internal standard mix 

(Supplementary Table 2) and lipid species were isolated using a single phase butanol:methanol (1:1; 

BuOH:MeOH) extraction45. Analysis of serum extracts was performed on an Agilent 6490 QqQ mass 

spectrometer with an Agilent 1290 series HPLC, as previously described. Mass spectrometry settings and 

transitions for each lipid class are shown in Supplementary Table 2. A total of 497 transitions, representing 

596 lipid species, were measured using dynamic multiple reaction monitoring (dMRM), where data was 

collected during a retention time window specific to each lipid species. Raw mass spectrometry data was 

analysed using MassHunter Quant B08 (Agilent Technologies).  

Data integration and cleaning. Lipid concentrations were calculated by relating the area under the 

chromatographic peak, for each lipid species, to the corresponding internal standard. Correction factors 

were applied to adjust for differences in response factors, where these were known18. In-house pipelines 

were used for quality control and filtering of lipid concentrations. Across the entire dataset, only three 

missing values were evident. Lipids below the limit of detection (missing values) were imputed to half the 

minimum observed value. To remove technical batch variation, the lipid data in each analytical batch 

(approximately 486 samples per batch; 11 batches in total) was aligned to the median value in pooled 

plasma quality control samples included in each analytical run. Unwanted variation was identified using a 

modified remove unwanted variation-2 (RUV-2) approach46. In brief, lipid data were residualized in a linear 

mixed model, against age, sex, body mass index (BMI), clinical lipids and the genetic relatedness matrix 

(described below) as the random effects. Principal component analysis was performed on the residualized 

data. The first two components showed clear trends along samples in collection order. Therefore, variation 

associated with these first two principal components was removed from the original data set. Lipid class 

totals were generated by summing the concentration of the individual species within each class. Validation 

cohorts were processed in a similar manner. 

Phenotypic variables. Details of the BHS data collection have been published previously47. Serum 

cholesterol and triglycerides were calculated by standard enzymatic methods on a Hitachi 747 (Roche 

Diagnostics, Sydney, Australia) from fasting blood collected in 1994/95. HDL-C was determined on a serum 
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supernatant after polyethylene glycol precipitation using an enzymatic cholesterol assay and LDL-C was 

estimated using the Friedewald formula48. Height and weight (used to calculate BMI) were collected from 

participants at time of interview (1994/95). Use of lipid-lowering medication was recorded at the time of 

interview (1994/95). Diagnosis of incident CAD was defined as either hospitalisation or death due to CAD 

(ICD9: 410-414; ICD10: I20-I25) after blood collection date (and until June 2015). Hospitalisations and 

deaths were identified from the Western Australian Department of Health Hospital Morbidity Data 

Collection and Death Registrations.  

 

Medication usage adjustment. For individuals taking lipid-lowering medication (BHS, n=108; AIBL, n=366; 

ADNI, n=382), lipid species and clinical lipid concentrations were adjusted using previously identified effects 

of lipid-lowering medication. Changes in lipid species and clinical lipids following one year of statin use 

were calculated from a placebo randomised controlled trial (LIPID study; n=4991)36. To calculate correction 

factors, lipid measures were centred and scaled by the mean and standard deviation of baseline measures 

(prior to statin usage), and the change in lipid abundance was calculated and regressed on age, sex, BMI 

and statin usage. Statin usage beta coefficients (effect of the lipid-lowering medication) was added to 

standardised lipid species concentrations of the individuals taking lipid-lowering medication in the current 

study. For lipid species present in both this study and the LIPID study (overlap of 314 lipid species), species-

specific correction factors were calculated. For those lipid species not measured in the LIPID study (n=282), 

class-specific corrections were calculated.  

Genotyping and Imputation. For the BHS discovery cohort, genotyping was performed on the Illumina 

Human 610K Quad-Bead Chip (Illumina Inc., San Diego, CA, USA) at the Centre National de Genotypage in 

Paris, France (n=1468), and on the Illumina 660W Quad Array Bead Chip (Illumina Inc., San Diego, CA, USA) 

at the PathWest Laboratory Medicine WA (Nedlands, WA, Australia (n=3428). Complete linkage clustering 

based on pairwise identity by state distance in PLINK49 showed no batch effects, therefore the batches 

were merged. Standard genotype data quality control was performed as described previously41. Briefly, 

individuals were excluded if: >3% of SNP data were missing (n = 11), reported sex did not match genotyped 

sex (n = 48), duplicates (n = 123), missing phenotype data (n = 11), or >5 standard deviations above/below 

mean heterozygosity (n=28). Individuals with non-European ancestry (n=4) were also excluded. To prepare 

genotype data for imputation, SNPs were excluded if: call rates < 95%, minor allele count < 10, deviations 

from HWE (P<5.0×10−4), no matching Haplotype Reference Consortium (HRC) reference panel SNP, 

palindromic (A/T, G/C) SNPs with MAF greater than 0.4 from the HRC (n=5), and SNPs with >0.2 MAF 

difference compared to HRC (n=150). After quality control, SNP data was available for 513,634 SNPs. 

Imputation was performed to the HRC reference panel using the Michigan Imputation Server50. Following 

imputation, 39,117,105 SNPs were available for analysis. We excluded variants if the number of copies of 
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the minor allele <5 or if imputation quality (R2) <0.3. This resulted in 13,887,524 variants available for 

analysis.  

 

Genotyping in ADNI was performed on the Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA). 

Following standard quality control procedures performed in Plink49 (minimum SNP and individual call rate > 

95%, MAF>0.05, HWE test P>1×10−6) , the sample was imputed to the 1000 Genomes Phase 3 reference 

panel using Impute251, with pre-phasing using ShapeIT52.  

 

Genotyping in AIBL was performed on the Infinium OmniExpressExome array (Illumina, Inc., San Diego, 

CA)53. Quality control procedures were performed in Plink49. After removing individuals with ambiguous 

sex, Plink was used to remove individuals with call rate <0.90; SNPs were removed if call rate<0.95, HWE 

test P<1.0x10-4, or MAF<0.05. SNPs were flipped to the positive strand before imputation to the 1000 

Genomes Phase 3 reference panel using the Michigan Imputation Server50 (using Minimac 4). Both the AIBL 

and ADNI validation cohorts were restricted to individuals of non-Hispanic European ancestry, based on 

projection onto the 1000 genomes reference panel.  

Genetic relatedness matrix. The discovery sample, BHS, used in this study consisted of related and 

unrelated individuals; therefore, all analyses included a genetic relatedness matrix. Twenty-two genetic 

relatedness matrices were calculated. First, a hard-call set of imputed SNPs was created in Plink (i.e. SNP 

genotypes were called if SNP imputation quality R2>0.8 and if genotype probability >0.9). The HLA region on 

chromosome 6 was also excluded. SNPs were then pruned in Plink using ‘indep-pairwise 500 50 0.3’ 

[window of size 500, moving 50 SNPs along each time, removing variants with R2>0.3] to create a set of 

486,553 independent SNPs. Twenty-two genetic relatedness matrices were created (using the option ‘gk 1’ 

which specifies a centred relatedness matrix), with each omitting one chromosome, in GEMMA54.   

 

Statistical analysis. Genome-wide association analyses for the 596 lipid species and 33 lipid classes in the 

discovery cohort were performed using imputed genotype dosages in linear mixed models, as implemented 

in GEMMA54. To avoid proximal contamination, analyses were performed using genetic relatedness 

matrices implementing a leave-one-chromosome out scheme. Analyses were performed using rank-based 

inverse normal transformed residuals, after adjustment by age, sex, age2, age*sex, age2*sex and the first 10 

principal components (generated from Eigenstrat)55,56.  

Validation cohorts, ADNI and AIBL, were analysed using an additive linear model, as implemented in Plink49. 

Analyses were performed using rank-based inverse normal transformed residuals, after adjustment by age, 

sex, age2, age*sex, age2*sex, study-specific covariates and a number of principal components deemed 

sufficient to capture population structure. Meta-analysis between all three studies was performed using an 

inverse-variance weighted fixed-effects model, as implemented in METAL57. Due to the correlation between 
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lipid species, the effective number of tests was calculated as the number of principal components required 

to explain at least 95% variance of the lipidome (144 components).  

Statistical significance was defined using the standard genome-wide significance (P<5x10-8) in the BHS 

discovery analysis, P<0.05 in AIBL/ADNI validation, and P<3.47x10-10 in the three-study meta-analysis (5x10-

8/144 lipid dimensions; Bonferroni correction using the effective number of tests). A more stringent 

threshold was used for the meta-analysis due to the lack of validation samples available.   

For each lipid, significantly associated SNPs were LD-clumped (r2>0.1) using correlation measures obtained 

from 10,000 unrelated individuals from the UK Biobank, the 1000 Genomes, or the BHS. A singular dataset 

was created by retrieving the smallest P-value across all analyses. This dataset was LD-clumped (r2>0.1) to 

determine the number of independent genomic regions. For each locus, a regional association plot was 

produced using LocusZoom58.   

Detection of distinct association signals. Conditional analysis was performed to detect independent 

association signals at each genome-wide significant loci, using GEMMA. For each lipid, we iteratively 

clumped regions within a 2Mb window centered on the lead SNP until no more genome-wide significant 

associations were left. Regions with overlapping windows were merged. Conditional analysis was iteratively 

performed, including the lead variant as a covariate until no more conditionally independent signals 

(P<5x10-8) remained.  

Assessment of effects of clinical lipid trait adjustment. Within the discovery cohort, to determine whether 

SNP-lipid associations were independent of clinical lipid traits (total cholesterol, HDL-C, triglycerides), all 

SNPs were tested with and without adjustment for clinical lipid traits.  We compared loci effect sizes 

between analyses run with and without clinical lipid adjustment using a pooled standard deviation t-test 

(Supplementary Note 3). Bonferroni adjustment (0.05/number of loci) was used to identify loci which 

differed substantially following adjustment. As adjusting for heritable covariates can introduce collider 

bias59, we further validated these using multi-trait conditional and joint analysis (mtCOJO)60, conditioning 

on GWAS summary-level data for clinical lipids obtained from the UK Biobank61.  

Annotation. Proxies for lead SNPs were found by identifying those in high LD (r2>0.8) within the BHS 

dataset; in an unrelated subset of white, British individuals from the UK Biobank62; or in the 1000 Genomes. 

Lead SNPs and their proxies were annotated using SNPEff63. SNiPA database v3.364 was used to retrieve 

combined annotation dependent depletion (CADD) score. Expression QTL associations (cis-eQTL) were 

obtained from GTEx65 (release v8) and eQTLGen66 (release 2019-12-20). SNiPA metabolite QTL (mQTL) 

associations were supplemented with mQTL associations reported in PhenoScanner67,68 and recently 

published lipidomic GWAS7,17. SNiPA protein QTL (pQTL) associations were supplemented with cis-pQTL 

associations from Emilsson et al. 201869. Methylation QTL (meQTL) associations were obtained from Huan 
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et al. 201970. A locus was defined as novel if the lead SNP or its proxies were not previously reported as an 

mQTL or lipid related trait loci. 

Putative causal genes, for each loci, were identified using a slightly modified approach to that previously 

described (ProGeM)21. For the bottom-up approach, the three closest protein coding genes (within a 1Mb 

window) were identified, for each lead SNP. Genes were noted if a lead SNP or its proxies were annotated 

by SNPEff as missense, start loss, stop gain, or with an annotation impact as High. As performed by 

ProGeM, the top-down analysis reports genes within 500kb of the lead SNP that are present in a curated 

database of known metabolic-related genes. A list of primary candidates was generated based on the 

overlap of top-down and bottom-up genes. 

Overlap of lead variants with cardiovascular disease-related loci. To assess whether our lead SNPs were 

previously associated with CVD-related traits, we performed a look-up within the GWAS catalog v1.02 

(release 2020-08-26)71 of 10 hard CVD endpoints, 72 CVD-related traits, and 141 lipid-related traits. We also 

performed a look up against a meta-analysis of CAD between CARDIoGRAMplusC4D and UK Biobank72.  

Associations of lipid species with coronary artery disease and coronary artery disease polygenic risk. 

Within the discovery cohort, the association of lipid species with incident CAD was assessed using logistic 

regression, adjusting for age, sex, and the first 10 genomic principal components. Prevalent CAD cases were 

removed prior to analysis; defined as individuals hospitalised with CAD between the start of the Hospital 

Morbidity Data Collection (1970), and an individual’s serum collection date. Incident CAD events (CAD 

hospitalisations or death) were included up to the end of follow-up (July 2015). Results are displayed as log-

odds ratios. 

Polygenic risk for CAD was calculated for each individual in the discovery cohort using the metaGRS 

polygenic score, consisting of approximately 1.7 million genetic variants22. Linear regression in R was 

performed to test the association between an individual’s polygenic score and lipid species concentrations, 

adjusting for age, sex and the 10 first principal components. 

Genetic correlations. Genetic correlations of lipid species against CAD was assessed using Linkage 

Disequilibrium Score Regression (v1.0.1)73. Regression weights and scores were obtained from 1000 

Genomes European data, as previously described74. Summary statistics from all datasets were restricted to 

SNPs from the HapMap 3 panel, with 1000 Genomes European MAF greater than 5%. Where available, 

SNPs were filtered to an imputation quality R2 > 0.9. Similarly, SNPs were removed if the reported MAF 

deviated from 1000 Genomes European MAF by greater than 0.1. Summary statistics for CAD were 

obtained from the meta-analysis of CARDIoGRAMplusC4D and UK Biobank by van der Harst and Verweij72. 

Due to no overlapping samples between BHS and other summary results, the genetic covariance intercept 

was constrained to 0. 
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Colocalization analysis. Colocalization between lipid species genome-wide significant loci and CAD was 

performed using the R package COLOC75. For each loci, all variants within a 400kb window centered on the 

lead SNP were selected. Priors were kept at default settings. Evidence for shared causal variants was 

determined as the posterior probability of both traits containing causal variants in the region (H3+H4>0.8) 

and a larger probability of a shared causal variant (H4/H3>10). Sensitivity analysis for regions with causal 

variants are shown in Supplementary Note 2. 

Association of loci with coronary atherosclerosis in the UK Biobank. Lead SNPs (or proxies) were tested for 

association with coronary atherosclerosis in the UK Biobank. In a subset of white, British individuals 

(n=456,486), electronic health records (updated 14th December 2020) were converted into PheCodes76,77 

using the R package PheWAS78. Coronary atherosclerosis (phecode 411.4) was exported for genome-wide 

association analysis. FastGWA79 was used to assess the association of lipid-loci with these phenotypes, 

adjusting for age, sex, age2, age*sex, age2*sex, the first 20 principal components as provided by the UK 

Biobank, and the genetic relatedness matrix as the random effect. The analysis was repeated, additionally 

adjusting for clinical lipids (total cholesterol, HDL-cholesterol, triglycerides; measurements obtained from 

the first available blood collection). Individuals with missing values were excluded from the analysis. As 

clinical lipids are heritable, mtCOJO analysis was also performed using GWAS summary statistics obtained 

above. 

Data availability  

Complete summary statistics of all lipid species and classes will be available via the NHGRI-EBI GWAS 

catalog (https://www.ebi.ac.uk/gwas), GCP ID: GCP000197; study accession nos. GCST90023981–

GCST90025848. In addition, summary-level statistics are available at our data portal 

(https://metabolomics.baker.edu.au/). 

 

Individual-level data for the BHS are accessible through applications to the Busselton Population Medical 

Research Institute (http://bpmri.org.au/research/database-access.html). Individual-level data for the ADNI 

and AIBL studies are available through applications to the LONI Image and Data Archive 

(http://adni.loni.usc.edu/data-samples/access-data/). Individual-level data for AIBL are also available 

through applications to the AIBL management committee (https://aibl.csiro.au/research/support/). 

Publically available datasets used within the study are available via UK Biobank 

(http://www.ukbiobank.ac.uk/register-apply/), HRC (http://www.haplotype-reference-

consortium.org/home), 1000 Genomes (https://www.internationalgenome.org/), SNiPA 

(https://snipa.helmholtz-muenchen.de/snipa3/), GTEx (https://gtexportal.org/home/), and eQTLGen 

(https://www.eqtlgen.org/).  
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Code availability 

 All software and bioinformatic tools used in the present study are publicly available. 
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Table 1. Genomic regions showing colocalization with lipid species and coronary artery disease  

# rsID Positiona EA/ 
OA 

Colocalized lipid classes Number 
of lipids 

colocalized 

Strongest 
colocalization 

Minimum 
CAD P-value 

in region 

Nearby genesb 

1 rs11591147 1:55505647 G/T CE, DE, Hex2Cer, Hex3Cer, PC(P), 
SHexCer, SM, TG(O) 

32 CE(18:1) 1.86 x10-22 PCSK9, USP24, BSND 

2 rs602633 1:109821511 G/T HexCer 2 HexCer(d18:1/24:1) 3.63 x10-58 PSRC1, CELSR2, MYBPHL 

3 rs2281719 1:230297659 C/T DG, PI, TG [NL] 5 DG(18:0_18:1) 6.41 x10-07 GALNT2, PGBD5, COG2 

4 rs10779835 1:230299949 C/T DG, TG [NL] 4 TG(54:2) [NL-18:0] 6.41 x10-07 GALNT2, PGBD5, COG2 

5 rs515135 2:21286057 C/T CE, PC 4 PC(16:0_18:0) 5.74 x10-17 APOB, TDRD15, LDAH 

6 rs6713865 2:23899807 A/G AC 2 AC(16:0) 2.86 x10-05 KLHL29, ATAD2B, UBXN2A 

7 rs6544713 2:44073881 C/T CE 6 CE(20:1) 1.84 x10-18 ABCG8, ABCG5, DYNC2LI1 

8 rs2736177 6:31586094 C/T TG [NL] 2 TG(50:2) [NL-18:2] 4.86 x10-09 AIF1, PRRC2A, BAG6 

9 rs41279633 7:44580876 G/T CE 1 CE(18:0) 1.72 x10-06 NPC1L1, DDX56, TMED4 

10 rs6982502 8:126479362 C/T SM 1 SM(d18:0/22:0) 7.67 x10-23 TRIB1, NSMCE2, WASHC5 

11 rs2980869 8:126488250 C/T PC 1 PC(36:0) 7.67 x10-23 TRIB1, NSMCE2, WASHC5 

12 rs35093463 9:107586238 A/C Hex3Cer 2 Hex3Cer(d18:1/22:0) 4.00 x10-07 ABCA1, NIPSNAP3B, 
NIPSNAP3A 

13 rs1800978 9:107665978 C/G Hex3Cer 1 Hex3Cer(d18:1/24:1) 4.00 x10-07 ABCA1, NIPSNAP3B, 
NIPSNAP3A 

14 9:136141870 9:136141870 C/T CE 1 CE(18:0) 2.03 x10-14 ABO, SURF6, OBP2B 

15 rs603424 10:102075479 A/G AC, CE, DG, Hex2Cer, LPC, PC, PC(P), TG 
[NL] 

24 LPC(16:1) [sn2] 7.41 x10-07 PKD2L1, BLOC1S2, SCD 

16 rs7350481 11:116586283 C/T CE, DG 2 DG(18:1_18:2) 5.64 x10-07 BUD13, ZPR1, APOA5 

17 rs6589563 11:116590787 A/G CE, DG, TG [NL] 4 DG(18:0_18:1) 5.64 x10-07 BUD13, ZPR1, APOA5 

18 rs1558861 11:116607437 C/T CE, DG, PI, TG [NL] 25 TG(54:4) [NL-18:2] 5.64 x10-07 BUD13, ZPR1, APOA5 

19 rs964184 11:116648917 C/G CE, DE, DG, LPI, PC, PE, PG, PI, TG [NL] 64 TG(54:2) [NL-18:0] 7.03 x10-13 ZPR1, BUD13, APOA5 

20 rs651821 11:116662579 C/T CE, PE 3 CE(22:0) 7.03 x10-13 APOA5, ZPR1, BUD13 

21 rs1169288 12:121416650 A/C Cer(d), PC, SM 6 PC(36:0) 1.26 x10-18 HNF1A, C12orf43, OASL 

22 rs2244608 12:121416988 A/G SM 1 SM(d18:0/22:0) 1.26 x10-18 HNF1A, C12orf43, OASL 

23 rs2043085 15:58680954 C/T PE 1 PE(18:0_18:1) 7.24 x10-06 ALDH1A2, LIPC, AQP9 

24 rs1532085 15:58683366 A/G PE, PG 16 PE(18:1_18:2) 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

25 rs1077835 15:58723426 A/G PE 7 PE(15-MHDA_22:6) 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

26 rs1800588 15:58723675 C/T DG, LPE, PE, PE(O), PG, TG(O) 19 LPE(20:4) [sn1] 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

27 rs2070895 15:58723939 A/G CE, PE, PG, PS 16 PG(34:2) 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

28 rs588136 15:58730498 C/T DG, PC, PC(P), PS, TG(O) 10 Total PC 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

29 rs261342 15:58731153 C/G LPE, TG [NL] 3 LPE(20:4) [sn1] 7.24 x10-06 ALDH1A2, LIPC, ADAM10 

30 rs12446515 16:56987015 C/T PC, PC(O) 3 PC(16:0_16:0) 1.19 x10-09 CETP, HERPUD1, NLRC5 

31 rs56156922 16:56987369 C/T Hex3Cer, PC, PC(O), PC(P), PE(P) 22 PC(P-16:0/16:1) 1.19 x10-09 CETP, HERPUD1, NLRC5 

32 rs56228609 16:56987765 C/T CE, PC(O), PE(O), PI, TG(O) 6 CE(18:0) 1.19 x10-09 CETP, HERPUD1, NLRC5 

33 rs247616 16:56989590 C/T PC 1 PC(16:0_18:3) (a) 1.19 x10-09 CETP, HERPUD1, NLRC5 

34 rs12149545 16:56993161 A/G PC(O), PC(P), PE(O), PI, TG(O) 11 TG(O-50:1) [NL-16:0] 1.19 x10-09 CETP, HERPUD1, NLRC5 

35 rs3764261 16:56993324 A/C PC 1 PC(18:2_18:2) 1.19 x10-09 CETP, HERPUD1, NLRC5 

36 rs17231506 16:56994528 C/T Hex2Cer, Hex3Cer, PC, PC(O), PC(P), 
PE(P), TG(O) 

40 TG(O-50:1) [NL-16:0] 1.19 x10-09 CETP, HERPUD1, NLRC5 

37 rs56289821 19:11188247 A/G CE, Cer(d), COH, GM3, Hex2Cer, 
Hex3Cer, HexCer, PC, PC(O), PC(P), 
SHexCer, SM 

60 SM(35:2) (b) 1.93 x10-36 LDLR, SMARCA4, SPC24 

38 rs72999033 19:19366632 C/T Cer(d) 1 Cer(d16:1/24:1) 3.18 x10-07 HAPLN4, NCAN, TM6SF2 

39 rs58542926 19:19379549 C/T LPC, PC 2 LPC(20:3) [sn1] 3.18 x10-07 TM6SF2, HAPLN4, SUGP1 

40 rs10401969 19:19407718 C/T Cer(d), DG, LPC, PC, PE, TG [NL] 38 DG(18:1_20:4) 3.18 x10-07 SUGP1, TM6SF2, MAU2 

41 rs73001065 19:19460541 C/G Cer(d), TG [NL] 3 Cer(d18:1/24:0) 3.18 x10-07 MAU2, SUGP1, GATAD2A 

42 rs150268548 19:19494483 A/G Cer(d) 3 Total Cer 3.18 x10-07 GATAD2A, MAU2, SUGP1 

43 rs7412 19:45412079 C/T CE, Cer(d), COH, DE, DG, GM1, GM3, 
Hex2Cer, Hex3Cer, HexCer, LPC, LPC(O), 
LPC(P), LPE(P), PC, PC(O), PC(P), PE(P), 
SHexCer, SM, TG [NL], TG(O) 

184 CE(16:0) 2.14 x10-35 APOE, TOMM40, APOC1 

a Genomic position based on Genome Reference Consortium Human Build 37 (GRCh37). 
b Closest three protein coding genes to causal variant. 
EA, effect allele; OA, other allele 
Colocalization analyses performed using coronary artery disease in UK Biobank and CARDIoGRAMplusC4D. 
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FIGURES 

 

Figure 1  Study design for the genetic analysis of the human lipidome. Representation of genome-wide 

association studies of the lipidome in the BHS discovery sample, validation and meta-analysis of ADNI and 

AIBL studies, and downstream analyses.  
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Fig. 2 | Circular presentation of loci associated with circulating lipid species identified in our Discovery 

GWAS. The -log10(P) for genetic association with lipid species are arranged by chromosomal position, 

indicated by alternating blue and green points. Association P-values are truncated at P<1x10-60. Genome-

wide significance (P<5x10-8) is indicated by the red line. For details about significant associations, see 

Supplementary Tables 3 and 4. Genes identified in our candidate gene analysis are highlighted in blue, 

otherwise the closest gene is indicated in black. The purple band indicates lipid loci that colocalize with 

coronary artery disease (CAD) or show association with CAD after adjusting for clinical lipids. The inner circle 

shows a Fuji plot of SNP-lipid associations, colored by broad lipid category. Color keys representing broad 

lipid categories are indicated in the plot center. Chromosomes are indicated by numbered panels 1–22. 
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Fig. 3 | Comparison of estimated lipidomic effect sizes between clinical lipid adjusted and unadjusted 

models. a, Beta coefficients for independent unadjusted SNP-lipid associations (x axis) are plotted against 

clinical lipid adjusted SNP-lipid associations (y axis). b, Z-scores for unadjusted SNP-lipid associations (x axis) 

are plotted against clinical lipid adjusted SNP-lipid associations (y axis). Z-scores for SNP associations reaching 

genome-wide significance (P<5x10-8) in either the clinical lipid adjusted or unadjusted models. Variant effect 

signs are fixed so adjusted associations are positive. Variants showed greater (positive) associations in clinical 

lipid adjusted analysis are shown in red, and variants showing reduced associations are shown in blue. Circle 

diameter is proportional of -log10(P) t-test of effect differences. 
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Fig. 4 | Identification of putative causal genes using genetic prioritization and knowledge-based 

approaches. Assignment of putative causal genes was performed using the ProGeM framework, 

incorporating genetic-based prioritization (bottom-up) and biological knowledge-based approaches (top-

down). a, Venn diagram showing the number of loci with annotations for causal genes using the distinct 

approaches and the overlap. Top-down annotations were divided into lipid-specific databases and generic 

databases. b, Venn diagram of distinct genes identified in genetic-based prioritization analysis. c, summary 

of putative causal genes with overlapping annotations for closest gene, protein consequences, eQTL and 

meQTL (left). Summary of putative causal SNP-gene pairs for which pQTL evidence was identified (right). 
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Fig. 5 | Genetic and phenotypic associations of the lipidome with coronary artery disease. Forest plots of 

lipid-coronary artery disease effect sizes and standard errors. a, phenotypic associations between lipid 

species and incident coronary artery disease in the BHS cohort (551 cases and 3,703 controls), adjusted for 

age, sex, and the first 10 genomic principal components. b, association of lipid species with polygenic risk for 

coronary artery disease. Individuals in the discovery cohort (n=4,492) were assessed for risk using the 

metaGRS polygenic score, consisting of approximately 1.7 million genetic variants. Linear regressions were 

performed to test the association between an individual’s polygenic score and lipid species concentrations, 

adjusting for age, sex and the 10 first principal components. c, genetic correlations of lipid species against 

coronary artery disease (meta-analysis of CARDIoGRAMplusC4D and UK Biobank; 122,733 cases and 424,528 

controls), performed with Linkage Disequilibrium Score Regression (LDSC; v1.0.1). The 10 most significant 

lipid species are highlighted in blue, red, or green.  
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Fig. 6 | Colocalization of lipid-loci with coronary artery disease. Summary of lipid classes which contain at 

least one lipid species that colocalizes with coronary artery disease. Colors indicate broad lipid categories. 

Indicated variants were identified as the most likely causal variant for each of the colocalization analyses. 

Genetic variants are ordered according to the number of colocalizations across lipid classes. Evidence of 

colocalization included H3+H4 > 0.8 and H4/H3 > 10. Variants were annotated to the closest gene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAD
TG(O)

TG [NL]
DG
AC
DE

COH
CE
PG
PS
LPI
PI

LPE(P)
LPE

PE(P)
PE(O)

PE
LPC(P)
LPC(O)

LPC
PC(P)
PC(O)

PC
SM

SHexCer
GM1
GM3

Hex3Cer
Hex2Cer
HexCer
Cer(d)

Number of unique colocalized loci

15 12 9 6 3 043

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.20.21261814doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21261814
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

 
Fig. 7 | Genetic analysis of the LIPC gene region and circulating levels of phosphatidylethanolamine. a, lipid-wide association with the 
genetic variant, rs2043085, in the BHS cohort (n=4,492). Symbol color is used to distinguish lipid classes. The symbol orientation indicates 
the effect sign, inverted triangles indicate negative associations, while regular triangles indicate positive associations. The dashed line 

indicates genome-wide significance (P<5x10-8). b, regional association plots for Total PE and coronary artery disease (van der Harst & Verweij 
2018), focusing on the LIPC region. Variants are colored based on LD with the lead variant, rs2043085. Linkage disequilibrium plot showing 

correlation between variants following clumping (R2>0.8; P<5x10-8). Variant correlations were obtained from 10,000 unrelated individuals 
from the UK Biobank. c, plot of genetic instrument effect sizes against Total PE and coronary artery disease. Variants were selected based on 

association with Total PE from within the LIPC region. Eight approximately independent variants were left following clumping (R2>0.05; 

P<5x10-8). Generalised summary-data based Mendelian randomisation (GSMR) was used to estimate effect of Total PE on coronary artery 
disease, accounting for the variant correlations and uncertainty in both bzx and bzy. d, forest plot of single variant tests and GSMR estimate. 

e, diagram of mediated pleiotropy, showing effect sizes estimated across multiple datasets. Exposure modifying variant effect sizes were 
estimated in the BHS cohort, as well as odds-ratio of phosphatidylethanolamine lipid species against incident cardiovascular disease. Total 
effect represents the sum of genetics effects on coronary artery disease, whether mediated through phosphatidylethanolamine or not. 
Coronary artery disease effect size was obtained from van der Harst & Verweij 2018. 
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EXTENDED DATA 

 

 

Extended data Fig. 1 | Distribution of genome-wide significant associations for independent SNPs and lipid 

species. a, the number of lipid species associated with independent SNPs in the BHS discovery cohort. b, the 

number of independent SNPs associated with each lipid species in the BHS discovery cohort. c, the number 

of lipid species associated with independent SNPs in the BHS discovery cohort following adjustment for 

clinical lipid traits. d, the number of independent SNPs associated with each lipid species in the BHS discovery 

cohort following adjustment for clinical lipid traits. 

 

  

a b

c d

0 10 20 30 40 50 60
0

10

20

30

40

122 222

260

280

Number of lipids associated with each SNP

F
re

q
u
e

n
c
y

0 5 10 15 20 25 30

0

50

100

150

Number of SNPs associated with each lipid species

F
re

q
u
e

n
c
y

0 10 20 30 40 50 60 70
0

10

20

30

40

50

230

320

340

Number of lipids associated with each SNP

F
re

q
u
e

n
c
y

0 5 10 15 20 25 30

0

50

100

150

Number of SNPs associated with each lipid species

F
re

q
u
e

n
c
y

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.20.21261814doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21261814
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

 

 

Extended data Fig. 2 | Scatterplot of lipid heritabilities (h
2
) vs GWAS genomic inflation factors (λ) for lipid 

species and classes. a, lipid heritability and genomic inflation factors for genome-wide association analysis 

in the BHS cohort. b, lipid heritability and genomic inflation factors for genome-wide association analysis, 

adjusting for clinical lipids, in the BHS cohort. Red diamonds indicate lipid classes and black circles indicate 

lipid species. The correlation between the heritabilities and genomic inflation factors are also shown, with a 

line of best fit. The right and top axes show histograms of the distribution of the genomic inflation factors 

from each GWAS, and heritability estimates, respectively.  Heritability estimates were calculated in GCTA; 

using the genetic related matrix (GRM) and adjusted by age, sex, age2, age*sex, age2*sex. 
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Extended data Fig. 3 | Comparison of estimated lipidomic effect sizes between clinical lipid adjusted and 

mtCOJO adjusted models. a, Beta coefficients for clinical lipid adjusted SNP-lipid associations (x axis) are 

plotted against mtCOJO adjusted SNP-lipid associations (y axis). b, Z-scores (Beta coefficient divided by 

standard error) for clinical lipid adjusted SNP-lipid associations (x axis) are plotted against mtCOJO adjusted 

SNP-lipid associations (y axis). Variant effect signs are fixed so mtCOJO adjusted associations are positive. 

Variants showed greater (positive) associations in mtCOJO adjusted analysis are shown in red, and variants 

showing reduced associations are shown in blue. Circle diameter is proportional of -log10(P) t-test of effect 

differences. 

 

  

-10 0 10 20 30

0
5

1
0

1
5

2
0

2
5

3
0

Z-score (adjusted model)

Z
-s

c
o
re

 (
m

tC
O

J
O

m
o
d
e
l)

APOE

FADS2

TMEM229B

APOE

b

β-Coefficient (adjusted model)

β
-C

o
e
ff

ic
ie

n
t 

(m
tC

O
J
O

m
o
d
e
l)

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

R2 = 0.91

a

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.20.21261814doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21261814
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 

 

Extended data Fig. 4 | Comparison of estimated lipidomic effect sizes between the discovery BHS GWAS 

and the meta-analysis (ADNI and AIBL). a, Beta coefficients were estimated from linear regression models 

for lipid species using the Busselton Health Study discovery GWAS (x-axis) and the ADNI and AIBL validation 

meta-analysis (y-axis). b, Beta coefficients for only common SNPs (MAF>=0.05) in the Busselton Health Study 

discovery GWAS (x-axis) and the ADNI and AIBL validation meta-analysis (y-axis). Only significantly associated 

SNPs (P<5x10-8) in the Busselton Health Study discovery GWAS are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β-Coefficient (BHS)

β
-C

o
e
ff

ic
ie

n
t 

(A
IB

L
 a

n
d
 A

D
N

I)

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

R2 = 0.53

β-Coefficient (BHS)

β
-C

o
e
ff

ic
ie

n
t 

(A
IB

L
 a

n
d
 A

D
N

I)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

R2 = 0.80

a b

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.20.21261814doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21261814
http://creativecommons.org/licenses/by-nc-nd/4.0/

