Supplementary Materials

Segregation of children into small groups for in-person learning during the COVID-19 pandemic

Luis Manuel Muñoz-Nava, Marcos Nahmad *

Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN); Mexico City, Mexico.

* Correspondence to: <u>mnahmad@fisio.cinvestav.mx</u>

Supplementary Text

Text Box S1

Daily Survey for Families in the Bubbles Program

- 1. Please perform a simple smell and taste test for every person in your household. For the smell test, smell inside a jar of coffee and make sure you clearly distinguish the smell. For the taste test, try something sweet. Does anyone in your household have an absence or diminished smelling or tasting sense? YES NO
- 2. Use a regular thermometer to measure the body temperature for every person in your household. Does anyone has a temperature higher than 37.5°C? YES NO
- 3. Please indicate if someone in the family present any of the following symptoms: Dry cough, Fever, Unusual fatigue, Difficulty for breathing, Sore throat, Diarrhea, Runny nose, Nausea and/or vomiting, Muscular or articular ache, Headache, Chest pain, Irritability in children below 5 years of age, Shivers, Diminished smelling or tasting sense, Conjunctivitis.
- 4. Does anyone in your household was in contact with someone suspected or confirmed for COVID-19? YES NO
- 5. Does anyone in your household returned today from a flight? YES NO
- 6. Does anyone in your household attended to a social meeting or party with more than 30 people? YES NO (If yes, please describe)
- 7. (Only on Sundays) Did your children meet with other children of their bubble during the weekend? YES NO

Text Box S2

Daily Survey for Families in a Fragmented Bubble

- 1. Please perform a simple smell and taste test for every person in your household. For the smell test, smell inside a jar of coffee and make sure you clearly distinguish the smell. For the taste test, try something sweet. Does anyone in your household have an absence or diminished smelling or tasting sense? YES NO
- 2. Use a regular thermometer to measure the body temperature for every person in your household. Does anyone has a temperature higher than 37.5°C? YES NO
- 3. Do people in your household present new symptoms today? (If yes, please describe)

Fig. S1. Reducing the size of a classroom (comparison of k = 10, 15, and 20 + wearing masks) improve the outcomes of the model. (Analysis was done as in Fig. 2A-C; see legend for details).

Fig. S2. Survey applied to all parents in the elementary school in July of 2020 that motivated the implementation of the bubbles program.

Fig. S3. Flowchart of the actions followed by the school when someone was a contact of a person suspected or confirmed for COVID-19.

This is the protocol followed by school administrators when parents report a contact that is strongly suspected of COVID-19 in the daily survey.

Fig. S4. Flowchart of the actions followed by the school to determine whether symptoms reported in the daily survey suggest a COVID-19 case even when no testing is available.

This is the protocol followed by school administrators when parents report symptoms in the daily survey.

Fig. S5. Using masks in small bubbles improves COVID-19 transmission outcomes. (comparison of k = 4, 6, and 8 with and without masks), but schools may consider the importance of unrestricted children interactions. (Analysis was done as in Fig. 2A-C; see legend for details).

Table S1. Parameters obtained from the literature ((SARS-CoV2 variant α) that were taken				
into account in the simulations.					

Symbol	Description of Probabilities	Numeric value	Bibliographic	
			Reference	
Soc_A	Society \rightarrow Adult	0.001	26	
		(High transmission		
		rate)		
Sym_A_S	Adult \rightarrow Spouse	0.378	27	
Sym_A_A	Adult \rightarrow Other Adult	0.283	27	
Sym_A_C	Adult \rightarrow Child	0.168	27	
Sym_C_A	Child \rightarrow Adult	A_A * 0.63	28	
Sym_C_C	Child \rightarrow Child	A_C * 0.63	28	
Asym	Multiplicative protection factor when	Probability * 0.58	29	
	contact is an asymptomatic individual			
Mask	Multiplicative protection factor when	Probability * 0.21	30	
	using a mask			
To_be_asym	Probability of being asymptomatic	Adult = 0.17	29	
		Child = 0.35		

Table S2. Distribution of probabilities depending on the day of contact. Values taken from ref. (31).

Days (X) after symptoms onset (D _x)	Nodes State	Relative probability			
D_5	I ₁	0.071			
D_4	I_2	0.214			
D_3	I ₃	0.642			
D-2	I_4	0.785			
D_1	I ₅	0.928			
D_0	0	1 (symptoms onset)			
D ₁	A_2 or C_2	0.928			
D ₂	A_3 or C_3	0.785			
D_3	A_4 or C_4	0.642			
D_4	A_5 or C_5	0.357			
D ₅	A_6 or C_6	0.214			
D ₆	A_7 or C_7	0.143			
D ₇	A_8 or C_8	0.071			
D_8	A_9 or C_9	0.035			

Table S3. Individual probabilities p_i that appear in the transition matrix (Fig. 1B).Actual values are computed using the parameters of Tables S1 and S2.

Type of contact	Individual probability to infect (<i>p_m</i>) assuming that m is a neighbor			
Symp_Adult - Spouse	Sym_A_S*D _x			
Symp_Adult - Child	Sym_A_C*D _x			
Symp_Child - Adult	Sym_C_A*D _x			
Symp_Child - Child	Sym_C_C*D _x			
Asymp_Adult - Spouse	Asym*Sym_A_S*D _x			
Asymp_Adult - Child	Asym* Sym_A_C*D _x			
Asymp_Child - Adult	Asym* Sym_C_A*D _x			
Asymp_Child - Child	Asym* Sym_C_C*D _x			

	Bubble_R ₀ or Estimated (E) Bubble_R ₀								
k	0	1	2	3	4	5	6	7	8
4	82.18	13.86	3.39	0.56	0.00	0.00	0.00	0.00	0.00
4 (E)	83.62	13.96	2.08	0.34	0.00	0.00	0.00	0.00	0.00
6 (R)	75.51	15.15	6.79	2.04	0.48	0.04	0.00	0.00	0.00
6 (E)	73.73	19.78	4.70	1.36	0.35	0.09	0.00	0.00	0.00
8 (R)	71.16	15.46	7.10	3.81	1.83	0.56	0.07	0.00	0.00
8 (E)	65.70	23.87	6.45	2.39	0.94	0.48	0.15	0.01	0.00
20 (R)	56.46	12.82	8.00	6.18	4.93	3.69	3.28	2.10	1.44
20 (E)	30.13	28.74	16.59	9.50	5.08	3.11	1.95	1.25	1.03
20 _{mask} (R)	77.14	13.32	5.29	2.47	1.23	0.41	0.09	0.04	0.01
20 _{mask} (E)	45.05	32.87	14.71	4.48	1.68	0.78	0.24	0.13	0.04

Table S4. Numerical values of the percentage (%) of bubbles that correspond to differentBubble_R0 (as in Fig. 2B) and Estimated (E) Bubble_R0 for the different k

Movie S1.

Example of the dynamics of a school network using 10 families in one simulation of 66 days (steps) assuming k=4, a very high (0.002) probability of infection from the society (26), and symptoms detection day at C₁. The nodes, edges, and colors are as described in Fig. 1.

Data S1. (Spreadsheet_for_fig2_and_fig_S5)

Numerical values corresponding to the color-map values in Fig. 2B, Fig. 2C, and Fig. S5.

Data S2. (Spreadsheet_for_fig3_and_fig_S1)

Numerical values corresponding to the color-map values in Fig. 3A-D and Fig. S1.

Separate files names:

Spreadsheet_for_fig2_and_fig_S5 Spreadsheet_for_fig3_and_fig_S1

Link for the code:

https://github.com/aracar9/Bubbles.git