¹ **S1 Supplementary Methods**

² S1.1 Calculating the total number of individuals already infected (past attack rate)

³ For the selected area (department, region, or country), we first initialise the population by removing the individuals in aged care facilities

⁴ (i.e. in France known as EHPADs), stratifying by age, and estimating, for each age class, the number of people already infected. This latter

⁵ step relies on the methods implemented by Hozé et al. [\[3\]](#page-2-0).

⁶ More precisely, we extrapolate our inference approach implemented for our COVIDici software [\[1\]](#page-2-1) to the age-stratified total number

⁷ of infections estimated by Hozé et al. [\[3\]](#page-2-0) on April 15, 2021. We calculate the proportion *c* of the susceptible population that has been

⁸ contaminated between April 15 and today using the time series of contamination provided by COVIDici.

Mathematically, we have

$$
c = \frac{I_{t=0} - I_{t=15/04}}{\text{Pop} - I_{t=15/04}}\tag{S1}
$$

9 where $t = 0$ is the time of interest (after April 15), I_t s the total number of individuals infected at time t , and *Pop* is the total population size.

¹⁰ Table [S1](#page-0-0) shows all the notations used.

From this, we can obtain I_a the total number of individuals of age *a* infected at the time of interest $(t = 0$, which is dropped from the notations unless stated otherwise for clarity). As indicated above, this is inferred from the accurate estimate from Hozé et al. [\[3\]](#page-2-0), which is

Fig. S1: **Venn diagram of the general structure of the host population. S** shows people who are not vaccinated and have not been infected, NI are the people with natural immunity due to past COVID19 infection, V_i are the people vaccinated with the vaccine *i* and Vⁱ ∩NI are people vaccinated with the vaccine *i* and have natural immunity due to COVID19 infection in the past.

denoted *I*^{*}_{*a*}. Mathematically, we have:

$$
I_a = I_a^* + c \left(\text{Pop}_a - I_a^* \right) \tag{S2}
$$

¹¹ Note that we implicitly assume that from April 15, 2021, to the date of interest, the increase in natural immunity has been the same in

¹² proportion for all age classes.

From this, we can calculate the proportion of individuals of age *a* with natural immunity. Importantly, we need to account for the fact that some people (16% according to [\[2\]](#page-2-2)) are infected more than once, which means the proportion of of individuals with natural immunity is:

$$
M_a = 0.84 \frac{I_a}{\text{Pop}_a} \tag{S3}
$$

¹³ Structuring the population into categories

¹⁴ We divide the general population into 6 categories depending on their infection history and vaccination statuses (Figure [S1.](#page-1-0) We then

¹⁵ calculate the frequencies of these categories for each age group.

16 If we denote by freq(X) the frequency of category X in the population, we have:

$$
freq(\mathbb{R}_a) = freq(\mathbb{NI}) - \sum_{i=1}^{N} freq(\mathbb{V}_{i,a} \cap \mathbb{NI}_a)
$$
\n(S4)

$$
freq(\mathbb{Q}_{i,a}) = freq(\mathbb{V}_{i,a}) - freq(\mathbb{V}_{i,a} \cap \mathbb{N}\mathbb{I}_a)
$$
\n(S5)

$$
freq(\mathbb{S}_a) = 1 - \left(freq(\mathbb{R}_a) + \sum_{i=1}^N freq(\mathbb{V}_{i,a}) \right)
$$
\n(56)

$$
\mathcal{E}(\mathbb{V}_i \cap \mathbb{NI}) = \max(\mathcal{E}(\mathbb{NI}), \mathcal{E}(\mathbb{V}_i))
$$
\n(S7)

- 17 where $\mathcal{E}(\mathbb{X})$ is the reduction in severe forms of the infection for category \mathbb{X} . By definition, susceptible hosts without a history of
- 18 infection are unprotected (i.e. $\mathcal{E}(S) = 1$). Note that in equation [S7](#page-1-1) we assume that for individuals with both natural and vaccine immunity,
- ¹⁹ the resulting efficiency is that of the most protective between the two.
- 20 For each category, we use \mathscr{E} to calculate the (theoretical) number of unprotected hosts S the category size would correspond to. For
- ²¹ example, 10 individuals with 90% protection correspond to one fully unprotected individual.
- ²² Then, for a given age class *a*, we compute the total number of unprotected individuals in all the categories, which we denote *Wa*.

$$
W_a = \text{Card}(\mathbb{S}_a) + \text{Card}(\mathbb{R}_a)(1 - \mathscr{E}(\mathbb{R}_a)) + \sum_{i=1}^N \text{Card}(\mathbb{V}_{i,a} \cap \mathbb{N}\mathbb{I}_a)(1 - \mathscr{E}(\mathbb{V}_{i,a} \cap \mathbb{N}\mathbb{I}_a))
$$

+
$$
\sum_{i=1}^N \text{Card}(\mathbb{Q}_{i,a})(1 - \mathscr{E}(\mathbb{Q}_i))
$$
 (S8)

23 where Card(\mathbb{X}) is the cardinal of the set \mathbb{X} , i.e. the population size of the category. Note that in equation [S8](#page-2-3) we assume that vaccine 24 efficacy is the same across all ages (i.e. $\mathcal{E}(\mathbb{Q}_{i,a}) = \mathcal{E}(\mathbb{Q}_i)$).

- ²⁵ Finally, we apply the age-stratified probabilities of ICU admission and death following SARS-CoV-2 infection to these population
- 26 using estimates from Salje et al. [\[4\]](#page-3-0). This allows us to compute the total number of ICU admissions (ICU_{total}) and deaths (*D*_{total}) caused by
- ²⁷ the epidemic wave. We also stratify these numbers by host age. Mathematically, we have:

$$
ICU_{\text{total}} = \sum_{a=1}^{A} P[ICU|H]_a P[H]_a W_a \tag{S9}
$$

$$
D_{\text{total}} = \sum_{a=1}^{A} P[D]_a W_a \tag{S10}
$$

$$
\text{freq}_a(D) = \frac{P[D]_a W_a}{D_{\text{total}}}
$$
\n
$$
(S11)
$$

$$
freq_a(ICU) = \frac{P[ICU|H]_a P[H]_a W_a}{ICU_{total}} \tag{S12}
$$

- ²⁸ All these calculations are performed as soon as the input parameters are modified in the input panel.
- ²⁹ where the *P* stand for probabilities to be hospitalized (*H*), admitted to ICU, or die (*D*), as detailed in Table [S1.](#page-0-0)

³⁰ **References**

- ³¹ 1. Boennec C, Alizon S, Sofonea MT (2021) COVIDici: visualisation and short-term forecasting of SARS-CoV-2 epidemics in France. URL
- ³² <https://cloudapps.france-bioinformatique.fr/covidici/>
- ³³ 2. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al (2021) SARS-CoV-2 infection rates of antibody-positive com-
- ³⁴ pared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). The Lancet
- ³⁵ 397(10283):1459–1469, DOI 10.1016/S0140-6736(21)00675-9
- ³⁶ 3. Hozé N, Paireau J, Lapidus N, Kiem CT, Salje H, Severi G, Touvier M, Zins M, Lamballerie Xd, Lévy-Bruhl D, Carrat F, Cauchemez S
- ³⁷ (2021) Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a
- ³⁸ modelling study. The Lancet Public Health 6(6):e408–e415, DOI 10.1016/S2468-2667(21)00064-5
- 4. Salje H, Kiem CT, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, Andronico A, Hozé N, Richet J, Dubost CL, Strat YL, Lessler J, Levy-
- Bruhl D, Fontanet A, Opatowski L, Boelle PY, Cauchemez S (2020) Estimating the burden of SARS-CoV-2 in France. Science 369(Issue
- 6500):208–211, DOI 10.1126/science.abc3517