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Plateaus and rebounds of various epidemiological indicators are
widely reported in Covid-19 pandemics studies but have not
been explained so far. Here, we address this problem and ex-
plain the appearance of these patterns. We start with an em-
pirical study of an original dataset obtained from highly pre-
cise measurements of SARS-Cov-2 concentration in wastewater
over nine months in several treatment plants around the Thau
lagoon in France. Among various features, we observe that the
concentration displays plateaus at different dates in various lo-
cations but at the same level. In order to understand these facts,
we introduce a new mathematical model that takes into account
the heterogeneity and the natural variability of individual be-
haviours. Our model shows that the distribution of risky be-
haviours appears as the key ingredient for understanding the
observed temporal patterns of epidemics.

1 Introduction

The onset of plateaus for various indicators of the current out-
break of Covid-19 such as incidence rate or hospitalisations
appears to be a rather general feature of its dynamics, along
with periods of exponential growth or decay, rebounds etc.
Nonetheless, there are few theoretical explanations offered to
understand this phenomenon and such plateaus hardly agree
with the classical SIR paradigm of epidemics.

We show here that plateaus emerge intrinsically in the un-
folding of an epidemic. That is, plateaus arise naturally if we
take into account two elements: an underlying heterogene-
ity and a random variability of behaviours in the population.
These features are of course more realistic than assuming that
the population is perfectly homogeneous with an unwavering
behaviour.

To shed light on this mechanism, we propose in this paper a
new mathematical model. It takes the form of a system of
reaction-diffusion equations, where one variable represents
the behaviour of individuals (see Methods section). It is nat-
ural to consider that individuals may change their behaviour
from one day to the next one. We assume here that indi-
viduals’ behaviours move randomly according to Brownian
motion among these classes. We show here that such a sys-
tem that includes heterogeneity and variability of behaviours
exhibits a richness of dynamics and in particular gives rise to

intrinsic formation of plateaus, shoulders and rebounds.

Up to now, there are two main alternative explanations for
the onset of plateaus. The first one is political (1). By man-
aging the epidemic and keeping the exponential growth at
bay, without destroying the economy, a plateau appears as
some kind of optimal compromise under constraint. Another
approach appears in a very recent work of Weitz et al. (2).
It argues that plateaus are caused by change of behaviours
due to awareness of fatalities and fatigue of the public facing
regulatory mobility restrictions. In recent works, Arthur et
al. (3) and Radicchi et al. (4) proposed models in the same
spirit. More detailed discussion of related literature is pro-
vided below.

We then introduce and discuss the mathematical model. We
illustrate the types of dynamics that this model gives rise to
by numerical simulations. These shed light on the key role
of behavioural variability to obtain plateaus, shoulders and
rebounds. There, we also provide a simulation to describe
the effect of introducing a second variant of the virus that
yields a higher secondary epidemic peak.

To discuss the validity of our approach, we rely on obser-
vations stemming from a series of measurements, carried
weekly over an extended period in the Thau lagoon area in
South of France. These strikingly reveal the formation of
plateaus, in some cases after a "shoulder" pattern. These data
do not include the effect of variants or of rebounds.

Next, we report on the calibration of our model on the data
of the Thau lagoon. It yields a remarkable fit. We further
discuss our model in more detail in the light of the measure-
ments in the Discussion section below. We also show that
this model also generates rebounds.

2 Brief review of literature

Numerous papers (5-8) describe the number of daily social
contacts as a key variable in the spread of infectious diseases
like Covid-19 insofar as it is closely related to the transmis-
sion rate. Daily social contacts are usually described in terms
of age, gender, income, type of job, household size (9), etc.
Parameters that are particularly relevant in the context of viral
outbreaks are also studied (10) such as cumulative duration of
such contacts, social distance, indoor/outdoor environment,
etc. The very fine grain microscopic models (11) aim at iden-
tifying such parameters in the most precise way possible. A
very recent study by Di Domenico et al. (12) takes up the data
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of hospitalisations in France for the past six months. Again,
these exhibit striking epidemic plateaus since the beginning
of 2021. The authors of this paper provide a microscopic in-
sight of the propagation, emphasising the role of two differ-
ent strains of the virus and the role of public health measures
such as the curfew, school closing etc. These approaches are
different from ours, as the point of view we adopt here can be
seen as “‘mesoscopic’.

Several earlier works have considered SIR-type systems
(Susceptible-Infectious-Removed) with heterogeneity. In
particular, Arino et al. (13), and, more recently, Dolbeault
and Turinici (14, 15), Magal et al. (16) have studied models
with a finite number of different coefficients 3. These sys-
tems are characterised by a discrete set of classes and do not
involve variability. Almeida et al. (17) considered the case of
continuous classes associated with a multidimensional trait
x to mathematically study the influence of variability of in-
fectious individuals on the final size of an epidemic. Note
that they include a diffusion term of the infectious population
while we consider social diffusion of the susceptible.

Weitz et al. (2) recently developed an SEIR-type
(Susceptible-Exposed-Infectious-Removed) compartmental
model with variable transmission rate coefficient, in which
two main competing psychological reactions to the epidemic
generate plateaus. Namely, it involves awareness of fatalities
and fatigue of the public facing mobility restrictions. In this
interesting model, fatigue modulates the transmission rate
B in the SEIR system by the number of cumulative deaths
(and in another version the daily number of deaths). Note
that this value itself is an outcome of the model and thus this
model is a kind of fixed point formulation. The authors show
that their model yields plateaus, “shoulder” like patterns and
oscillations for the dynamics of infectious individuals.

This paper of Weitz et al. assumes a homogeneous popu-
lation: at a given time, all individuals have the same trans-
mission rate. Thus our model is quite different from theirs.
The common behaviour simply changes in time by reacting
to the outcome of the epidemic and this change reflects in the
evolution of the transmission rate. Moreover, we note that
the model is calibrated with reported death of various U.S.
states and does not involve wastewater concentration mea-
surements. Thus, even though in a different manner from
ours, this work also stresses the role of variability for the ob-
served dynamics.

DiMarco et al. (18) have recently proposed a model close in
spirit to ours but more complex. Based on kinetic theory, it
describes the heterogeneity of individuals in terms of a vari-
able z > 0 corresponding to the number of daily social con-
tacts. Their model consists of a system of three SIR equa-
tions coupled with Boltzmann or Fokker-Planck type equa-
tions. The authors emphasise a collision type term in the re-
sulting Boltzmann equations. This term represents changes
of behaviours (that is of the values of ) when two individ-
uals meet. Consequently, the present work is quite different
from theirs. As a closure of their model, DiMarco et al. (18)
formally derive a so called S-SIR model. There, the vari-
ability of behaviours involves an explicit dependence of the
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transmission rates upon the current number of infectious in-
dividuals (19). Because of this feature, as a matter of fact,
when applied to real data, it is eventually very similar to the
approach in Weitz et al. (2)

Results

3 The Thau lagoon data

The measurement campaign concerned four wastewater treat-
ment plants (WWTP) in the Thau lagoon area in France,
serving the cities of Sete, Pradel-Marseillan, Frontignan and
Meze. The measurements were obtained by using digital
PCR (20) (dPCR) to estimate the concentration of SARS-
Cov-2 virus in samples taken weekly from 2020-05-12 to
2021-01-12. We provide further details about the measure-
ment method in the Methods section.

Measured concentrations of SARS-Cov-2 in genome unit per litre (log scale)
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Fig. 1. Concentrations of SARS-Cov-2 (genome units per litre in loga-
rithmic scale) from four WWTPs in Thau lagoon, measured weekly with
dPCR technology from May 12t" 2020 to January 12", 2021. Note that
there are some missing points.

Figure 1 shows the outcomes in a logarithmic scale over a
nine months period. We summarise now their main features.

1. An exponential phase starts simultaneously in Meéze
and Frontignan WWTPs in early June.

2. The genome units concentration curves in these two
places reach, again simultaneously, a plateau. It has
stayed essentially stable or slightly decreasing since
then.

3. The evolution at Sete and Pradel-Marseillan remark-
ably followed the previous two zones in a parallel way,
with a two weeks lag. The measurements at Sete and
Pradel-Marseillan continued to grow linearly (recall
that this is in log scale, thus exponentially in linear
scale), while the Méze and Frontignan figures have sta-
bilised ; then, after two weeks, they too stabilised at a
plateau with roughly the same value as for the other
two towns.

4. The measurements seem to show a tendency to in-
crease over the very last period.
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4 The epidemiology model with hetero-
geneity and natural variability of popula-
tion behaviour

The appearance of such plateaus and shoulders need not
be explained either by psychological reactions or by public
health policy effects. Indeed, the regulations were roughly
constant during the measurement campaign and awareness or
fatigue effects do not seem to have altered the dynamics over
this long period of time. Witness to this is the fact that two
groups of towns saw the same evolution, but two weeks apart
one from the other. To understand this phenomena we pro-
pose a new model.

Given the complexity and multiplicity of behavioural factors
favouring the spread of the epidemic, we assume that the
transmission rate involves a normalised variable a € (0,1)
that defines an aggregated indicator of risky behaviour within
the susceptible population. Thus, we represent the hetero-
geneity of individual behaviours with this variable. We take a
as an implicit parameter that we do not seek to calculate. The
classical SIR model is macroscopic and the type of model we
discuss here can be viewed as intermediate between macro-
scopic and microscopic.

The initial distribution of susceptible individuals So(a) in the
framework of a SIR-type compartmental description of the
epidemic can be reasonably taken as a decreasing function of
a. We take the infection transmission rate a — ((a) to be an
increasing function of a. In the Supplementary Information
(SI) Appendix, the reader will find a more general version of
this model involving a probability kernel of transition from
one state to another. The model here can be derived as a
limiting case of that more general version.

Likewise, the behaviour of individuals usually changes from
one day to another (21). Many factors are at work in this
variability: social imitation, public health campaigns, oppor-
tunities, outings, the normal variations of activity (e.g. work
from home certain days and use of public transportation and
work in office on others) etc. Therefore, the second key fea-
ture of our model is variability of such behaviours: variations
of the population density for a given a do not only come from
individuals becoming infected and leaving that compartment
but also results from individuals moving from one state a to
another (21). In the simplest version of the model, variability
is introduced as a diffusion term in the dynamics of suscepti-
ble individuals.

The model. We denote by S(¢,a) the density of individuals
at time ¢ associated with risk parameter a, by I(t) the total
number of infected, and by R(¢) the number of removed in-
dividuals. We are then led to the following system:

dS(t,a) 02S(t,a) 1)
5t =d a2 _B(G)S(tva)W’
1
O 1Y [s@sad-qre.  ®
%}Et) =vI(1),
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where 7! denotes the inverse of typical duration (in days)
of the disease and d a positive diffusion coefficient. System
(1) is supplemented with initial conditions

S(0,a) =So(a), I(0)=1Iy, and R(0)=0, (2)
and with zero flux condition in a at a = 0,1. In the Method
section below, we discuss the relation of this model with
other current works.

A more general model. In a more general version of our
model, we can consider the population of infected as also
structured by the parameter a. The equations are as before
but now we keep track of the class a in the infected pop-
ulation. The mechanism here is that a susceptible individ-
ual from class a can be infected by infectious from any class
1(t,b) but then gives rise to an individual I(¢,a) of the same
parent class. We also assume that there is a diffusion of the
infected behaviours. We denote by B(a,b) the transmission
rate of S(¢,a) by I(t,b). For simplicity and because it is nat-
ural, we will assume that it is of the form

B(a,b) = B(a)B(b)

where 3 is as before. For full generality, we can also envision
multi-dimensional parameters a € R?, with a; € (0,1). We
are then led to the system:

a a 1
W) 4 aus(ta) - 5(0,0) 2 /0 B(b)I(t,b) db,
a a 1
M) g aat,a)+ 50,0 /0 BO)I(t,b)db
- VI(t’a)a
dr(t) (!
=, /O I(t.b)db, .

In the SI we write further, more general, forms of this model,
with B (a,b) and more general diffusion of behaviours, that
can include jumps or non-local variations. The type of mod-
els we discuss here may also shed light on the initial phase of
the epidemic. We plan to investigate these questions in future
work.

5 Patterns generated by the model

In the next section, we will discuss how the model fits the
data observed in the Thau lagoon measurements. But before
that, we start by showing that the above model Eq. (1) can
generate the different patterns we mentioned. For this we
rely on numerical simulations without fitting real data. And
indeed we obtain plateaus, shoulders, and oscillations. The
latter can be interpreted as epidemic rebounds.

The key parameter here is the diffusion coefficient d, which
controls the amplitude of behavioural variability (see Fig-
ure 2). Large values of d rapidly yield homogenised be-
haviours, leading to classical SIR-like dynamics of infectious
individuals. For very small values of d, the system also has
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a simple dynamics, in the sense that I(¢) has a unique max-
imum, and therefore has no rebounds. We derive this in the
limit d = 0 for which we show in the SI that there are neither
plateaus nor rebounds.

For some intermediate range of the parameter d, plateaus
may appear after an exponential growth, like in the initial
phase of the SIR model. A small amplitude oscillation, called
“shoulder”, precedes a temporary stabilisation on a plateau,
followed by a large time convergence to zero of infectious
population. We also show that for small enough d, time os-
cillations of the infectious population curve, i.e. epidemic
rebounds, may be generated by Model Eq. (1). Such oscilla-
tions also appear after a plateau, in a similar way to what one
can see in observations.

Simulations in Figure 2 illustrate the various patterns ob-
tained on the dynamics of infected population as a function
of the diffusion parameter. For small enough d, in the top left
graph of Figure 2, one can see oscillations of the fraction of
infectious individuals. These oscillations cannot be achieved
in the classical SIR model. In fact, the two lower graphs of
that figure, for somewhat larger values of d, exhibit the SIR
model outcomes. Indeed, for sufficiently large d, the system
becomes rapidly homogeneous (i.e. constant with respect to
a). Yet, such oscillations are standard in the dynamics of ac-
tual epidemics, like the current Covid-19 pandemic. The in-
termediate value of d, represented in the upper right corner of
Figure 2 shows the typical onset of a plateau at a rather high
value of . Note that this plateau is preceded by a first small
dip and then a characteristic “shoulder-like” oscillation.

Fraction of infected individuals, 50 groups (log scale) Fraction of infected individuals, 50 groups (log scale)
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Fig. 2. Model behaviour depending on diffusion parameter values: in-
fected rate dynamics in logarithmic scale. From left to right and then top
to bottom, graphs are associated with d = 10=°,d =5-10"5,d =103
andd =5-1073 (in day 1! unit).

Secondary epidemic peaks are of lower amplitude than the
first one, as shown in the top graphs of Figure 2. This empir-
ical observation leads us to conjecture that, at least in many
cases, it is a general property of this model (with 5 inde-
pendent of time). This property would then reflect a kind
of dissipative nature of Model (1). It is natural to surmise
that a change of behaviours in time may generate oscilla-
tions with higher secondary peaks. Such changes result for
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instance from lifting social distancing measures or from fa-
tigue effects in the population.

We illustrate this with numerical simulations in Figure 3. We
assume a collective time modulation of the 5(a) transmission
profile. That is, we replace 5(a) by 5(a)¢(t) for some time
dependent function ¢, the other parameters are the same as
in the simulations shown in Figure 2. We look at the effect of
a “lockdown exit” type effect. Then, (¢) takes two constant
values, 1 from ¢t = 0 to t = 1000 and 1.2 after ¢ = 1100. In
between, that is, for ¢ € (1000,1100), (t) changes linearly
from the value 1 to 1.2.

Fraction of infected individuals, 50 groups (log scale) Fraction of infected individuals, 50 groups (linear scale)
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Fig. 3. Multiple epidemic rebounds: susceptible individuals is divided into
50 discrete groups in the case where relaxation of social distancing mea-
sures starts on Day ¢ = 1000 and end up on Day ¢ = 1100. The fraction
of infected individuals in the population is represented in the left graph in
logarithmic scale and in linear scale in the right graph.

One can clearly see a secondary peak with higher amplitude
than the first one. Note that after this peak, a third one occurs,
with a lower amplitude than the second one. This third peak
happens in the regime when [ is again constant in time.

The effect of variants. Another important factor that yields
secondary peaks with higher amplitudes is the appearance of
variants. Consider the situation with two variants. We de-
note by I (t) and I3(t) the corresponding infected individu-
als. The first variant, which we call the historical strain, is
associated with 81 and I;(0) and starts at t = 0. The variant
strain corresponds to 32 and I3 and starts at Day ¢ = 1000. In
this situation, the system Eq. (1) is extended by the following
system:

a 2 a ¢
080.0) _ 1950 _ (5, (01130 + a(o) 1)) 2
1
dlollit(t) _ [1]\[(’5)/0 B1(a)S(t,a)da — y111(t),
1
dIth(t) _ IQN(t)/O B2(a)S(t,a)da — voIa(t),
%}Et) =nlz(t) +1l2(t),
“@

The total infected population is I(t) = I1(t) + I2(t). Fig-
ure 4 shows a simulation of this system. Before the onset
of the second variant, i.e. for ¢ < 1000, we observe a peak,
followed by a small shoulder and a downward tilted plateau.
The second variant corresponds to a higher transmission co-
efficient: namely, we take here 82(a) = 331(a). When it
appears at time ¢ = 1000, initially there is no effect, because
the initial number of infectious with variant 2 is very small.
Then, there is an exponential growth caused by this second
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variant gaining strength. The secondary peak is then higher
than the first one. A very small shoulder precedes another
stabilisation on a downward plateau.

Figure 4 also shows the dynamics of fractions of infected
with each one of the variants. Note that the infectious with
variant 1 very rapidly all but disappear at the onset of the
second exponential growth phase. One might have expected
that the historical strain would be gradually replaced by the
new strain, merely tilting further downward the plateau. But
that does not happen. Thus, it is remarkable that the histori-
cal strain gets nearly wiped out at the very beginning of the
second exponential growth.

Fraction of infected individuals, 50 groups (log scale) Fraction of infected individuals, 50 groups (linear scale)
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Fig. 4. Multiple epidemic rebounds due to a variant virus: susceptible
individuals is divided into 50 discrete groups in the case where a new
variant appears at Day ¢t = 1000. The transmission rate 32 is taken as
B2(a) =1.5B1(a), d =0.0002, v1 = 0.1 and 2 = 0.05. The fraction
of infected individuals in the population is represented in the left graph in
logarithmic scale. The total infected population is represented in linear
scale in the right graph (black curve), variant 1 in red and variant 2 in
green.

6 Application to the Thau lagoon measure-
ments

Model (1) describes the dynamics of the fraction of infec-
tious in the population, that is ¢ — I(¢t)/N. Therefore, we
need to derive this fraction from the wastewater measure-
ments. To this end, we use an “effective proportionality co-
efficient” between the two quantities. This coefficient itself
is derived from the measurements (compare Section "SARS-
Cov-2 concentration measurement from wastewater with dig-
ital PCR" in the methods part below). Calibration of model
(1) also requires fitting the values of +, the profiles a — (£(a)
and the initial distribution of susceptible individuals in terms
of a.

We carried this procedure and the resulting fitted curve is dis-
played in Figure 5. Note that the outcome correctly captures
the shoulder and plateau patterns.
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Fig. 5. Calibrated model on Séte area: blue dots are measures of SARS-CoV-2
genome units and black curve represents the total infected individuals as an out-
put of the model discretized into n, = 20 groups in a. Initial distribution of sus-
ceptible individuals and /3 function are taken as described in supplementary infor-
mation. Parameters d and ~ are taken as follows: d = 2.5-10"% day !, and
~=0.1day™? .

The underlying dynamics of the rate of susceptible individu-
als is given in Figure 6 below for n, = 20 groups. The lower
curve illustrates the competition phenomenon between diffu-
sion and sink term due to new infections, depending on the
level of risk a of each state.

Fraction of susceptible individuals, 20 groups (log scale)
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Fig. 6. Calibrated model on Séte WWTP: density of susceptible individ-
uals of each group for ng = 20. The densities of susceptible of each
group is represented in colour curves as functions of time. The curves
are ordered from top to bottom according to increasing a. The resulting
average total susceptible population is represented in black. Susceptible
individuals of highest a trait, which are represented in the bottom light
blue curve exhibit a non monotonic behaviour.

7 Discussion

We claim that Model (1) explains the formation of plateaus
and rebounds in the dynamics of the outbreak through the
heterogeneity and variability of population behaviour with
respect to epidemiological risk. Figure 6 shows that sus-
ceptible individuals with the riskiest behaviour, characterised
by the highest S transmission coefficient, are rapidly trans-
ferred to the infected compartment. Variability of behaviours
modelled by diffusion with respect to a parameter then re-
feeds the fringe of riskiest susceptible individuals. Parame-
ter regimes where those two phenomena have the same order
of magnitude generate patterns such as plateaus, shoulders
and rebounds. We explored above the types of patterns aris-
ing when we vary the diffusion coefficient d. We note that
plateaus occur for an intermediate range of values of d > 0,
which represents the amplitude of variability. Namely, large
values of d lead to standard SIR-type dynamics, since diffu-
sion quickly homogenises the behaviours. When d decreases,
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plateaus starting with shoulder-like patterns appear. How-
ever, for even smaller values of d, oscillations arise, which
can be interpreted as epidemic rebounds. From numerical
experiments, the amplitude of rebounds always seem to be
of smaller amplitude than the first epidemic peak. However,
higher secondary peaks arise when we significantly modu-
late in time the transmission rate. This may represent a pro-
gressive exit from lockdown or the effect of new and more
contagious variants

The dynamics of the Covid-19 outbreak in the cities of Thau
lagoon appears almost insensitive to public health regula-
tions. In particular the second lockdown in France from 28
October to 14 December 2020 had hardly any effect. Like-
wise, the Christmas Holiday season also seemed to have had
little influence on the observed plateaus.

The number of hospitalised individuals in France over the
last quarter of 2020 is represented in Figure 7. There, the
dynamics shows a growing phase followed by a shoulder and
a plateau, very similar to the pattern observed in Thau lagoon.

Hospitalisations in France (log scale)

6x10%

Number of h

g > S > & > 1N
N N
o o~
» »

Fig. 7. Number of hospitalised individuals in France (log scale, As from October
2020).

Several noteworthy observations came out from the Thau la-
goon data. First, we can see two distinct exponential growths
in two separate subsets of two towns. The two graphs are
parallel with a constant delay of two weeks. The first group
reaches a plateau at a certain level of infected and stays there-
after essentially flat, while the second group continues to
grow until it reaches about the same value of infected and
then becomes essentially flat too. These remarkable observa-
tions call for interpretations. Indeed, first, they cannot sim-
ply result from public policy measures as these would have
affected all these neighbouring towns in a similar fashion.
Second, there likely is a spatial diffusion effect that triggered
the growth in the second group coming from the first one.
However, this diffusion would not explain the fact that the
two groups reached the same level of plateaus.

It is worth noting that these observations are inconsistent with
the classical SIR model: in this model, once an epidemic
reaches a peak, it then decreases steadily by another expo-
nential factor. In other words, a plateau requires an effective
R+ number (22, 23) of approximately one: R; ~ 1. However
this would be hard to sustain over such a long period of time
as observed because the susceptible population is depleted. It
also appears difficult to explain that this occurs exactly at the
same plateau level for two distinct populations.
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Conclusions. In this paper we reported on precise con-
centration measurements of SARS-CoV-2 in wastewater up-
stream of four WWTPs around the Thau lagoon in South of
France during the nine months period from May 2020 to Jan-
uary 2021. These observations exhibit plateaus and shoul-
der patterns. Such characteristics, along with rebounds, are
widely observed in epidemics. We provided here an expla-
nation by considering that the population is heterogeneous
in the level of risk in the individual behaviours, which ran-
dom changes from day to day. Indeed, we show here that the
combination of heterogeneity and variability leads to a con-
stant replenishment of the population of susceptible individ-
uals with higher risks, thus feeding as it were the epidemic.
This mechanism explains the formation of plateaus in the dy-
namics of the epidemic and also accounts for oscillations and
rebounds.

To substantiate this claim, we proposed a mathematical
model for epidemics that explicitly involves heterogeneity
and variability. The model takes the form of an SIR sys-
tem with diffusion of behaviours. To get a model as parsi-
monious as possible (24), we only assumed the diffusion of
risks among susceptible and that a single continuous and one-
dimensional risk variable a characterises the behaviour type.
Numerical simulations of this system indeed show exactly
this type of shape that we observed, with shoulders preced-
ing long plateaus, and rebounds. Without any change in the
behaviours, the secondary peaks, although they can be impor-
tant, are of a lesser amplitude than the first peaks. Here we
show further that a one time change in the transmission coef-
ficients may generate rebounds with higher amplitudes. Such
changes typically occur when social distancing measures are
lifted.

We also explored the effect of introducing a variant strain of
the virus, with a slightly higher transmission rate. We also
achieved higher amplitude rebounds in this framework. The
analysis of the presence of the two strains shows that the his-
torical strain is replaced quite abruptly by the more trans-
missible one, earlier than one would guess from its intrinsic
evolution.

To further validate this model, we fitted it on the data col-
lected in the Thau lagoon area. Here we did not invoke any
external effects such as fatigue or change of public health
measures. Indeed, over the concerned period, there were ar-
guably few and minor changes. Furthermore, the two weeks
delay between the two curves we observed precludes such
effects. Indeed, two towns reached the plateau two weeks
earlier than the other two, the latter continued to see an in-
crease, until roughly the same level was reached two weeks
later. The calibration of our model on the Thau lagoon obser-
vations yielded a very good agreement with the data.

Perspectives and extensions of the model. There are
several directions to extend our work. First, one can con-
sider more general forms of the model as the one introduced
in Eq. (3).

Then, one might envision a more precise approach to the pa-
rameter a beyond the notion of unit of contact. One can take
into account e.g., duration and circumstances of contacts. It
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appears natural to use “risky sociability” in computing the
transmission rate. One may also consider multi-dimensional
versions of the parameter. Understanding quantitatively the
change of behaviour as a function of this variable a may re-
quire an interdisciplinary avenue of research.

Likewise, it is quite natural to assume that the variability of
behaviour also depends on a rather than being uniformly dis-
tributed. We discuss such an extension in the SI where we
show that it leads to an equation with drift terms. We leave
developments in this direction to further work.

Another important aspect that transpires in the Thau lagoon
data, is the spatial spreading that takes place in the epidemic.
In a recent paper, the first author of this study and collabo-
rators (25) have proposed a model at the country level with
a quantitative approach to spatial diffusion in France. The
study of diffusion at a smaller scale that we might call meso-
scopic and its inclusion in the framework we propose here are
promising perspectives.

Methods

The epidemiological model with heterogeneity and
variability. The model we develop here extends the classi-
cal SIR compartmental approach by taking into account het-
erogeneity and variability of behaviours on the susceptible
population. The total population is assumed to be constant
equal to N. That is, we do not take into account incoming
or outgoing populations, nor demographic changes. This is a
standard assumption in the Covid-19 studies. Actually, one
might want to dispense with it if one is to consider a signifi-
cant amount of travellers, especially during vacation periods
or because there is a lockdown that brings many people to
leave large cities.

At time ¢, the population of susceptible is structured by a
and ¢ and is described by its density S(¢,a). We assume that
the total number of infected is given by I(¢) and that of the
removed by R(t). We do not distinguish from which popula-
tion strata the infected individuals come from.

One can think of a as a trait parameter roughly describing the
level of risk a given susceptible individual is taking with re-
spect to Covid-19. It is normalised so that 0 < a <1, a=0
being associated with very cautious people and a = 1 to peo-
ple with very risky behaviour. This implicit variable repre-
sents for instance the number of social contacts per day of an
individual, taking into account their length, whether social
distancing is observed, if it takes place indoor or outdoor, in
a more or less crowded environment, or if individuals wear
a mask etc. Thus, it can be seen as a lumped variable that
represents a global risk score. In this context, the impact of
political restrictions can easily be represented by a modifica-
tion of the distribution law of the behaviours.

We observe that in this model, we adopt the point of view
that the behaviour distribution affects the risk takers in the
susceptible population rather than the behaviour of infected
individuals. Indeed, it appears more natural to consider that
the susceptible face an ambient distribution I(¢). For in-
stance, the choice to go to a crowded bar where there might
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be a super-spreader, is reflected in variable a. Individuals
often vary their behaviour, because for instance of fatigue
effects for people who have heeded too strongly social dis-
tancing calls or, on the contrary, for people who have been
reckless and see other people fall sick and consequently be-
come somewhat more cautious. Thus, the potential reservoir
of individuals for a given stratus level a is not static and it is
more important than would appear at first glance.

Hence, we consider that the variations of S(¢,a) do not only
come from individuals becoming infected and leaving that
compartment but also results from individuals moving from
one stratus to another. Here we assume that this shuffling
of behaviours follows Brownian motion. We are then led to
System (1) presented in the Result section above. At the end-
points of the interval (0,1) for a, we impose homogeneous
Neumann (zero flux assumption) boundary conditions:

aS(t,0)  9S(t,1)
= =0. 5
da da )
Note that in this system the total population N is conserved

by the dynamics:

1
N(t):= /0 S(t,a)da+1(t)+ R(t) = N(0).

In the SI, we derive this system from more basic consider-
ations and we describe some of its mathematical properties.
There, we further discuss more general systems. In partic-
ular we consider the framework where the variability itself
depends on the trait a.

It is enlightening to keep track of the fraction of infected
coming from specific strata. To this end, we can introduce a
variable I(¢,a) representing the number of infected that came
from stratus a. It is given by the solution of the equation:

ol(t,a) I(t)
LD — playstr,a)

N _P)/I(t7a’>7
1(0,a) = Iy(a),

(6)

It is straightforward that this is consistent with the definition
of the total population of infected, that is:

1
I(t):/o 1(t,a)da.

We may include then here the effect that infectious individu-
als with high a’s are more likely to infect other susceptible.
This just amounts to replace I(¢) in system Eq. (1)-(6) by

1
J(t) = / B(a)I(t,a)da
0
in (1)-(6). We are then led to Model Eq. (3).

SARS-Cov-2 concentration measurement from
wastewater with digital PCR. The teams of the local
authorities of the Thau lagoon, Syndicat Mixte du Bassin de
Thau (or SMBT) collected samples every Tuesday from each
of the four WWTPs. Each sample consisted of a compound
of 24 hourly samples.
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ILA.GE. (INGENIERIE ET ANALYSE EN GENOME
EDITING, 2700 route de Mende 34980 Montferrier-sur-Lez,
France) developed a diagnostic method to detect very low
concentrations of SARS-CoV-2 in such wastewater samples.
This method combines an optimised extraction process with a
DNA quantification based on a digital PCR (dPCR) targeting
region of the RARp (IP2/1P4) (20) (This method has been sub-
mitted by IAGE to the European Patent Office the 31st of De-
cember 2020 under the application number EP20306715.2).
The measures produced identical results within three signifi-
cant digits between the two targets.

In contrast to classical quantitative real-time PCR (qRT-
PCR), dPCR allows the absolute quantification of low
concentration levels of target sequences of nucleic acid
molecules from DNA or RNA samples. dPCR outperforms
gqRT-PCR with respect to accuracy (26) and repeatability of
measurements; it is also has a much lower detection threshold
(about 20 times lower) (20).

Among recently achieved wastewater measurement cam-
paigns in sewers (27-34), it seems that none of them exploit
these measurements in a dynamical model. This is probably
due to the uncertainties associated with qRT-PCR measure-
ments and to the difficulty of translating genome unit con-
centrations into numbers of infected individuals. As outlined
in Ahmed et al. (27), the rate of infected individuals within
the population served by the instrumented WWTP may be
related to the measured genome unit concentration through a
proportionality relation:

Infected persons genome units )
Total population " litre wastewater
where
litre wastewater
\— day - total population ©)

g faeces genome units
(day~person> . ( g faeces )

Still, the individual variability of each parameter of Equa-
tion (8) is very high, as pointed out in several works (27,
35, 36) (see also references therein). Moreover, transport of
wastewater from the emission point to the WWTP involves
additional significant phenomena identified in Hart et al. (37):
virus degradation over time, usually modelled by exponen-
tial decay law where the half life depends on temperature.
Therefore, a bottom-up approach estimating each component
of Equation (8) from literature is not realistic because of the
huge variability and uncertainties of these factors.

Instead, we develop here an original approach to estimate an
effective value parameter \ by viewing A as one of the pa-
rameters in the optimisation process in order to fit the model
to the data. The reason why we are thus able to determine
A lies in the richness of the data set combined with the com-
plex dynamics allowed by the nonlinear model (1). Indeed,
the capture of the dynamics of concentrations by the model,
including the exponential growth phase, followed by the for-
mation of shoulder-like and plateau patterns, adequately con-
strains the estimation of the value of this effective parame-
ter \. We computed this parameter for the WWTP of Sete
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by a least square minimisation process over the time interval
from 9 June 2020 to 12 January 2021 covering the preceding
three phases. Indeed, since we are interested in these phases,
for the sake of clarity we chose to ignore the observations
prior to this period. This procedure led us to the choice of
A~1 =111,230,001 (in genome unit per litre), a figure that
seems of the correct order of magnitude.

By this data-driven optimisation procedure, we thus relate
the rate of infected people to the measured concentration of
SARS-Cov-2. We plan to further investigate and extend this
approach in future work.

Such virus concentration time series, essentially proportional
to the fraction of people infected by Covid-19, provides an
accurate quantitative method to monitor the epidemic. Fur-
thermore, as well known (29, 32, 34), the appearance of
the virus in wastewater precedes the observations of the dis-
ease and therefore yields a remarkable early warning system,
ahead of hospital counts. Moreover, it reflects all infectious
people regardless of whether they are symptomatic or asymp-
tomatic.
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Supplementary Information

The classical SIR model with time dependent transmission rate. The classical SIR compartmental model (38) uses a
dynamics governed by mass-action laws. It assumes that individuals are homogeneously mixed and that every individual is
equally likely to interact with every other individual. It reads:

s _ _pIS
dt N
Al BIS
— =" 5] 9
a - N ! ©)
dR
—~T
ar !

Single location growth and behavioural changes.. Changes of behaviour driven by phenomena such as awareness of fatalities
or fatigue with respect to mobility restrictions can be modelled by a time modulation of the infection rate 3.

To start with, we analyse this problem on synthetic data. Namely, we consider an exact dynamics given by the SIR model with
parameter changes on two given dates. We now take part of the resulting points as given observations. The goal is to carry an
optimisation procedure where we try to identify the dates and magnitudes of these changes i.e. the different values of 3 that
come into play. Later on we will consider the Thau lagoon data.

Figure 8 represents a piece-wise constant modulation in time with reduction of social interactions down to 70% starting Day
t = 25 followed by an increase to 50% on Day ¢ = 50.

0.8 1

0.6

0.4 4

0.2 4

0.0 1

Fig. 8. Time modulation function associated with collective behaviour modulation as a function of time (day numbers)

The effect on such modulation leads to the interruption of the growth phase followed by a lower decrease for later times.
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Fig. 9. Rate of infected individuals as a function of days

We developed a toolbox based upon PYGMO (39) particle swarm optimisation algorithms in order to solve the type of inverse
problem we encounter here. We consider a time sampled version of infection rates in the total population. We allow a given
number of transition times associated with behaviour changes, in between which the coefficient 5 is constant. The problem
then is to determine in an optimal way the SIR model parameters, initial conditions, the transition times and the values of the
(’s in between. Using a least square objective function, we obtained a satisfactory convergence towards the dynamics of the
initial model and associated modulation function.

0.08 §

0.06 §

Fig. 10. Rate of infected individuals as a function of days as a result of the inverse problem: blue dots correspond to daily sampling of
synthetic data, red line to the resulting SIR model.
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Fig. 11. Modulation of collective behaviour as a result of the inverse problem

We developed a similar approach with noise added to sampled synthetic data, with satisfactory convergence both in terms of
dynamics of infection rate (Figure 12) and modulation functions (levels and time changes in Figure 13).

0.00

Fig. 12. Inverse problem with noisy synthetic data: blue dots correspond to daily sampled synthetic data with noise, blue and red curves
respectively to the initial synthetic model and to the result of the inverse problem.
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Fig. 13. Original modulation function in blue and result of the inverse problem in red.

A model with change of behaviour at discrete times in Thau lagoon.. We applied the preceding algorithmic approach on real
data of the four WWTP measurement campaigns of the Thau lagoon. In order to keep the model parsimonious, we used the
same time modulation function of 3 for all the four cities together. The transition dates and levels have to be determined.

1072 A 1072 4 0 ®
—— 11 model e ®®oe —— 12 model * hd
L ] measures ® measures
1073 4 1073
107* 1074
1075 § 10-5
107 4 1076 4
1077 4 1077 4
108 v 1078 r v .
0 20 40 60 80 100 120 140 100 120 140
1072 4 1072 4
— 13 model —— 14 model e %o 0
1073 i L] measures 1073 L ] measures
107% 4 1074
1075 4 1075 §
1076 4 1076
10—7 o 10-7 P
1078 T T v v r T T 1078 T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Fig. 14. Change of behaviour in logarithmic scale in the Thau lagoon (initial day ¢ = 0 being associated with May 12th, 2020). The red
curve represents the model output (rate of infected population) and the blue dots correspond to measurements. Zones Iy, I, I3 and
14 respectively correspond to Séete, Méze, Frontignan and Pradel-Marseillan.

The above results show that the optimal capture of the transition from exponential growth to plateau type dynamics occurs on
August 10", 2020. The resulting piecewise constant modulation function in time is represented in Figure 15 below.
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Fig. 15. Time modulation of collective behaviour in Thau lagoon as a result of the inverse problem.

Even though the plateau dynamics seems to be correctly represented in Figure 14, the main shortcoming of this is that it does
not really explain the observations of the Thau lagoon data. Indeed, the model does not explain why the four zones reach the
same infection rate level associated with the plateau regime and why there is a two weeks delay. Furthermore, it does not yield
a shoulder effect, as seen in the data.

One may use spatial diffusion to describe the delay between the zones (Frontignan, Meéze) on the one hand and (Séte, Pradel-
Marseillan) on the other hand. But it also fails to explain why there are two parallel curves. We plan to come back to spatial
diffusion in future work.

Derivation of the Model. This section is concerned with the formal derivation of the additional diffusion term in the dynamics
of susceptible individuals. As previously emphasised, this diffusion term stems from the combination of the heterogeneity of
behaviours and their variability in time. A natural case to consider here is to assume that the shuffling of behaviours happens
according to Brownian motion. Namely, individual risk traits move according to the process

dat = \/50’ th,
where o > 0 is the possibly a-dependent diffusion, and W; is a Brownian motion in (0,1) with reflection conditions at the
end-points of the interval. By the Fokker-Planck equation, in the absence of epidemic, an initial distribution of population

S(0,a) gives rise to S(t,a) = E[S(0,a¢)] governed by

oS 9%*[o*(a)S]

= 1
ot da? (10)
To consider the dynamics of the epidemic, we are thus led to the following more general version:
212
I
8S(t a) :da [0 ( )S(t a)] —ﬁ(a)S(t,a)ﬂ,
N
dI
/ﬂ S(t,a)da — vI(t), (1)
dR(
=~I(t).
=)

The first equation involves drift and other additional terms. The numerical and theoretical analysis of the case where o de-
pends on a, and the corresponding extensions of the Fokker-Planck equation with drift terms, seem relevant from a modelling
viewpoint.
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In the simple case where 02(a) = d where d is a constant, one ends up with the first equation of our system (see System (12)
below).

One could also envision a multi-dimensional variable a = (a1,...,a,) to encompass various behavioural characteristics that
could possibly be related to sociological observations. In this case, one would be led to a higher dimensional partial differential
equation. where the term 92,5 is replaced by the Laplace operator A, S as we did in the general model presented in Methods
section. Such developments would be useful to improve the model and its applicability.

Simple properties of Model (12). For the convenience of the reader, we recall the model introduced in the main paper

9S(t,a) . 92S(t,a) 1)
ot =d 902 75((1)8(7530’)73
1
d%t) _ % /0 B8(a)S(ta)da — (L), (12)
Lﬁit) =7I(t),

The case d = 0 (heterogeneous but without variability) writes:

85(t a) 5(a)S(t,a)I(t)

- ’

7_ /5 S(t,a)da—~I(1), (13)

i()

i vI(t).

We list below some elementary mathematical properties of the model. First, we note that this model contains the traditional SIR
model when the initial profile of susceptible a — Sp(a) is uniform in a. Indeed, it is straightforward to see that then, S(¢,a)
also does not depend on a.

The dynamics of total infectious individuals is governed by

dI(t
d( ( / B(a)S(t,a)da— fy) (14)

so that the equivalent of the so called "effective R" coefficient in traditional SIR model, namely 3S(t)/(yN), is replaced by

1
N% /0 B(a)S(t,0) da. (15)

Unlike traditional SIR model, in which the evolution of infectious ¢ — I(t) begins by an exponentially growing phase, has a
unique maximum and tends to zero for large time, Model (12) may exhibit more sophisticated behaviours such as rebounds in
I with multiple local maxima as well as plateaus. This property can be intuitively understood by analysing the evolution of the

growth factor in (14):
85’ t,a)
_ 2 _ =
th/ﬂ a)da = NQ/B S(t,a)da /B a. 16)

In the absence of diffusion, d = 0, this growth factor is non increasing in time. For heterogeneous profiles and non zero diffusion,
the first term of the right hand side is always negative whereas the second term may be positive if for instance a — ((a) is
increasing and a — S(t,a) is a decreasing function. Below we show that it is always the case under some conditions. Thus,
depending on the amplitude of the above two terms, the growth factor may have increasing and decreasing phases. It naturally
leads one to consider initial conditions characterised by the property S (a)/3’(a) < 0 such as

2
B(a) = Boexp (;) for some 1 > 0, a7

2
So(a) =51+ (Sp — S1) exp <Z2> for some k > 0 and 0 < S7 < Sp. (18)

It means that individuals are sorted by increasing infection rate, according to the variable a, and that the vast majority of
individuals have low infectiousness whereas few individual close to a = 1 have extremely risky behaviour. To some extent,
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social contact surveys (5, 6, 21) justify an initial distribution of susceptible individuals like (18). However, we are not aware
of a rigorous justification of the expression (17) of the sharply increasing profile in .
Let us now show that the evolution preserves the property of being decreasing in a for the profiles of the susceptible population.

Propeosition 1. If Sy is a decreasing function of a, then S(t,-) is also decreasing in a for all time t.
To prove this property, we simply note that the derivative v(¢,a) := 9S(t,a)/0a of S with respect to a satisfies the following
equation

(% 21}
%jtﬁ% - g— —B’(a)S(t,a)%

v(t,0) =w(t,1) =0, 19
v(0,a) = w.

Since the right hand side of the first equation of (19) is negative and the initial condition v(0,a) < 0, the parabolic maximum
principle then shows that v(t,a) < 0 for all further time.

Further mathematical properties of Model (12). Let us first notice that we can describe the dynamics of susceptible indi-
viduals in (12) in terms of its probability density f(t,a) = S(t,a)/S(t) where S(t fo (t,a)da:

of(ta) _ I(t) .
5 = () (Bla) =) +d—5 5=

(20)

where we denote 1)(t) fo f(t,a)da. This equation shows the effect of infections on the distribution of susceptible
population as a function of a. Indeed it shows that, for instance in the absence of diffusion (d = 0), the proportion of the
population of high a goes down as a result of infection affecting it more in relative terms than the remaining of the population.
The presence of diffusion (d > 0) mitigates this effect by fuelling as it were the epidemic with individuals who had initial lower
risk trait.

The equivalent of (16) for the average transmission rate B is

2 1

a8 _ f@Var(B)(t) — d/ B’(Q)M da, where Var(g)=p32-p% (21
dt N 0 da

In other words, in the absence of behavioural variability (d = 0), the average of the transmission rate decreases under the effect

of its variance, the latter being directly linked to behavioural heterogeneity. Thus a higher heterogeneity promotes a faster decay

of the average transmission rate. This is a remarkable property of the system in absence of diffusion or with small diffusion.

In the presence of diffusion d > 0, this effect is in competition with the second term of the right hand side of (21) which may

be positive if for instance the profile a — ((a) is increasing while the distribution f decreases along variable a.

Our next result concerns the effect of heterogeneity on herd immunity. We analyze it in the absence of diffusion.

Theorem 1. Let (t,a) — (S(t,a),I(t), R(t)) be the solution of (13) (that is when d = 0) with initial conditions S(0,a) =
So fo(a), I(0) = Iy > 0 and R(0) = 0 (for some positive constants So and Iy). Then, t — S(t,-) tends as t — 400 to a limit

profile a — S (a) in such a way that
1
/ Soo(a)da > Seo
0

where So > 0 is the limit value as t goes to +0co of susceptible individuals S(t (t) associated to the homogeneous SIR model (9)

with initial conditions (S, Iy,0) and transmission rate fo = fo a)fola)da

Thus, this theorem asserts that heterogeneity lowers the herd immunity rate needed to stop an epidemic. Note that Several
works study the asymptotic states of similar models without diffusion, in a discrete class framework. We mention in particular
Magal et al. (16), Dolbeault and Turinici (14) and Almeida et al. (17).

Sketch of proof: The existence of the limit profile a — Soo (a) follows from the monotonicity of t — S(¢,a) for fixed a € (0,1).
Since t — I(t) can be easily proved to vanish for large time, the recovered compartment R(¢) also tends to a limit R. Using

R as a time variable leads to:
1
I(R)=1Io— R—/O So(a) (exp (— 5;\6;’);%) - 1) da,

ﬂ(a)Roo>

so that

Suo(@) = So(a) exp (— o
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and

Io=Roo + /01 So(a) (exp (5(‘;\7)?)0) — 1> da. (22)

Equation (22) expresses Iy as an increasing function Fg of R, which is therefore uniquely defined. Application of Jensen’s
convexity inequality then leads to

1 1
G< /0 B(a)fo(a)da)g /O G(B(a))fo(a)da, where G(Z)= exp(—ZRo/(vN)). (23)

We deduce that Fig(z) > Fp (x) for all 2 > 0, where F5 is associated with the homogeneous SIR model (9) with initial

conditions (5’0, Io, 0) and homogeneous parameter 3, which allows to conclude.
An interesting property of System (13) is the conservation of the following entropy-like quantity

1 1 1
V(t) :/ S(t,a)da+1(t)— ﬂ/ log S(t,a)da, where [, :/ B(a)da. 24)
0 ﬂm 0 0

The property V (t) = V' (0) can be deduced from (13).

Next, we consider more specifically the role of diffusion d > 0. First, we note that in the presence of diffusion, the above
entropy V¥ based on solutions (S%(t,a), 1%(t), R%(t)) of (12) is non-decreasing in a similar manner as in the framework of
viscous perturbations of scalar conservation laws:

dve(t)  yNd [!(9,5%¢,a))?
=_ da <0. 25
dt B / Sd(t,a) = (25)
The following result emphasises the differences between the case with diffusion (d > 0) and the case without (d = 0).

Proposition 2. Assume d > 0 and consider solutions (S%(t,a),I%(t), R%(t)) of (12). The following properties hold:
(i) t— Sd(t, a) is not necessarily decreasing in time for a € (0,1) given.
(ii) IfRo= fol Sd(a)B(a)da/(Nv) > 1, then there exists tog > 0 such that t v 1%(t) is increasing for t € (0,ty).

(iii) IfRo<1l t— Id(t) is decreasing in time over a finite time interval. Still, there are situations where I can be
increasing over some later time intervals.

We will give the proof of this result in a forthcoming work.
We now compare the combined impact of heterogeneity and variability compared with the case of homogeneous populations.

Theorem 2. For given d > 0, let (S%(t,a),1%(t), R(t)) be solution of (12) with initial conditions (S§(a) = So(a),I¢(0) =
Io, R4(0) = 0). The following results holds

(i) S d(t, -) converges as t goes to +0o to a positive constant Sgo independent of a.

(ii)  Let (S(t),1(t), R(t)) be solution of the homogeneous SIR model (9) with initial conditions (S fO So(a)da,I(0)=
Io, R(0) = 0) and transmission rate (3,, = fo a)da. Then, denoting Soo the large time llmlt of ts S(t ( ), one has
SL > S

We already know from Theorem 1 above that heterogeneity is beneficial in terms of herd immunity. From this point of view, the
effect of variability is a priori not so clear because the constant shuffling of population keeps fuelling as it were the epidemic.
However, part (ii) in the previous result shows that heterogeneity and variability still have a positive effect on herd immunity
(thatis SE > S..).

The convergence of solutions to states that do no depend on « is natural because of the role of diffusion. Indeed, the diffusion
term takes over once the I(t) term becomes small and thus the first equation describes a diffusion. But this only happens in the
long term and the relevance here is rather at intermediate times.

Sketch of proof: Assuming that the initial profile Sy and 3 are regular enough in the a variable, integration by parts of the .S
equation of (12) multiplied by 9;S leads to:

1 od 2 t 1 d 2 t pl
/ (a7 (t,0) da+/ Id(T)/ 7’8((1)5 (7,0) deCH—/ / d\@an(T,a)Fdea
0 2 0 0 N o Jo
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1 od(,)\2
:/ %da forall t>0. (26)
0
Moreover,
d(y d(r o) I%
// |8tSdTa)|2dea+/ d% // Bla) S N )I()atSd(Ta)dea
1 d 2
[ austior o
0 2
Hence,
t 1 1 d
// |8tSd(T,a)|2dea+/ dwd <1 // 0,5%(r,a) 2 drda
o Jo 0
d d(r,a)21¢
+supl( sup S(a // Bla)S(r,a) I(r )dea—i-/ |8 SO( ) da forall t>0, (28)
>0 N ae,1) 2

so that we have

t 1 1 1
// |8tSd(T,a)|2dea+/ d|8an(t7a)|2da§/ d|8,58(a)? da
0 JO 0 0

d 2d
+ sup Bla //5 9)5%(r.a) I()dea (29)

a€(0,1)

It follows that 9,S%(t,-) converges to 0 in L2(0,1): if it does not hold, there exists (t,),en — +00 and o > 0 such that
|106S (tn,+) > «. On the other hand, there exists 7" such that

+oo d 27d
sup S(a //B SN)I()deS
a€(0,1)

HL2(0 1)

«
2"
From (29) generalised between two positive times, for all ¢ > T', there exists n such that ¢,, > ¢t and

1 1 1
/d|8an(tn,a)|2da§/ 410051, a)*da+ 3, so that /d\@an(t,a)Fdaz%,
0 0 0

which contradicts the integrability of 9,5 in L?(R* x (0,1)). Next, from (29), we deduce that S%(t,-) is bounded in H'(0,1)
uniformly in time, so that it is compact in C%/2(0,1): a sequence (t,)nen — 400 exists such that S%(t,,,-) converges in
C%:1/2(0,1) to some S € H'(0,1) as n goes to +oc. Since 9, 5% =0, S& is a constant. In order to prove the uniqueness of
S< . we observe that for all (£,¢') € R+?

1 t 1 t 1 d d
1/ (Sd(t,a)%sd(t',af) da:fd/ / |8an(T,a)|2dea7/ / B ()5 ra) 44 (30)
2 Jo v Jo v Jo N

and use the fact that 9,5 € L?(R* x (0,1), S/N <1,and I € L*(R™).
In order to prove (ii), using the fact that dR%(t)/dt = vI%(t) > and R%(t) < N, we deduce that R%(t) converges to some

R% > 0. The conservation of total population f01 Se(t,a)da+I%(t)+ R%(t) = 1 then yields the convergence of I%(t) to 0 as
t — 4o0.
Integrating (25) between 0 and ¢, and letting ¢ go to +oo leads to

“+o0 1 d
sd ——1og5d =v4(0 d/ /'65 (t,0)] dtda, G31)

which yields the estimate S% > S.,. The detailed proofs and further developments are postponed to a forthcoming work.
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Some simulations with rebounds and plateaus. Some simulations show that the model adequately captures dynamical
features such as epidemiological rebounds and plateaus. The initial conditions considered here are (18) where x = 0.44,
So =90 and S1 = 119,000 (total initial susceptible individuals are around 46, 398), initial infected people 1(0) = 1, and 3 is
given by (17) for 5y = 0.008 and 7 is taken such that 3(1) = 26.
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Fig. 16. Model behaviour depending on diffusion parameter values: infected rate dynamics in logarithmic scale. From left to right and then top to
bottom, graphs are associated withd = 107%,d =5-10"5,d=10"%and d = 5-10~2 (in day ! unit).

Diffusion of susceptible individuals seem to be the most sensitive parameter in order to obtain either traditional SIR type
behaviour or rebounds and plateau-type dynamics. Figure 16 illustrates the changes of dynamics depending on diffusion
parameter d. The associated dynamics of susceptible individuals are represented in Figure 17 when variable a € (0,1) is
discretized into ngy = 50 groups through a finite difference scheme. Coloured curves represent each discretized group and the
black curve the average of the groups (total susceptible individuals).
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Fig. 17. Model behaviour depending on diffusion parameter values: 50 groups of susceptible individuals, in logarithmic scale. The black curve
corresponds to total susceptible individuals and the bottom light blue curve is associated with the most risky behaviour (a close to 1) and may not
be monotonically decreasing in time. From left to right and then top to bottom, graphs are associated with d = 10~5, d = 5-1075, d = 10~3 and
d=5-1073 (in day~? unit).

One can observe the effect of diffusion: while individuals with the riskiest behaviour are rapidly consumed, their group is

renewed through diffusion from the majority of less infectious individuals. Depending on the parameter range of the diffusion
coefficient d in (12), it leads to multiple epidemic waves, plateaus, or classical single wave SIR-like dynamics.

Stability of plateaus: the key role of diffusion. Let us illustrate in a heuristic manner the impact of diffusion on the
existence and stability of plateaus in the dynamics of infectious individuals in Model (12). First, the second derivative of
x = log I satisfies

d?z 1 82(0)S(t,a 1 ,, L 0S(ta
Ta ) =10 /0 %da—d /O ,B(a)%da. 32)

In the case d = 0, we deduce from (32) that d?x/dt?(t) < 0 for all t € RT, so that x = log [ is a strictly concave function of
time. The consequence is that only slow decrease at the beginning of the decay phase can be obtained. Plateaus or shoulder-like
patterns cannot arise in the case d = 0, nor rebounds since x(t) has a single maximum after which it keeps decreasing.

In the case d # 0, Equation (32) can be reformulated as

0= (1-10). @

where )
d oS
n(t) = _N/o B (a) —6(2 9) da and I,(t)=

N nt) 34)
/0 82(a)S(t,a) da

Assuming that 5 and Sy are respectively increasing and decreasing functions of a, we deduce from Proposition 1 that n(¢) and
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I,,(t) are always positive. Introducing z,,(t) = log I,,(t), Equation (33) can be rewritten as

2(E
o 1)+ () (exple(t) — (1)) 1) =0, @)

It means that d?z/dt?(t) may be positive (resp. negative) depending on whether z(t) is lower (resp. greater) than x,(t). In
particular, in the neighborhood of times ¢ such that x(t) is close to (%),

expla(t) —xp(t)) — 1= x(t) —zp(t),

so that oscillations may arise, leading to patterns such as the ones seen on Figure 16. These oscillations also explain rebounds,
or shoulders-like patterns before plateaus. Of course, this is not a proof but an indication to this effect and it warrants further
mathematical investigation.

More general systems. First, it should be noted that the coefficient 5(a) can be time dependent: 5 = 3(t,a). We can thus
incorporate public health policies changes such as social distancing, lockdowns etc. For instance, we can consider a transition
between two profiles 51 (a) and 82(a) at a given date.

Then, we observe that System (12) is a particular case of a more general class of models. Indeed, we may want to also consider
heterogeneity in the compartment of infected. This for instance reflects the division between symptomatic and asymptomatic
individuals, or other differences. In particular, in terms of behaviour one can then include effects such as “super-spreaders”. We
then get a model where the population of infected also depends on the same parameter a, that is I = I(¢,a). We assume that
the probability of interaction between a susceptible of class a and an infected of class b is given by a coefficient of transmission
B (a,b). These considerations lead us to the following general system.

9S(t.a) _  9*S(ta

) _ 75(;\’[“) /01%(a,b)1(t,b) db,

ot da?
dl(t,a)  S(t,a) !
= /0 B(a,b)I(t,b)db—~I(t,a), (36)

1
%it) :7/0 1(t,a)da.

We observe that our model above (12) is derived from this more general class by assuming that 8 (a,b) is independent of b. In
fact, the same is true for a finite number of states. This type of modelling of heterogeneity can be found in Magal et al.(16) and
Arino et al. (13) in the discrete setting (a has a finite number of values) and without diffusion (d = 0). These works do not seem
to yield shoulder, plateau and rebound-type patterns.

For simplicity we assume that the decay rate ~y is uniform. Note that the second equation states that new infected individuals of
class a result from an infection of a susceptible individual of the same class. Other choices are possible, but then, in order to
be consistent, one would need to introduce new compartments such as symptomatic/asymptomatic, hospitalised etc. Likewise,
we could consider other variants of the SIR model, such as the SEIR model. It would then be natural to assume that exposed
individuals also move around. We are then led to a system of the following kind.

as{gi,a) B da?gc(;,a) :_S(Jt\}“) /0 laB(a,b)I(t,b)da

aEg()? a) _da2§(§?a) _ S(Jt\}a) /01%(%17)[(“’) db— pE, 37
w = pE—~l(t,a),

d%i’f) :fy/oll(t,a)da.

We can also consider a more general diffusion process on the behavioural variables than Brownian diffusion. We already
mentioned above Eq. (11) the version involving a diffusion 92, [0 (a)S(t,a)] rather than d92,S(t,a).

With a somewhat different point of view, we can assume that there is a probability kernel K (a,b) that represents the probability
distribution that an individual with trait b jumps to behaviour a. Then, the variation of .S involves an integral operator rather
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than a heat operator. We are then led to the following system.

85“’ /KabS(t b)db— S(t,a) — ﬂ(a)S(t,a)%,
L /B S(t,a)da — vI(t), (38)
d

dt ZW I(t),

System (38) is supplemented with the same type of initial conditions as above (12). Note that there are no boundary conditions
in this case.

It is classical that one can recover System (12) as a certain limit of the more general class of systems (38) (compare e.g. the
article by the first author et al. (40)). However, here it is interesting to look at more behavioural assumptions on the kernel K.
For instance, it is natural to assume that K (a,b) is singular when b is close to a, that K (a,b) is rather large when b is close to
1, whereas it is very small when b is small. We leave the study of such kernels for future study.

Digital PCR in the framework of wastewater based epidemiology. Wastewater-based surveillance has been used over the
past two decades to assess in real time the exposure of people to chemicals (in particular pollutants, licit and illicit or misused
therapeutic or other drugs) and pathogens (bacteria or viruses) at the community level (41). It provides a global picture of
population health at the scale of an urban area connected to wastewater treatment plants (WWTP). Fully complying with the
privacy of individuals, this approach rests on an explicit, objective observation. It also has the advantage to serve as an early
warning system. Nonetheless, there are also uncertainties in the quantitative interpretation of these measurements. In particular,
dilution due to storm-water, infiltration of parasite inflow water, varying population, bio-marker degradation, varying time spent
in the flow..., all generate a variety of biases.

In spite of these uncertainties, there is a renewed interest in wastewater based epidemiology (WBE), in the context of the
Covid-19 outbreak. There are numerous initiatives over the world, in Australia (27), Japan (28), Netherlands (29), Detroit (30),
Paris (31), Spain (32) and Canada (33). The recent periodic sampling campaigns in WWTPs rely on classical quantitative
real time PCR (qRT-PCR) to estimate the concentration of SARS-Cov-2. At this stage, these programs serve as early warning
platforms based on the observation that they detect SARS-Cov-2 in sewers at least seven days ahead of individual testings (30,
32, 34).

Only a few of them also used digital PCR on sub-samples to assess the measurement uncertainties of gqRT-PCR measurements.
Even if the benefit of dPCR in particular for low viral loads is mentioned (33), it is not currently used routinely for systematic
measurements, mainly for economic reasons.

Plateau-type patterns at country level. In most European countries, Covid-19 data exhibit similar plateau-type features, as
illustrated in the so called effective R coefficient computed from the daily number of deaths (25). This effective R coefficient
exhibits phases where it stabilises around 1, which corresponds to an epidemic plateau.

35
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3 lealy

25

Rt

0.5
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Time
Fig. 18. Effective R coefficient as a function of time (22) https://shiny.biosp.inrae.fr/app_direct/mapCovid19/.

Campo et al. (42) study more specifically the dynamics of Covid-19 in Italy and put emphasis on plateaus and multi-wave
patterns, for which they discuss meta-stability properties.
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Press articles illustrate the political leaders’ observation that the Covid-19 outbreak has reached a plateau phase: Reuters,
January 215¢,2021 (43); French government information service, December 10t", 2020 (44); A. Merkel, Westdeutsche Zeitung,
January 21 st 2021 (45); E. Macron, February 2nd 2021, interview on TF1 TV channel (46)).
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