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Supplementary Table Captions 
Supplementary Table 1: Detailed simulation results. For each combination of generative model 

parameters, ancestry, and trait we report (Polygenicity): trait polygenicity (European h2): Trait heritability 

in Europeans (Cross-population rg): Cross-population genetic correlation. (Method): The method name 

(see below). (#Experiments): Number of experiments performed. (Ancestry): Target ancestry. (N): Target 

ancestry sample size. (Avg. h2): Average h2 in the target ancestry. (s.d. h2): s.d. h2 in the target ancestry. 

(Average R2): Average R2. (R2 s.e.): The standard errors of R2. (R2 (normalized vs. EUR)): R2 (normalized 

against the results of the same method in Europeans). (R2 (normalized vs. EUR) s.e.): Standard error of 

R2 (normalized against the results of the same method in Europeans). (R2 (normalized vs. BOLT-LMM-

EUR)): R2 (normalized vs. BOLT-LMM in non-British Europeans). (R2 (normalized vs. BOLT-LMM-EUR) 

s.e.): The standard error of R2 (normalized vs. BOLT-LMM in non-British Europeans). (R2 (normalized vs. 

BOLT-LMM-EUR) P-value): The p-value of the statistical test testing the null hypothesis that R2 is the same 

as obtained by BOLT-LMM in non-British Europeans. (R2 (normalized vs. BOLT-LMM)): R2 (normalized vs. 

BOLT-LMM in the target ancestry). (R2 (normalized vs. BOLT-LMM) s.e.): The standard error of R2 

(normalized vs. BOLT-LMM in the target ancestry). (R2 (normalized vs. BOLT-LMM) P-value): The p-value 

of the statistical test testing the null hypothesis that R2 is the same as obtained by BOLT-LMM in the target 

ancestry. (R2 diff vs. BOLT-LMM-EUR): The difference between the R2 obtained by the current method 

and BOLT-LMM in non-British Europeans. (R2 diff vs. BOLT-LMM-EUR s.e.): The standard error of the 

difference between the R2 obtained by the current method and BOLT-LMM in non-British Europeans. (R2 

diff vs. BOLT-LMM-EUR P-value): The p-value of the statistical test testing the null hypothesis that R2 is 

the same as obtained by BOLT-LMM in non-British Europeans. (R2 diff vs. BOLT-LMM): The difference 

between the R2 obtained by the current method and BOLT-LMM in the target ancestry. (R2 diff vs. BOLT-

LMM s.e.): The standard error of the difference between the R2 obtained by the current method and 

BOLT-LMM in the target ancestry. (R2 diff vs. BOLT-LMM P-value): The p-value of the statistical test 

testing the null hypothesis that R2 is the same as obtained by BOLT-LMM in the target ancestry. The 

method names are as described in the main text, with the following rules. A suffix “-L1” indicates that 

PolyFun-pred was invoked assuming only one causal SNP per locus (and did not make use of LD 

information). A suffix “-N” indicates that the training sample size was reduced to the specified number. A 

suffix “-Nmix” indicates that the target-ancestry training sample size used for estimating mixing weights 

was modified from 500 to some other number. A suffix “-1000G” indicates that the LD reference panel 

used European data from the 1000 Genomes project. A suffix “-UK10K” indicates that the LD reference 

panel used UK10K.  A suffix “-HM3” indicates that the SNP set consisted of only 1.2 million HapMap3 SNPs. 

A suffix “NoFun” indicates that the analysis did not use functional annotations to specify per-SNP prior 

causal probabilities. 

Supplementary Table 2: Detailed simulation runtime analysis. For each combination of method and 

generative model parameters we report (Method): method name. (#Experiments): number of 

experiments performed. (Polygenicity): trait polygenicity. (European h2): h2 in Europeans. (Average run 



time (sec)): average run time in seconds. (SE (sec)): the standard error of the runtime in seconds. (Average 

run time (hr)): average run time in hours. (SE (hr)): the standard error of the runtime in hours. 

Supplementary Table 3: List of 49 diseases and complex traits. For each trait, we report its UK Biobank 

British sample size (used for training most methods), its UK Biobank British heritability estimate and its 

standard error (estimated using S-LDSC with the Baseline-LF v2.2.UKB model1), whether the trait was one 

of the 7 traits included in the meta-analysis, and whether the trait exists in Biobank Japan. 

Supplementary Table 4: Detailed results of analyses using UKB British training individuals applied to 

other UKB populations, compared vs. BOLT-LMM. For each combination of method, ancestry and trait 

(including meta-analyzed traits) we report (Method): The method name (see below). (N): Test set sample 

size; (R2): The squared Pearson correlation coefficient between the PRS and the trait after adjusting for 

covariates (see Methods); (R2 s.e.): The standard error of R2, computed via genomic block-jackknife; (R2 

(normalized vs. BOLT-LMM-EUR)): The R2 value, divided by the R2 of BOLT-LMM in non-British Europeans; 

(R2 (normalized vs. BOLT-LMM-EUR) s.e.): The standard error of the normalized R2; (R2 diff vs. BOLT-

LMM): The difference between R2 and the R2 obtained by BOLT-LMM; (R2 diff vs. BOLT-LMM s.e.) The 

standard error of the difference between R2 and the R2 obtained by BOLT-LMM, computed via genomic 

block-jackknife; (R2 diff vs. BOLT-LMM  (normalized vs. BOLT-LMM-EUR)): The difference between 

normalized R2 and the normalized R2 obtained by BOLT-LMM; (R2 diff vs. BOLT-LMM  (normalized vs. 

BOLT-LMM-EUR) s.e.): The standard error of the difference between normalized R2 and the normalized 

R2 obtained by BOLT-LMM; (R2 vs. BOLT-LMM (normalized vs. BOLT-LMM-EUR) P-value): The P-value of 

the difference between the normalized R2 and the normalized R2 obtained by BOLT-LMM; (Regression 

slope): Slope obtained when regressing the true phenotype on the PRS; (Regression slope s.e.): The 

standard error of the regression slope, computed via genomic block-jackknife; (R2 ind-s.e.): The standard 

error of R2, computed via jackknife over individuals; (Mixing weights): The mixing weights of combined 

methods (blank for non-combined methods). The first value is the intercept, and the other values are 

PolyPred, BOLT-LMM (resp. SBayesR or PRS-CS), and BOLT-LMM-BBJ (when there are four numbers) (resp. 

SBayesR-BBJ or PRS-CS-BBJ); (P vs. Europeans): The p-value of the hypothesis that the R2 obtained in the 

target ancestry is the same as in non-British Europeans (under the same method and trait), as computed 

via a conservative Wald test (Methods). The method names that are not explicitly defined in the main text 

are the following: Methods ending with -pX (where X is a number) are methods using a fixed mixing 

weight X for PolyPred and its extensions; Methods ending with with -100 use 100 individuals from the 

target cohort to estimate mixing weights  (instead of 500 as used by most combined methods);  BOLT-

LMM-727K: BOLT-LMM using only genotyped SNPs; LDpred-1000G-p: LDpred using the 1000 genomes 

project Europeans as an LD reference panel, and assuming that proportion p of causal SNPs are causal; 

LDpred-1000G-cheat: LDpred using the 1000 genomes Europeans as an LD reference panel, and using the 

best value of p for each trait (as determined via R2 in the test set); LDpred-UK10K-p: LDpred using the 

UK10K cohort as an LD reference panel, and assuming that proportion p of causal SNPs are causal; LDpred-

UK10K-cheat: LDpred using the UK10 cohort as an LD reference panel, and using the best value of p for 

each trait (as determined via R2 in the test set) (we caution that standard errors of methods using only 

PIP>0.95 SNPs may not be accurate because of the small number of SNPs used); PRS-CS-phi0.0001: PRS-

CS with –phi=0.0001; PRS-CS-phi0.01: PRS-CS with –phi=0.01; PRS-CS: PRS-CS using a Biobank reference 

panel LD, and without specifying –phi; PRS-CS-cheat: PRS-CS that uses the best value of –phi for each 

target ancestry; PRS-CS-1000G: PRS-CS, using N=489 1000 Genomes project Europeans as an LD reference 

panel; PolyFun-pred-pipP:  PolyFun-pred restricted to SNPs with PIP greater than P; PolyFun-pred-NoFun: 



PolyFun-pred without using functional annotations; PRS-CS-BBJ: PRS-CS, trained on Biobank Japan 

individuals (using a UK Biobank East-Asian LD reference panel); P+T-pX: P+T  that uses only SNPs with 

BOLT-LMM P-value <X; P+T-cheat: P+T that uses the best value of X for each target ancestry.  PolyPred+-

Ext: PolyPred+ with mixing weights estimated in Biobank Japan; PolyPred-pipP:  PolyPred restricted to 

SNPs with PIP greater than P; PolyPred-NoFun: PolyPred without using functional annotations; SBayesR-

2.8M: SBayesR using 2.8M common SNPs selected by the SBayesR authors; SBayesR-UK10K: SBayesR, 

using UK10K (N=3000) as an LD reference panel; SBayesR-1000G: SBayesR, using the 1000 Genomes 

project Europeans (N=489) as an LD reference panel; SBayesR-UK10K-489: SBayesR, using a subset of 

UK10K individuals matched to the 1000 Genomes project Europeans sample size (N=489) as an LD 

reference panel; PolyFun-pred-UK10K: PolyFun-pred, using UK10K (N=3000) as an LD reference panel; 

BOLT-LMM-N-African: BOLT-LMM, evaluated by subsampling the test set of each population to the 

African sample size of the corresponding trait (unless the sample size was smaller than the African sample 

size). To see the numerical results of the analyses reported in the main text, please filter the Trait column 

to show only the trait ‘Meta-Analysis’. 

Supplementary Table 5: Comparisons between pairs of methods in analyses of real UK Biobank and 

Biobank Japan traits. The table reports comparisons of selected pairs of methods mentioned in the main 

text. For each pair of methods we report its training data (UKB indicates individual-level data or summary 

statistics from 337K UK Biobank British individuals; ENGAGE indicates summary statistics from the 

European Network for Genetic and Genomic Epidemiology; UKB+BBJ indicates a combination of UK 

Biobank and Biobank Japan training data); the names of the two methods (Method1 and Method2); the 

target ancestry; the trait name; the target ancestry sample size; the accuracy (R2) of method1; the 

difference in R2 between the two methods (Method1 R2 – Method2 R2) and its standard error; and the p-

value of the difference, as computed via a genomic block jackknife over 200 genomic blocks. 

Supplementary Table 6: Detailed results of analyses using UKB British training individuals applied to 

other UKB populations, compared vs. PolyPred. The table is analogous to Table 4, but all results are 

normalized and compared with respect to PolyPred instead of BOLT-LMM. 

Supplementary Table 7: Ancestry-specific SNP heritability estimates in the UK Biobank, across 7 

independent complex traits. For each trait (including meta-analyzed traits) we report its sample size (n), 

its SNP heritability estimate (h2g) and its standard error (se). All estimates were performed using GCTA2 

with HapMap 33 SNPs due to the relatively small sample sizes. Non-British Europeans were down-sampled 

to 10,000 individuals to facilitate the analysis. Meta-analyzed h2g was computed via the average h2g, and 

the meta-analyzed standard error was computed via the square root of the average sampling variance, 

divided by the square root of the number of traits. 

Supplementary Table 8: Prediction accuracy using summary statistics from the from the European 

Network for Genetic and Genomic Epidemiology. The table is analogous to Supplementary Table 4, but 

reports results based on training data from the European Network for Genetic and Genomic Epidemiology 

(ENGAGE) for four traits (BMI, waist-hip-ratio (adjusted for BMI), total cholesterol, and triglycerides) 

(average N=61K) instead of training data based on up to N=337K UK Biobank British individuals. 

Supplementary Table 9: Detailed results of analyses applied to Biobank Japan and to Uganda-APCDR. 

The table is analogous to Table 4, but includes columns comparing each method to PolyPred in addition 

to columns comparing each method to BOLT-LMM. 



Supplementary Table 10: Comparing prediction accuracy in UK Biobank Non-British Europeans and in 

Biobank Japan when using equal training set sample sizes. For each of 7 independent traits we report 

(N) its Biobank Japan training sample size (which was also used for the UK Biobank British training sample 

size in this analysis); (h2g (UKB-EUR)) its non-British European SNP heritability, as estimated by BOLT-

REML; (h2g (BBJ)) its Biobank Japan SNP heritability, as estimated by BOLT-REML; (R2-expected (UKB 

EUR)) the expected R2 in non-British Europeans as a function of training set sample size and SNP 

heritability, based on theory (see Supplementary Note); (R2-expected (Biobank Japan)) the expected R2 

in Biobank Japan as a function of training set sample size and SNP heritability, based on theory; (R2 (UKB-

EUR)) the R2 obtained in practice in non-British Europeans when training BOLT-LMM using a UK Biobank 

British training sample with the same sample size as the Biobank Japan training sample size; (R2 (BBJ)) the 

R2 obtained in practice in 5K Biobank Japan individuals when training BOLT-LMM using a Biobank Japan 

training sample. 

Supplementary Table 11: Description of 187 baseline-LF model annotations used by PolyFun-pred. For 

each annotation we report #SNPs in the annotation (unless it is a continuous-valued annotation), 

#common (MAF>0.05) SNPs in the annotation, whether it is binary or continuous-valued, and a literature 

reference. 

 

Supplementary Note 

Simulations with reference LD 
The simulations described in the main text use in-sample LD (i.e., LD summary data based on the UK 

Biobank GWAS sample). However, researchers often do not have access to in-sample LD, necessitating 

external LD reference panels. We thus evaluated modified versions of PolyFun-pred, SBayesR and PRS-CS 

that use summary LD estimated from 1000 Genomes project Europeans4 (N=489).  We note that this LD 

reference panel is both smaller than the UK Biobank British LD reference panel (N=337K) and less well-

matched to the GWAS sample, because it consists of pan-European ancestries rather than only British-

ancestry individuals. We excluded BOLT-LMM from these analyses because it requires individual-level 

data. 

The results of simulations with reference LD are reported in Supplementary Table 1. All methods became 

less accurate when using 1000 Genomes project Europeans LD summary data. The loss of accuracy was 

modest for SBayesR (-5% R2 for non-British Europeans vs. using in-sample LD) but severe for PRS-CS (-42% 

R2 for non-British Europeans vs. using in-sample LD) and PolyFun-pred (-90% for non-British Europeans vs. 

using in-sample LD). We caution that the differences observed in real trait analysis for SBayesR and PRS-

CS were substantially different from those observed in our simulations (large loss of accuracy for SBayesR, 

no significant loss of accuracy for PRS-CS), suggesting that the effect of LD mismatch on PRS accuracy may 

be sensitive to the underlying genetic architecture. 

We performed 3 secondary analyses. First, we evaluated a modified version of PolyFun-pred that uses 

summary LD from UK10K5 (N=3,567). We observed only a moderate loss of accuracy in PolyFun-pred vs. 

using in-sample LD (-8% R2 in non-British Europeans) (Supplementary Table 1). However, we caution that 

using UK10K led to substantial and statistically significant loss of accuracy in real trait analysis, suggesting 

that the results may be sensitive to the underlying genetic architecture. Second, we evaluated modified 



versions of PolyFun-pred using subsets of UK10K as an LD reference panel, ranging from N=3,000 to N=489 

(matching the 1000 Genomes project Europeans reference LD sample size). The accuracy of PolyFun-pred 

decreased with the LD reference panel sample size, with the loss in accuracy vs. using in-sample LD (for 

non-British Europeans) ranging from -8% for N=3,000, to -90% for N=489 (Supplementary Table 1). Finally, 

we evaluated a modified version of PolyFun-pred (PolyFun-pred1) that assumes a single causal variant per 

locus, precluding the need for a reference LD panel (because fine-mapping under a single casual variant 

assumption does not require any LD information1). PolyFun-pred1 was substantially less accurate than all 

other methods (including P+T) and is thus not recommended for polygenic prediction (Supplementary 

Table 1). 

We conclude that the accuracy of all methods increases with the size of the LD reference panel and its 

concordance with the GWAS sample population, but that the relationship may depend on the underlying 

genetic architecture. Hence, it may be best to assess the accuracy obtained under various LD reference 

panels using real trait analysis rather than simulations. Specifically, the simulation results do not support 

the use of PolyPred-S or PolyPred-P in the specific scenarios considered in these simulations. However, 

real data results with very large LD reference panels do support the use of PolyPred-S or PolyPred-P (Figure 

5). We did not perform simulations with very large unmatched LD (analogous to Figure 5), as this would 

have required another very large individual-level data set in addition to UK Biobank. 

 

Causal vs. tagging effects 

We consider a linear model 𝑦 = ∑ 𝑥𝑖𝛽𝑖𝑖 + 𝜖 where 𝑦 is a trait, 𝑥𝑖 is the number of minor alleles at SNP 𝑖, 

𝛽𝑖 is the (true) causal effect size of SNP 𝑖, and 𝜖 is a residual term sampled from a normal distribution. We 

consider a method (such as PolyFun-pred) that estimates 𝛽𝑖. If the generative model holds and all SNPs 𝑖 

are considered in the estimation procedure, then the estimated value 𝛽̂𝑖 is a consistent estimator of 𝛽𝑖, 

and thus 𝛽̂𝑖 represents a causal effect. In contrast, if only a subset of the SNPs, such as HapMap3 SNPs, 

are considered in the estimation procedure (i.e. if we incorrectly assume the generative model 𝑦 =

∑ 𝑥𝑖𝛽𝑖𝑖∈𝑆 + 𝜖, where 𝑆 is a subset of SNPs) then the estimated value 𝛽̂𝑖 represents a linear combination 

of 𝛽𝑖 and of the effect sizes of other SNPs. 

The exact value estimated by 𝛽̂𝑖 depends on the estimation procedure. For example, assuming an ordinary 

least squares estimator for simplicity, the vector 𝜷̂𝑆 of estimated coefficients is a consistent estimator of 

[𝐼𝑚−𝑘  𝑅𝑆𝑆
−𝟏𝑅𝑆𝑆̅]𝜷, where 𝑚 is the total number of SNPs, 𝑘 is the number of SNPs in the set 𝑆, 𝑅𝑆𝑆 is the LD 

matrix of the SNPs in the set 𝑆, 𝑅𝑆𝑆̅ is a matrix wherein each entry 𝑖, 𝑗 is the correlation between SNP 𝑖 in 

the set 𝑆 and SNP 𝑗 in the set of SNPs that are not in 𝑆, and 𝜷 is the vector of true effect sizes, assuming 

without loss of generality that the set 𝑆 includes the first 𝑘 SNPs (out of 𝑚 SNPs considered). It is easy to 

derive this quantity by writing down the conditional expectation of 𝜷̂𝑆 under an ordinary least squares 

estimator, given by E[𝜷̂𝑆 | 𝜷] = E[(𝑿𝑠
𝑇𝑿𝑠)−1𝑿𝑠

𝑇𝒚  | 𝜷], where 𝒚 = 𝑿𝜷 + 𝝐 is a vector of observed 

phenotypes and 𝑿 is the corresponding matrix of SNPs, 𝑿𝑠 is the submatrix of X consisting of columns of 

SNPs in the set 𝑆, and we assume that 𝜖 is independent of 𝑿. 

Investigating if off-cohort loss of accuracy is driven by SNP heritability differences 
We investigated if lower prediction accuracies in Biobank Japan vs. the UK Biobank can be largely 
explained by SNP heritability differences. We began by comparing trait heritabilities across the UK Biobank 



and Biobank Japan, using BOLT-REML6 applied to UK Biobank British-ancestry individuals (average 
N=325K) and to Biobank Japan (average N=124K), restricting to HapMap 3 SNPs. The average heritability 
in the UK Biobank was 67% larger (Supplementary Table 10), indicating differences in either trait 
measurement, cohort ascertainment, the ability of HapMap 3 SNPs to tag East Asian causal SNPs7, or in 
the true underlying heritabilities (we could not perform a similar analysis with UK Biobank East Asian 
individuals due to small sample sizes leading to large standard errors). We next asked if the observed 
differences in PRS accuracy between Biobank Japan and the UK Biobank can be explained by the 67% 
increased average SNP heritability in the UK Biobank. To this end, we computed the expected R2 within 
each cohort as function of SNP heritability, sample size, and the effective number of independent SNPs8,9: 

E[𝑅2] = ℎ2
ℎ2

ℎ2 +
𝑚
𝑛

. 

Here, ℎ2 is SNP heritability, 𝑛 is sample size, and 𝑚 is the effective number of independent SNPs (which 
we specified as 55,000, determined by dividing the number of HapMap 3 SNPs by their average within-
HapMap 3 LD-score). We used the smaller Biobank Japan sample size in both cohorts to eliminate 
differences due to sample size differences (by choosing a random subset of UK Biobank British individuals 
as a training set). The average expected R2 in the UK Biobank was 104% larger than in Biobank Japan 
(Supplementary Table 10). We then trained BOLT-LMM using subsets of the UK Biobank British sample 
(matching the Biobank Japan sample size for each trait) and applied the predictions to UK Biobank non-
British Europeans. The average R2 in UK Biobank non-British Europeans (when training BOLT-LMM using 
the reduced British training sample) was 108% larger than the average R2 in Biobank Japan (when training 
BOLT-LMM using the Biobank Japan training sample) (Supplementary Table 10), strongly consistent with 
the 104% increase expected from theory. Finally, we determined that when training BOLT-LMM using the 
full UK Biobank British training set (average N=325K), the average 𝑅2 in UK Biobank East Asians across the 
7 independent traits is 93% larger than in Biobank Japan (Supplementary Tables 4 and 9), broadly 
consistent with the previous results. Assuming that the main factor differentiating the UK Biobank East 
Asian sample from the Biobank Japan sample is SNP heritability differences (rather than differences in 
MAF, LD, or causal effect sizes), these findings suggest that the main factor leading to lower prediction 
accuracies in Biobank Japan vs. the UK Biobank is SNP heritability differences. 
 
To further investigate if off-cohort loss of accuracy is driven by SNP heritability differences, we compared 
prediction accuracies in UK Biobank East Asians and in Biobank Japan, when training BOLT-LMM using the 
Biobank Japan training sample. The average relative-R2 in UK Biobank East Asians across the 7 
independent traits was 9.0% larger (Supplementary Tables 4,10), though the difference was not 
statistically significant (P=0.18), possibly owing to the small UK Biobank East Asian sample size. 
 
Although these results are not conclusive, they suggest that heritability differences drive most of the 
differences in prediction accuracies observed between the UK Biobank and Biobank Japan. Surprisingly, 
these results are consistent with a model in which HapMap 3 SNPs in Biobank Japan tag approximately 
50% of the causal SNPs that they tag in the UK Biobank, rather than a model in which SNP heritabilities in 
Biobank Japan are smaller due to smaller causal effect sizes. This is because under the second model, we 
would expect to see large increase in prediction accuracy in UK Biobank East Asians vs. Biobank Japan 
when training BOLT-LMM using Biobank Japan (compared with only a 9.0% increase observed in practice). 
A partial explanation is that the HapMap 3 SNP set consists of a combination of two genotyping chips, one 
of which is explicitly designed to optimize tagging in Europeans10. 
 
 



Decomposing the PolyFun-pred and BOLT-LMM predictors into shared and non-shared 

components 
A linear combination of PRS predictors is not necessarily suboptimal, even if the methods are correlated. 

(As an extreme example, a linear combination of two perfectly correlated predictors is optimal.) However, 

a linear combination could be suboptimal if the correlation between the (effect sizes underlying the) two 

predictors varies across the genome. As an extreme example, consider a scenario where one predictor is 

perfectly accurate across the first half of a chromosome but uninformative across the second half, 

whereas the second predictor is uninformative across the first half but perfectly accurate across the 

second half. Clearly, the optimal combination would use only the (effect sizes of the) first predictor for 

the first half of the chromosome, and only the (effect sizes of the) second predictor for the second half of 

the chromosome. However, a simple linear combination assigns only a single mixing weight to each 

predictor, and will thus assign equal weights to both predictors, resulting in a suboptimal predictor. 

We performed several attempts to improve upon a simple linear combination of PRS predictors by 

partitioning the genome into segments and estimating different linear mixing weights in different 

segments. However, this more complex approach did not outperform the simple approach of assigning a 

simple mixing weight to each predictor (results not shown), and we thus did not pursue it further. 
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