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Abstract

When comparing the risk of a post-infection binary outcome, e.g. hospitalisation,
for two variants of an infectious pathogen, it is important to adjust for calendar
time of infection to avoid the confounding that would occur if the relative incidence
of the two variants and the variant-specific risks of the outcome both change over
time. Infection time is typically unknown and time of positive test used instead.
Likewise, time of positive test may be used instead of infection time when assessing
how the risk of the binary outcome changes over calendar time. Here we show that
if mean time from infection to positive test is correlated with the outcome, the
risk conditional on positive test time depends on whether incidence of infection is
increasing or decreasing over calendar time. This complicates interpretation of risk
ratios adjusted for positive test time. We also propose a simple sensitivity analysis
that indicates how these risk ratios may differ from the risk ratios adjusted for
infection time.

Key words: COVID-19; epidemic phase bias; selection bias.

1 Introduction

Consider the problem of estimating the distribution of time between a first event
(e.g. becoming infected with SARS-CoV-2) and a second event (e.g. testing positive
for the virus) in the population of individuals who ultimately experience the second
event. We shall call this time the ‘inter-event time’ or ‘delay’. Estimating this
distribution may be complicated by the first event time not being observed and/or
the available data being right-truncated on the second event time, due to only
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sampling individuals who experience the second event by a particular calendar
time.

It has long been known that the inter-event times in the population of individuals
who have experienced the second event before a given time tend to be shorter
than in the population of all individuals (who eventually experience the second
event) [3, 12, 20]. More precisely, the conditional probability that the inter-event
time is less than l given that the second event has occurred by a given time is
greater than the corresponding unconditional probability (unless all second events
have occurred by that time).

It has also been noted that the conditional distribution of inter-event time given
the actual time of the second event depends on the marginal distribution of the
first event time [13, 19, 10]. In particular, if the first event is generated by a Pois-
son process whose rate is increasing with time, then the conditional distribution of
the inter-event time given the second event time is shifted towards zero compared
to the unconditional distribution. On the other hand, if the rate is decreasing, the
conditional distribution of the inter-event time is shifted away from zero compared
to the unconditional distribution. This means that in the context of an infec-
tious disease the time from infection (first event) to positive test (second event)
in those who test positive at a given time tends to be shorter than average when
the incidence of infection is rising, and longer than average when the incidence is
falling.

Now consider a third variable, which is measured at, or after, the time of the
second event and is correlated with the inter-event time. Just as the distribution
of inter-event time is affected by conditioning on the time of the second event,
so might the distribution of this variable. For example, an infected individual’s
viral load at time of positive test is a function of time since infection. Rydevik
et al. (2016) observed that this relation could be used to estimate an individual’s
infection time from that individual’s viral load at the time of testing positive [19].
Hay et al. (2021a) used this same idea to estimate the pattern of incidence of in-
fection in the population from data on the distribution of viral load (measured as
the cycle threshold) in a random sample of individuals who tested positive on a
given day [10]. If the mean viral load is high, this suggests most of the sampled
individuals were infected recently, which is consistent with a rising incidence of
infection. Conversely, if the mean viral load is low, this suggests less recent infec-
tion, and so a falling incidence. Hay et al. (2021b) investigated using such data to
estimate simultaneously the pattern of incidence of infection and the dependence
of the viral load on the time since infection [11]. Similar work had previously been
done in the field of HIV/AIDS (e.g. [14, 6, 22]).

In the present article we consider the estimation of the distribution of a third vari-
able where this variable is a binary outcome of interest. An association between
this binary outcome and the inter-event time could arise due to factors that deter-
mine both. We take the first and second events to be infection and positive test,
respectively, and the binary outcome to be hospitalisation within 14 days of the
positive test, although what follows would apply to any other binary outcome, e.g.
death within 28 days of a positive test. Individuals with more severe infections

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21262014doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21262014
http://creativecommons.org/licenses/by/4.0/


may tend to experience symptom onset sooner after infection — and consequently
be tested earlier — than average and also be more likely to become hospitalised. In
this situation, the hospitalisation risk (i.e. the proportion ultimately hospitalised)
in individuals who test positive before a particular calendar time would be higher
than the risk in all individuals who eventually test positive. More importantly for
this article, the hospitalisation risk in individuals who test positive at a partic-
ular calendar time will differ from the risk in all individuals who eventually test
positive (unless the incidence of infection is constant over time). If the incidence
of infection is rising, the former risk will be higher than the latter; if incidence is
falling, it will be lower.

This dependence of the hospitalisation risk on the trajectory of incidence of infec-
tion is particularly relevant for any investigation of how the risk is changing over
time. Ideally, such an investigation might involve comparing the risks for individ-
uals with different infection times. If, as is likely, infection times are unknown, it
would be natural to instead compare the risks for individuals with different positive
test times. The difficulty with interpreting this latter comparison is that, as noted
above, even if the risk does not vary by the infection time, it will depend on the
time of positive test.

Another situation where one might condition on time of positive test is when com-
paring the risks associated with two variants of a given pathogen, in this case
SARS-CoV-2. Here, controlling for (i.e. conditioning on) time of infection would
be important, because the ‘exposure’ (i.e. a binary variable for the variant) and the
outcome (hospitalisation) may both depend on calendar time. The exposure would
depend on time if the ratio of the incidence rates of infection with the two variants
varied over time. That would the case if, for example, one variant emerged earlier
but the other variant later became dominant. The hospitalisation outcome would
depend on time if measures designed to reduce the need for hospitalisation and/or
policies on hospital admission changed over time. Failure to control for infection
time when comparing the risks of hospitalisation for the two variants would mean
comparing the risk in individuals infected with one variant, whose infection times
may have been predominantly when pre-hospital treatments were less effective
and/or hospital admission more encouraged, with the risk in individuals infected
with the other variant, whose infection times were mostly when pre-hospital treat-
ments were better or hospital admission more restricted. If infection times are
unknown, it would be natural to control instead for the time of positive test. The
difficulty with this approach is that, even if the hospitalisation risk is the same for
both variants and does not depend on time of infection, once we condition on time
of positive test a variant that has increasing incidence of infection will appear to
have a higher risk than a variant that has a decreasing incidence.

Numerous studies have compared the risks of hospitalisation, intensive care unit
admission and/or death in individuals infected with two variants of SARS-Cov-2
(either Alpha versus wildtype or Delta versus Alpha), adjusting for time of positive
test [2, 4, 5, 8, 9, 15, 16, 21, 23]. In all these studies, the incidence of one variant
has been rising while the other has been falling or has been rising at a slower rate.

In this article, we describe in detail why and how the conditional risk of hospitalisa-
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tion given time of positive test depends on the trajectory of incidence of infection,
even when the conditional risk given time of infection does not. We also propose an
easily implemented method that provides an indication of how much an estimate
of the risk conditional on the positive test time might differ from the estimate one
would have obtained if it had been possible to condition on the infection time. This
method requires the user to specify a range of plausible values for the difference
between the mean time from infection to positive test in those individuals who
become hospitalised and the mean time in those who do not become hospitalised.

The structure of the article is as follows. Section 2 defines our notation. Section 3
describes why and how the distribution of the delay conditional on the time of
positive test depends on the incidence of infection. Section 4 goes on to explain how
this dependence affects the conditional risk of hospitalisation given positive test
time. In Section 5 we describe our proposed method, which involves conditioning on
an alternative proxy of infection time. The performance of this method is studied
in Section 6. Censoring of the hospitalisation outcome is discussed in Section 7.
We conclude with a discussion in Section 8.

2 Notation

We shall consider the population to be everyone who is at risk of infection from
some calendar time zero. Time can be measured discretely or continuously. Sup-
pose for now that all infections result in positive tests. In Section 8 we shall discuss
the consequences of violation of this assumption. If an individual has two or more
separate episodes of infection, we only consider the first episode.

For each individual in the population, let I denote the time of infection, and let
L be the delay (‘L’ for ‘lag’) between infection and positive test. Now, T = I + L
is the time of positive test. Let H equal 1 if the individual is hospitalised within
14 days of positive test, and 0 otherwise. In Section 3, we shall use X to denote
a covariate or vector of covariates that are fixed from the time of infection. For
example, X could be X = (V, U), where V is a binary variable indicating which
variant of the virus has infected the individual, and U is age and ethnicity. In this
situation, we might be interested in the odds ratio of hospitalisation associated
with V adjusted for U and, ideally, time of infection.

3 Delay distribution conditional on test time

In this section and Section 4, we shall assume, for simplicity, that L is independent
of I. Using Bayes’ Rule, fL(l | T = t), the conditional probability distribution
function of the delay given the positive test occurs at time t, can be shown to be
related to the unconditional probability distribution function fL(l) by

fL(l | T = t) =
fT,L(t, l)

fT (t)
=
fI,L(t− l, l)

fT (t)
= fL(l)× fI(t− l)

fT (t)
(1)
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If the incidence of infection is increasing over the period prior to time t, fI(t − l)
will be a decreasing function of l. So, for any l1 < l2, we have fI(t− l1) > fI(t− l2)
and so equation (1) implies

fL(l1 | T = t)

fL(l1)
=
fI(t− l1)
fT (t)

>
fI(t− l2)
fT (t)

=
fL(l2 | T = t)

fL(l2)
. (2)

From inequality (2), we have

fL(l1 | T = t)

fL(l2 | T = t)
>
fL(l1)

fL(l2)
.

That is, conditioning on T = t shifts probability mass from larger values of L to
smaller values. So, if we look only at those individuals whose positive test time
is t, then small delays will be over-represented and long delays under-represented.
This is not surprising, since an individual with positive test time t had a short
delay if he was infected recently and a long delay if he was infected long ago, and
there are more individuals infected recently than individuals infected long ago.

Conversely, if the incidence of infection is decreasing, fI(t− l) will be a increasing
function of l, and so

fL(l1 | T = t)

fL(l2 | T = t)
<
fL(l1)

fL(l2)
.

That is, conditioning on T = t shifts probability mass from smaller values of L to
larger values: long delays are over-represented and short delays under-represented.
In this situation, there are fewer individuals infected recently than individuals
infected long ago.

Example 1

Suppose half of infected individuals test positive on the day after they are infected
and the other half test positive two days after they are infected. That is, P (L =
1) = P (L = 2) = 0.5. Further, suppose that 100 individuals are infected on day
t−2 and 150 individuals are infected on day t−1 (so incidence is increasing). Then
125 individuals will test positive on day t and, of these, 50 were infected on day
t−2 and 75 were infected on day t−1. So, the proportion of these 125 individuals
whose delay was one day is 75/125 = 0.6 > 0.5. Conversely, suppose that 150
individuals are infected on day t− 2 and 100 individuals are infected on day t− 1
(incidence is decreasing). Then 125 individuals will again test positive on day t,
but the proportion of these whose delay is one day is only 50/125 = 0.4 < 0.5.

Example 2

Verity et al.[25] (see also [20]) showed that if infections are generated by a Poisson
process with rate at time t proportional to exp(λt) for some λ, and the delay L has
a gamma distribution with shape α and rate β, then the conditional distribution of
L given T = t is gamma with shape α and rate β + λ. If λ > 0, then the incidence
is rising (exponentially) and the conditional mean delay, α/(β + λ), is less than
the unconditional mean α/β. If instead λ < 0, then the incidence is falling and
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the conditional mean delay is greater than the unconditional mean. If λ = 0, the
two gamma distributions are the same.

Example 3

Figure 1 shows how the hospitalisation risk conditional on positive test time varies
according to positive test time in a scenario where the incidence of infection first
rises then falls, then rises and falls again. Here, the hospitalisation risk conditional
on infection time is 5% irrespective of the infection time, and the mean time from
infection to positive test is shorter in individuals who are ultimately hospitalised
than in those who will not.

4 Hospitalisation risk conditional on test time

As we have seen, conditioning on the positive test time changes the distribution of
the delay in circumstances where the delay is independent of the time of infection.
If hospitalisation is more common in individuals with shorter delays than in those
with longer delays, i.e. P (H = 1 | I = t, L = l) is a decreasing function of l,
then conditioning on the positive test time might be expected also to change the
probability of hospitalisation. The effect of conditioning on T = t will depend on
whether the incidence of infection is rising or falling. If it is rising, we might expect
the proportion of hospitalisations to be increased, because short delays are over-
represented. Conversely, if the incidence is falling, we might expect the proportion
of hospitalisations to be decreased. We now confirm mathematically that this is
true when the risk of hospitalisation either does not depend on the time of infection
or changes little over the course of all but the longest delays.

Suppose that almost all delays are at most l∗ for some constant l∗ (i.e. P (L > l∗) ≈
0). Also, assume that P (H = 1 | I = t − l, L = l) ≈ P (H = 1 | I = t, L = l) for
all 0 < l ≤ l∗. The risk of hospitalisation conditional on time of infection can then
be written as

P (H = 1 | I = t) =

∫ ∞
0

P (H = 1 | I = t, L = l) fL(l) dl

≈
∫ l∗

0

P (H = 1 | I = t, L = l) fL(l) dl. (3)

Likewise, the risk of hospitalisation conditional on positive test time is

P (H = 1 | T = t) =

∫ ∞
0

P (H = 1 | I = t− l, L = l) fL(l | T = t) dl

≈
∫ l∗

0

P (H = 1 | I = t− l, L = l) fL(l | T = t) dl.

≈
∫ l∗

0

P (H = 1 | I = t, L = l) fL(l | T = t) dl. (4)

Expressions (3) and (4) are both weighted averages of P (H = 1 | I = t, L = l).
In expression (3) the weighting function is fL(l); in (4) it is fL(l | T = t). If the
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incidence of infection is increasing over the period [t − l∗, t], then, as explained
in Section 3, conditioning on T = t shifts probability mass from larger values of
L to smaller values. Hence, the weighted average in expression (4) gives more
weight to small values of l (and less weight to large values of l) than does the
weighted average in expression (3). This, combined with our assumption that
P (H = 1 | I = t, L = l) is a decreasing function of l, implies that (4) is greater
than (3). That is, P (H = 1 | T = t) > P (H = 1 | I = t). On the other hand, if
the incidence of infection is decreasing over the period [t− l∗, t], then (as explained
in Section 3) conditioning on T = t shifts probability mass from smaller values of
L to larger values, with the result that P (H = 1 | T = t) < P (H = 1 | I = t).

Example 1 continued

Suppose P (H = 1 | I = t, L = 1) = 0.05 and P (H = 1 | I = t, L = 2) = 0.01.
Then P (H = 1 | I = t) = (0.05 + 0.01)/2 = 0.03. If the incidence of infection
is increasing, then of the 125 individuals who test positive on day t, the expected
number who are hospitalised is 50 × 0.01 + 75 × 0.05 = 4.25, corresponding to
a proportion of 4.25/125 = 0.034 (which is > 0.03). If, on the other hand, the
incidence of infection is decreasing, then of the 125 individuals who test positive
on day t, the expected number who are hospitalised is 75×0.01+50×0.05 = 3.25,
corresponding to a proportion of 0.026 (which is < 0.03). The ratio of these two
proportions is 0.034/0.026 = 1.31, and so the hospitalisation risk conditional on
time of positive test would differ by 31% between a period of epidemic growth and
a period of epidemic decline.

5 Hospitalisation risk conditional on infection time

plus random delay

Suppose now that we had a different proxy of infection time, which, unlike positive
test time, were not associated with the hospitalisation outcome. If we conditioned
on this proxy, we might achieve the goal of approximately adjusting for time of
infection without creating a measure of hospitalisation risk that depends on the
trajectory of the infection incidence. We now describe such a proxy.

Suppose, hypothetically, that each individual who becomes infected at time I = i
and tests positive at time T = t is randomly assigned a time variable T 0 sampled
from the conditional distribution of T given I = i and H = 0, i.e. the distribution
of positive test time in those who are infected at the same time and who are not
ultimately hospitalised. This time T 0 will be our proxy of infection time. By
construction, it is not associated with the hospitalisation outcome H.

We cannot actually carry out this assignment in practice, because we do not observe
I. However, under the following working assumption, we shall still be able to
estimate P (H = 1 | T 0 = t).

Assumption 1:
fT (t | I,H = 1) = fT (t+ c | I,H = 0),
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where c is some known constant.

Assumption 1 means that the distribution of time from infection to positive test
(conditional on time of infection) in ultimately hospitalised individuals equals the
corresponding distribution in ultimately non-hospitalised individuals shifted by c
days. So, the mean time from infection to test in the ultimately hospitalised is c
days less than the mean in the ultimately non-hospitalised. We might expect that
c > 0.

If Assumption 1 holds, then (see Appendix A for proof)

P (H = 1 | T 0 = t) = P (H = 1 | T + cH = t). (5)

It follows from equation (5) that P (H = 1 | T 0 = t) can be consistently estimated
simply by creating the new variable T ∗ = T + cH (which equals T for ultimately
non-hospitalised cases and T + c for ultimately hospitalised cases) and calculating
the proportion who have H = 1 among those sampled individuals with T ∗ = t (or,
if time is continuous, T ∗ ≈ t).

The hospitalisation risk conditional on T 0, i.e. P (H = 1 | T 0 = t), has the desirable
property that P (H = 1 | T 0 = t) = P (H = 1 | I = t) if P (H = 1 | I = t) does not
depend on t. More generally, if P (H = 1 | I = t) ≈ P (H = 1 | I = t + l) for all
0 < l ≤ l∗, then P (H = 1 | T 0 = t) ≈ P (H = 1 | I = t). That is, when the risk
conditional on I is constant or changes only slowly over time, conditioning on T 0

yields almost the same risk as conditioning on I.

In Appendix B, we allow for covariates X that are fixed at the time of infection
and for the possibility that our sample consists of individuals who are sampled
conditionally on their positive test time lying within some calendar time interval,
i.e. conditional on T ∈ [τ1, τ2], for some 0 ≤ τ1 ≤ τ2.

In practice, it is unlikely that we shall know the true value of c. However, one
may be able to specify a range of plausible values for it and then investigate how
sensitive the estimate of P (H = 1 | T 0) is to this value.

Assumption 1 states that the distribution of delay in hospitalised individuals equals
the distribution of delay in non-hospitalised individuals shifted by some number
(c) of days. This assumption may well be false. In particular, it implies that the
minimum delay in non-hospitalised cases cannot be less than c. So, in Section 6
we shall investigate the extent to which P (H = 1 | T ∗) differs from P (H = 1 | T 0)
when one delay distribution is not a shifted version of the other but we set c to be
equal to E(L | I,H = 1) − E(L | I,H = 0), i.e. the difference between the mean
of the two delay distributions.

6 Investigation of proposed method

Suppose the incidence of infection at time t is proportional to exp(λt). If λ > 0,
then d = log(2)/λ is the doubling time; if λ < 0, then −d is the halving time.
Suppose that P (H = 1 | I = t), the risk of hospitalisation for an individual who

8

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21262014doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21262014
http://creativecommons.org/licenses/by/4.0/


is infected at time t is r = 0.05 and does not depend on the time of infection.
Suppose the delay in the non-hospitalised cases has a gamma distribution with
mean 7 and variance 14 (i.e. shape α = 3.5 and rate β = 0.5). We consider two
scenarios for the distribution of delay in the hospitalised cases. In Scenario 1, it is
a gamma distribution with mean 4 and variance 8 (shape α1 = 2 and rate β = 0.5).
In Scenario 2, it is an equal mixture of a gamma distribution with mean 7 and
variance 14 and a gamma distribution with mean 1 and variance 2 (shape α2 = 0.5
and rate β = 0.5). So, in both scenarios the difference between the mean delay
in the hospitalised and non-hospitalised is three days. Figure 2 shows, for each
scenario, the distributions of delay in the non-hospitalised (black) and hospitalised
(red) cases. The dotted line shows the distribution in the non-hospitalised cases
shifted by three days.

The number of non-hospitalised individuals who test positive at time t is propor-
tional to

(1− r)
∫ t

−∞
exp(λu)

βα

Γ(α)
(t− u)α−1 exp{−β(t− u)} du

= (1− r) exp(λt)
βα

(β + λ)α
.

Similarly, the number of hospitalised individuals who test positive at time t is
proportional to

r exp(λt)
βα1

(β + λ)α1

in Scenario 1 and is

r exp(λt)× 1

2

{
βα

(β + λ)α
+

βα2

(β + λ)α2

}
in Scenario 2.

So, the risk when we condition on time of positive test T is

P (H = 1 | T = t) =
r βα1

(β+λ)α1

(1− r) βα

(β+λ)α
+ r βα1

(β+λ)α1

(6)

in Scenario 1 and is

P (H = 1 | T = t) =

r
2

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
(1− r) βα

(β+λ)α
+ r

2

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
=

r
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
(2− r) βα

(β+λ)α
+ r βα2

(β+λ)α2

(7)

in Scenario 2.
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If we condition on T ∗ = T + 3H, the risk is

P (H = 1 | T ∗ = t) =
r exp{λ(t− 3)} βα1

(β+λ)α1

(1− r) exp(λt) βα1

(β+λ)α
+ r exp{λ(t− 3)} βα1

(β+λ)α1

=
r βα1

(β+λ)α1

(1− r) exp(3λ) βα

(β+λ)α
+ r βα1

(β+λ)α1

(8)

in Scenario 1, and is

P (H = 1 | T ∗ = t) =

r
2

exp{λ(t− 3)}
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
(1− r) exp(λt) βα

(β+λ)α
+ r

2
exp{λ(t− 3)}

{
βα

(β+λ)α
+ βα2

(β+λ)α2

}
=

r
{

βα

(β+λ)α
+ βα2

(β+λ)α2

}
{(2− 2r) exp(3λ) + r} βα

(β+λ)α
+ r βα2

(β+λ)α2

(9)

in Scenario 2.

Table 1 shows the results of applying equations (6)–(9) in Scenarios 1 and 2, when
d = 4 and when d = 10. It also shows the results when d = −4 or d = −10,
meaning that the incidence is falling with a halving time is 4 or 10 days. We see
that the risks conditional on T are indeed different from the risk conditional on
time of infection I, i.e. r = 0.05. The proposed method produces conditional risks
P (H = 1 | T ∗) that are close to r.

Finally, Table 2 shows the risk ratios that Table 1 implies when comparing two
variants both of which have the same risk r = 0.05, but one of which has a doubling
time of 4 (respectively, 10) days and the other has a halving time of 4 (respectively,
10) days. The risk ratio conditional on time of infection is r/r = 1. The risk ratios
conditional on T vary from 1.5 to 2.8. When we instead conditional on T ∗, the
conditional risk ratios vary from 0.95 to 1.04, i.e. they are much closer to 1.

7 Censoring of hospitalisation outcome

So far, we have assumed that the binary outcome H is observed for everyone who
tests positive. In practice, there may be administrative censoring. This would
occur if some of the sampled individuals test positive less than 14 days before
time τ2, had not yet been hospitalised by time τ2, and no data were available on
hospitalisations after time τ2. In this situation, it would be natural to use the
time from positive test to hospitalisation as the outcome (rather than the binary
indicator of hospitalisation within 14 days), right-censoring this time at 14 days.
Cox regression could then be used to analyse the data. When the binary outcome
is rare and is fully observed, the hazard ratio (HR) estimate from Cox regression
is approximately equal to the odds ratio estimate from logistic regression [1].

The proposed method now requires slight modification, because T ∗ is calculated
from T and H, the last of which is unobserved for the censored individuals. To
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avoid compromising the simplicity of the proposed method, we suggest assuming
that individuals whose hospitalisation status is unknown due to this administrative
censoring have H = 0 for the purpose of calculating T ∗ (and so setting T ∗ = T ).
Provided that hospitalisation within 14 days is uncommon, this assumption will
be true for the great majority of censored individuals.

8 Discussion

In this article we have highlighted the difference between the risk of a binary post-
infection outcome (which, in this paper, is hospitalisation) conditional on the time
of infection I and the corresponding risk conditional on the time of positive test
T , and noted that the latter is a function of the trajectory of incidence of infection
over calendar time. One way to interpret this difference is as a bias: if the goal is to
estimate the risk conditional on infection time and if this risk differs from the risk
conditional on the positive test time, then an (asymptotically) unbiased estimator
of the latter risk will be an (asymptotically) biased estimator of the former risk.
One might call this ‘epidemic phase bias’, since its direction and magnitude depend
on whether the incidence of infection is falling or rising, and how quickly. This
‘bias’ may affect the results from a number of studies [2, 4, 5, 8, 9, 15, 16, 21, 23].

We have proposed a simple, easily implemented sensitivity analysis. This involves
a third risk: that conditional on T 0, the infection time plus a random time that is
independent of the outcome. This third risk equals the risk conditional on infection
time when the latter does not change over time (i.e. as a function of infection time),
and is approximately equal to it when the risk conditional on infection time changes
slowly over time. More generally, the two risks differ, but both have the advantage
of not depending on the trajectory of incidence of infection.

As with other sensitivity analysis approaches, e.g. for addressing unmeasured con-
founding ([24]) and missing data ([7, 18]), ours does not yield a single estimate of
the risk. It does, however, provide an indication of how sensitive the estimated
risk is to the epidemic phase. If the incidence of infection is constant over calendar
time, the estimated risk will not change as c is varied; if incidence is changing
rapidly, the estimate will be very sensitive to the choice of c. When a risk ratio
comparing two variants is of interest, sensitivity will be least when the variant-
specific incidences of infection are both following the same trajectory (constant,
increasing at the same exponential rate, or decreasing at the same rate), and will
be greatest when one incidence is increasing rapidly and the other is decreasing
rapidly.

The proposed method is likely to be most useful when a range of plausible values
can be specified for c, the difference between the mean time from infection to
positive test in the cases who experience the outcome and the corresponding mean
time in those who do not experience the event. As a next step, we plan to apply
our method to data on hospital admissions in cases infected with the Alpha and
Delta variants in England, to investigate how the risk ratio changes as c changes.

We have allowed c to depend on observed covariates X, but have assumed it does
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not depend on the infection time I (over the study period). This assumption
allows the distributions of time from infection to positive test (the ‘delay’) in the
hospitalised and non-hospitalised cases to change over time, but requires that the
difference between the two means remain the same. In practice, however, if both
distributions are, for example, getting shorter over calendar time, then it is likely
that the difference between their means will also get smaller. If it were necessary
to allow c to depend on the unknown infection time I over the study period, then
a crude but practical way of doing this would be to specify c as a function of T
and calculate T ∗ as T ∗ = T + c(T ).

We have focused on an observed binary outcome H, but also briefly addressed
right-censoring of this outcome. We proposed that T ∗ be calculated as though
the censored individuals did not experience the outcome (i.e. H = 0). This is a
reasonable approximation when the outcome is rare and the proportion of censored
individuals is small. For more common outcomes or when the extent of censoring is
larger, it would be preferable to use a more sophisticated approach. More research
is needed on this, but one possibility may be the following. Fit the Cox model to
the original data. Estimate the baseline hazard. Use this estimated baseline hazard
and the estimated hazard ratios from the Cox model to calculate the probability
pi that a censored individual i has H = 1. Then create two copies of each censored
individual i: one with H = 1, T ∗ = T + c and weight pi; and one with H = 0,
T ∗ = T and weight 1 − pi. An obvious drawback of this method is that pi would
be calculated from a model that implicitly assumed c = 0. A more refined version
might begin by calculating T ∗ as though the censored individuals all had H = 0,
then using the resulting fitted Cox model and estimated baseline hazard to calculate
pi.

We have assumed that all infections result in a positive test. This is obviously
not true in reality. However, this issue affects all studies of risks of post-infection
outcomes in samples of individuals who have tested positive, and is not specific
to this article. There is not a problem if those individuals who test positive are
representative of all infected individuals. Otherwise, the estimated risks must be
interpreted as risks conditional on eventually testing positive.

Finally, if additional information is available on the incidence of infection with
each variant over time, it may be possible to estimate the hospitalisation risk
without using data on positive test times. This could be done using deconvolution
techniques, such as those developed in the 1980’s and 1990’s for back-calculation
in the context of the HIV/AIDS epidemic. There the purpose was to estimate the
distribution of HIV infection times from the observed distribution of AIDS onset
times and an assumed-known distribution of time from infection to AIDS onset.
For example, Rosenberg and Gail (1991) described how to do this using software
for Poisson regression with identity link function [17]. In the context of the present
article, the purpose would be to estimate, for each variant, the distribution of time
from infection to hospitalisation from the observed distribution of hospitalisation
times and an assumed-known distribution of infection times. It may be possible to
do this by applying, for example, an adaptation of the Poisson regression method of
Rosenberg and Gail with an additional offset term for the total number of infections
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observed so far.
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Appendix A: Proof of equation (5)

The probability distribution function of the observed data (X,T,H) at (x, t, h) is

fX,T,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, h) di.

By definition, T 0 is sampled from

fT |I,X,H(t | i, x, 0)

independently of T . So, the joint probability distribution function of (X,T 0, H)
evalulated at (x, t, h) is

fX,T 0,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, 0) di. (10)

Let T ∗ = T + cH. Then the joint probability distribution function of (X,T ∗, H)
evalulated at (i, t, h) is

fX,T ∗,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t− hc | i, x, h) di.

(11)

Assumption 1 can be written as

fT |I,X,H(t− c | i, x, 1) = fT |I,X,H(t | i, x, 0).

So, equation (11) becomes

fX,T ∗,H(x, t, h) =

∫
fI(i) fH|I(h | i) fX|I,H(x | i, h) fT |I,X,H(t | i, x, 0) di. (12)

The right-hand sides of lines (12) and (10) are the same. So, (X,T ∗, H) and
(X,T 0, H) have the same joint distribution. Therefore, the conditional distribution
of H given X and T 0 is the same as the conditional distribution of H given X and
T ∗.

Appendix B: covariates and sampling within a time

interval

Here we extend the results of Section 5 to allow for covariates X that are fixed at
the time of infection and for the possibility that our sample consists of individuals
sampled conditionally on T ∈ [τ1, τ2], for some 0 ≤ τ1 ≤ τ2.

We now replace Assumption 1 with the following more general assumption.

Assumption 2:

fT (t | I,X,H = 1) = fT{t+ c(X) | I,X,H = 0},
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for all t ∈ [τ1, τ2] and for some function c(x) of x.

In practice, we would often assume that c(x) = c is a constant. Assumption 2
implies that

P (H = 1 | T 0 = t,X) = P{H = 1 | T + c(X)H = t,X}. (13)

The proof that equation (13) follows from Assumption 2 is a minor generalisation
of the proof given in the Appendix A.

Now we redefine T ∗ slightly as T ∗ = T + c(X)H. Because we have sampled
conditionally on T ∈ [τ1, τ2], we have T ∗ ∈ [τ1, τ2] for all sampled individuals with
H = 0 and T ∗ ∈ [τ1 + c(x), τ2 + c(x)] for all sampled individuals with H = 1 and
X = x. So, assuming that c(x) ≥ 0, we can only estimate P (H = 1 | T 0 = t,X =
x) for t ∈ [τ1 + c(x), τ2]. All individuals with H = 0 and T < τ1 + c(X) and all
individuals with H = 1 and T > τ2− c(X) will have T ∗ values that lie outside the
interval [τ1 + c(X), τ2], and hence should be dropped from the data set. One can
then fit a regression model for P (H = 1 | T ∗ = t,X = x) to the remaining data.
For example, if X = (V, U), where V is an indicator of variant and U is a vector
of age and ethnicity, then we might fit the model

logit P (H = 1 | T ∗ = t,X) = θ0 + θ1V + θ2U + θ3g(t),

for some specified function g(t) of t. Now, θ1 can be interpreted as the log odds
ratio of hospitalisation associated with variant adjusted for age, ethnicity and T 0.
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Figure 1: Hospitalisation risk conditional on positive test time (solid black line)
when risk conditional on infection time is 0.05 (green line). Incidence of infection
is shown (dotted line). Time from infection to positive test is assumed to have a
gamma distribution with mean 4 and variance 8 for the ultimately hospitalised in-
dividuals and a gamma distribution with mean 7 and variance 14 for the ultimately
non-hospitalised individuals.
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Figure 2: Distributions of time from infection to positive test. Solid black line is
distribution for ultimately non-hospitalised individuals. Dotted line is same dis-
tribution shifted by three days. Red line is distribution for ultimately hospitalised
individuals.

19

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21262014doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21262014
http://creativecommons.org/licenses/by/4.0/


Scenario d T T ∗

1 4 0.0760 0.0466
1 10 0.0601 0.0494
1 −4 0.0270 0.0447
1 −10 0.0404 0.0493
2 4 0.0830 0.0511
2 10 0.0612 0.0503
2 −4 0.0326 0.0536
2 −10 0.0414 0.0504

Table 1: Risks when adjusted for T and T ∗. If d = 4 or 10, the doubling time is 4
or 10 days. If d = −4 or −10, the halving time is 4 or 10 days.
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Scenario d T T ∗

1 4 2.810 1.044
1 10 1.489 1.003
2 4 2.551 0.954
2 10 1.480 0.997

Table 2: Risk ratios when adjusted for T and T ∗. One variant has doubling time
d = 4 (or d = 10) days and the other has halving time d = 4 (or d = 10) days.
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