
Focal gamma activity in frontal control regions 

revealed using intraoperative electrocorticography 
 

 

Moataz Assem1*, Michael G. Hart2, Pedro Coelho3, Rafael Romero-Garcia4, Alexa 
McDonald5, Emma Woodberry5, Robert C. Morris2, Stephen J. Price6, John 
Suckling4,7,8, Thomas Santarius2,9, John Duncan1,10, Yaara Erez1 

 

1 Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge 
2 Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust 
3 Neurophys Limited 
4 Department of Psychiatry, University of Cambridge 
5 Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust 
6 Division of Neurosurgery, Department of Clinical Neurosciences, University of 
Cambridge. 
7 Behavioural and Clinical Neuroscience Institute, University of Cambridge 
8 Cambridge and Peterborough NHS Foundation Trust 
9 Department of Physiology, Development and Neuroscience, University of Cambridge 
10 Department of Experimental Psychology, University of Oxford 
 

 

*corresponding author 

Moataz Assem 

Moataz.assem@mrc-cbu.cam.ac.uk 

15 Chaucer road, Cambridge, UK, CB2 7EF  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.21261980doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.13.21261980
http://creativecommons.org/licenses/by/4.0/


Abstract 

How the frontal cortex is anatomically and functionally organized to control 

cognition remains puzzling. Numerous non-invasive brain imaging studies relate 

cognitive control to a localized set of frontal regions, part of a wider fronto-parietal 

network (FPN), that show increases in functional MRI (fMRI) signal during the 

performance of multiple cognitively demanding tasks. Lesions implicating frontal 

control regions lead to disorganized behaviour. However, the fMRI BOLD signal is 

an indirect measure of neuronal activity and represents evidence from a single 

modality. This has led to limited clinical translation of fMRI findings e.g. to guide 

the surgical resection of brain tumours. Here we sought supporting evidence for 

lateral frontal control regions using electrocorticography (ECoG). We recorded 

electrophysiological activity from electrodes placed on the lateral frontal cortex in 

patients undergoing awake craniotomy for glioma resection. During surgery, 

patients performed two verbal executive-related counting tasks with a difficulty 

level manipulation, closely adapting difficulty manipulations in fMRI studies of 

cognitive control. We performed spectral analysis focusing on the gamma range 

(30-250 Hz) due to mounting evidence of its value as an index of local cortical 

processing. Comparing hard versus easy demands revealed circumscribed frontal 

regions with power increases in the gamma range. This contrasted with spatially 

distributed power decreases in the beta range (12-30 Hz). Further, electrodes 

showing significant gamma power increases were more likely to occur within a 

canonical fMRI-defined FPN and showed stronger gamma power increases 

compared to electrodes outside the FPN, even at the single patient level. 

Reinforcing the need for careful task manipulation, an easy versus baseline 

comparison, which includes factors such as speech output, produced gamma 

changes over a wider area. Thus, using similar task difficulty manipulations, ECoG 

and fMRI signals converged on delineating lateral frontal control regions. These 

findings open the door for extending clinical functional mapping to the domain of 

cognitive control during awake neurosurgery.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.21261980doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261980
http://creativecommons.org/licenses/by/4.0/


Introduction 

Essential to goal-directed behaviour is our ability to regulate and control cognitive 

processes, allocating resources appropriately to successfully achieve a goal. 

Cognitive control is an umbrella term for processes such as selective attention, 

working memory, set shifting, response inhibition, conflict monitoring, problem 

solving, and goal-directed behaviour (Diamond, 2013). In the human brain, a 

specific network of cortical areas, largely fronto-parietal, is hypothesised to support 

such control processes across multiple cognitive domains (Duncan and Owen, 2000; 

Cole and Schneider, 2007; Duncan, 2010). Damage to fronto-parietal control 

regions is associated with disorganized behaviour and poor fluid intelligence scores 

(Glascher et al., 2010, 2012, Woolgar et al., 2010, 2018; Warren et al., 2014). 

Ample evidence from functional magnetic resonance imaging (fMRI) studies 

associate increased BOLD co-activation of fronto-parietal areas with increased 

cognitive demands across multiple tasks including attention, working memory, task 

switching and task-relevant information selection (Corbetta and Shulman, 2002; 

Fedorenko et al., 2013; Muhle-Karbe et al., 2014; Erez and Duncan, 2015; Cole et 

al., 2016; Jackson et al., 2016; Shashidhara et al., 2019, 2020; Assem et al., 2020). 

Furthermore, fronto-parietal regions form an integrated network, as reflected in 

correlation of their timeseries during resting-state fMRI, forming the canonical 

fronto-parietal network (FPN) (Power et al., 2011; Yeo et al., 2011; Assem et al., 

2020). 

Much uncertainty remains, however, over precise localisation of cognitive 

control function within the human frontal lobe using fMRI on its own. Because the 

neuronal origins of fMRI BOLD signals are not well understood, and the reliability 

of its findings are sensitive to the use of non-optimal analysis methods (Coalson et 

al., 2018; Botvinik-Nezer et al., 2020), its findings are yet to be translated into 

clinical practice. Here we sought supporting evidence for specific cognitive control 

regions in the lateral frontal cortex from a different, clinically-relevant modality, 

electrocorticography (ECoG), recorded during awake tumour surgery. During 

surgery, functional mapping is used to inform clinical decisions, guide resection and 

preserve cognitive function following surgery. However, functional mapping is 

mostly used for motor function and language (Crone et al., 2006). Identifying the 
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regions that support cognitive control intraoperatively could provide valuable 

information to guide resection and prevent commonly-seen deficits following 

surgery (van Loon et al., 2015). In ECoG data recorded during surgery, we sought 

evidence for specific FPN activity linked to cognitive control demand. 

Compared to electroencephalogram (EEG) and magnetoencephalogram 

(MEG), ECoG offers both much-improved spatial resolution and the ability to 

detect local field potential (LFP) modulations within the broadband gamma 

frequency range (30-250 Hz). Accumulating evidence has emphasized the role of 

broadband gamma activity as an index for local cortical processing across a wide 

range of functional domains, but activity in this frequency range cannot usually be 

detected noninvasively because of its low amplitude and the low-pass filter induced 

by the scalp (Crone et al., 2006; Lachaux et al., 2012). In the cognitive control 

domain, evidence for the role of broadband gamma activity comes from invasive 

studies in both humans and animals. Increases in broadband gamma have long been 

known to reflect a heightened attentive state (Bouyer et al., 1981) and have been 

linked to processing of attended stimuli in both early sensory and fronto-parietal 

regions (Fries, 2001; Ray et al., 2008; Szczepanski et al., 2014; Helfrich and 

Knight, 2016). Increases in gamma power were also associated with working 

memory load, and during delay periods (Howard, 2003; Mainy et al., 2007), and 

sustained gamma responses were observed in frontal regions (Haller et al., 2018). 

Responses to more abstract rules have been associated with frontal gamma increases 

(Voytek et al., 2015). A common limitation for the above-mentioned studies is their 

lack of anatomical specificity when localizing gamma activity, mostly allocating it 

to broad labels such as “dorsolateral prefrontal cortex”. Such association cortices 

are rich in functionally heterogeneous regions (Glasser et al., 2016), making it 

difficult to relate electrophysiological and functional neuroimaging findings. 

Increases in power in the gamma range are often accompanied by decreases in 

power in lower frequencies, in particular in the beta range (12-30 Hz). This has been 

demonstrated using different tasks and across many cortical regions including 

motor, sensory, visual and auditory tasks (Crone et al., 2006; Hermes et al., 2012b; 

Podvalny et al., 2015). For example, in motor and sensory cortex, hand movements 

were associated with both increases in high-frequency band power as well as 

decreases in the beta range (Hermes et al., 2012b). More recently, increases in the 

gamma range and decreases in the beta range in the prefrontal cortex of non-human 
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primates have been associated with working memory, a central component of 

cognitive control processes (Lundqvist et al., 2016). 

To identify an electrophysiological signature of domain-general control 

regions in the human brain, we used ECoG during awake brain surgeries while 

patients performed two tasks with a varying level of control demand. Following a 

previous demonstration of the feasibility of this approach (Erez et al., 2021), here 

we use dense coverage of the frontal cortex to characterize the power modulations 

associated with increased cognitive demand, and directly link them to the FPN. 

Previous studies demonstrated correlates between the fMRI BOLD response and 

broadband gamma power (Logothetis et al., 2001; Mukamel et al., 2005; Siero et 

al., 2013). Taken together with  reports of power changes across a variety of tasks 

related to cognitive control processes (Crone et al., 2006; Lachaux et al., 2012), we 

predicted that increased control demand will be associated with power increases in 

the broadband gamma range, especially within the FPN, accompanied by power 

decreases in the beta range. 
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Methods 

Patient recruitment 

Twenty-one patients were recruited from the pool of glioma patients who have been 

indicated to undergo awake resections of their tumours at the Department of 

Neurosurgery at [redacted to comply with preprint server policy]. Data from thirteen 

patients were complete and were included in the study (age range 22-56; 6 males; 

see Table 1 for patient demographics). Data from the remaining eight patients were 

excluded either due to technical difficulties (n=6) or an inability to perform the 

tasks during the surgery (n=2). All study procedures were approved by the East of 

England - Cambridge Central Research Ethics Committee (REC reference 

16/EE/0151). All patients gave written informed consent to participate and were 

aware that the research would not benefit themselves, or impact their clinical care 

before, during or after surgery. 

Experimental procedures 

The patients were familiarized with the tasks during standard pre-operative clinic 

visits and as part of a pre-operative research-dedicated assessment. During the 

surgery and following the craniotomy, testing was performed after the patient had 

been awakened and prior to tumour resection. In one patient, the testing was 

performed after partial resection due to clinical considerations. Figures 1a,b 

illustrate the intraoperative setup and cognitive tasks. During testing, all personnel 

in the surgical theatre were asked to limit their conversations to minimize 

disruptions. Patients performed one baseline task and two cognitive tasks. For the 

baseline task, the patients were asked to stay calm and remain silent for a period of 

2-3 minutes (rest). The two cognitive tasks were simple counting (1 to 20; easy) and 

alternate counting and reciting the alphabet (1, a, 2, b, 3, c, up to 20; hard). Each 

task condition was repeated for 2-5 trials (median for both = 4 trials) based on each 

patient’s ability and time constraints during the surgery. Trial onset and offset 

markers were manually recorded on the acquisition system. Trial durations were 

20.1±7.4s and 29.4±9.4s for the easy and hard conditions, respectively. Most 
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patients were instructed to alternate between trials of the easy and hard conditions, 

though on a few occasions some easy/hard trials were performed in succession. 

Only correctly performed trials (i.e. no errors in simple or alternate counting) were 

included in the analysis (e.g. a failed hard trial that was excluded: 1, a, 2, b, 3, b, 4, 

b, 5, b, 6, b…). 

MRI acquisition 

MRI data were acquired pre-operatively using a Siemens Magnetom Prisma-fit 3 

Tesla MRI scanner and 16-channel receive-only head coil (Siemens AG, Erlangen, 

Germany). Structural anatomic images were acquired using a T1-weighted (T1w) 

MPRAGE sequence (FOV = 256 mm x 240 mm x 176 mm; voxel size = 1 mm 

isotropic; repetition time (TR) = 2300 ms; echo time (TE) = 2.98 ms; flip angle = 9 

degrees). 

Electrode localization 

The extent of craniotomy of all patients was determined by clinical considerations 

to allow for tumour resection. Based on the craniotomy size and location, one to 

three electrode strips were placed on the cortical surface in regions judged by the 

neurosurgeon to be healthy (i.e. macroscopically not containing tumour). Strips 

placed on the tumour or outside of the frontal and motor cortices were excluded 

from analysis. Each strip was composed of four electrodes. Two types of strips were 

used with electrode diameter either 5 mm (MS04R-IP10X-0JH, Ad-Tech, Medical 

Instruments corporation, WI, USA) or 3 mm (CORTAC 2111-04-081, PMT 

Corporation, MN, USA). For both strip types, electrode spacing was 10 mm centre 

to centre. 

Electrode locations were determined either using (1) an automated method 

with a probe linked to a stereotactic neuronavigation system (StealthStation® S7® 

System, Medtronic, Inc, 24 Louisville, CO, USA) or (2) a semi-manual grid method 

using intraoperative photographs and a grid-like delineation of cortical sulci and 

gyri. Most electrodes (51/79) were localized using the automated method, and due 

to occasional technical limitations, 28 electrodes were localized using the grid 

method. Both methods are detailed below.  
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(1) Stereotactic neuronavigation: A hand-held probe was placed at the centre 

of each electrode, automatically registering its physical coordinates, using the 

neuronavigation system, to the patient’s native high resolution preoperative T1w 

scan. In some cases, coordinate data were available for only two or three out of the 

four electrodes in each strip. This was due to either time constraints during the 

surgery or because an electrode was located underneath the skull, excluding probe 

placement. Each patient’s native T1w scan was linearly co-registered with the MNI 

template volume at 2 mm resolution using FLIRT as implemented in FSL 

(Jenkinson et al., 2012) using 12 degrees of freedom (full set affine transformation) 

and the correlation ratio cost function. The resulting native-to-MNI transformation 

matrix was then used to convert native electrode coordinates to MNI coordinates.  

(2) The grid method: This follows the method described in (Havas et al., 

2015) and (Ojemann et al., 1989). (a) Visible major sulci were delineated on the 

intraoperative photographs: precentral sulcus, sylvian fissure, inferior and superior 

frontal sulci. Spaces between these sulci were populated by vertical lines (1.5 cm 

apart) to create a grid-like structure.  (b) A grid was created in the same way on a 

template cortical reconstruction of the MNI volumetric map (reconstructed using the 

HCP structural preprocessing pipeline 4.0.0; https://github.com/Washington-

University/HCPpipelines).  (c) MNI coordinates for each electrode were extracted 

by manually marking its approximate location on the template cortical grid while 

visualized using the Connectome Workbench v1.4.2 

(https://www.humanconnectome.org/software/get-connectome-workbench). As the 

template cortical reconstruction is co-registered with its MNI volumetric version, it 

facilitated the automatic transformation of any point marked on the surface back to 

its MNI volumetric coordinates. 

Electrode displacements due to brain shifts following the craniotomy were 

compensated for by back-projecting the electrode locations onto the cortical surface 

along the local norm vector (Hermes et al., 2010) as implemented in the fieldtrip 

(v20160629) protocol for human intracranial data (Stolk et al., 2018). 

Electrophysiological data acquisition and analysis 

Data were recorded using a 32-channel amplifier (Medtronic Xomed, Jacksonville, 

FS, USA) sampled at 10 KHz. Potential sources of electrical noise such as the 
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surgical microscope, patient warming blanket, and IV pumps were identified and 

repositioned to avoid signal contamination. The data were recorded via dedicated 

channels on the acquisition system and two Butterworth online filters were applied: 

a high-pass filter at 1 Hz and a low-pass filter at 1500 Hz. A ground needle 

electrode was connected to the deltoid muscle and the electrodes were referenced to 

a mid-frontal (Fz) spiral scalp EEG electrode. 

Data were analysed offline using EEGLAB (v13.6.5b) and custom MATLAB 

scripts. The data were downsampled to 2 kHz then re-referenced using a bipolar 

scheme to detect any activity changes with the highest spatial resolution as well as 

to avoid contamination of high frequency signals by scalp muscle artefacts detected 

by the Fz electrode. The last electrode on the strip was excluded from analysis; i.e. 

for a four-electrode strip, electrode pairs 1-2, 2-3 and 3-4 were used and assigned to 

electrode positions 1, 2 and 3, respectively. The location of electrode 4 was 

discarded. Thus, out of the original 79 electrodes, re-referenced data from 59 were 

used for further analysis (Figure 1c). Out of these 59 electrodes, 41 were on the left 

hemisphere and 18 on the right. 25 electrodes were placed on the middle frontal 

gyrus (MFG), 28 on the inferior frontal gyrus (IFG) and on 6 on motor cortex. 

A notch filter was applied at 50 Hz and its harmonics to remove line noise. 

Notch filtering was also applied at 79 Hz and its harmonics to remove additional 

noise observed in the data, probably due to equipment in the surgical theatre. Data 

were then bandpass filtered into 6 classical frequency bands (delta: 1-4 Hz, theta: 4-

8 Hz, alpha: 8-12 Hz, beta: 12-30 Hz, low gamma (LG): 30-70 Hz, high gamma 

(HG): 70-250 Hz). Instantaneous power of the timeseries was obtained by squaring 

the absolute amplitude envelope of the Hilbert transformed data.  

The power timeseries data were then segmented into separate conditions and 

trials. Because trial onset and offset markers were manually recorded, 2s from the 

beginning and end of the rest trial and 1s from each task trial were excluded to 

account for human reaction time related error. For the hard trials (alternate 

numbers/letters), a further 3s from the beginning of each trial was excluded to 

discard the initial easy phase of this task (1, a, 2, b, 3, c,). One power value for each 

condition was obtained by concatenating its data across trials and averaging across 

time points. For each pair of conditions (hard>easy, easy>rest, hard>rest), the 

percentage signal change was computed as: [(power in condition 1/power in 

condition 2) – 1] * 100. 
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For each electrode, a permutation testing approach was used to statistically 

compare power change across each pair of conditions. For each electrode, the 

instantaneous power timeseries of all task trials from both conditions were 

concatenated serially to form a loop in the same order in which they were 

conducted. To close the loop, the end of the last trial was joined to the beginning of 

the first trial. All trial onset/offset markers were then shifted using the same jitter 

(randomly generated for each permutation), allowing them to “rotate” along the data 

loop. This rotation approach was used to generate surrogate power data while 

preserving trial lengths and the temporal correlations in the data. After the rotation, 

we computed the mean power (for each condition) and power ratio (across 

conditions) based on the new trial markers. Applying this rotation approach on the 

timeseries of the power rather than the raw data ensured that there were no artefacts 

in the form of sudden power changes at the points of trials concatenation. This 

process was repeated 100,000 times to create a surrogate distribution against which 

two-tailed statistical significance could be calculated (percentile ranks 97.5 and 2.5) 

for each electrode.  

To relate electrode locations with control-related regions identified by fMRI 

studies, a canonical resting-state fronto-parietal network (FPN) volumetric mask 

was used (Yeo et al., 2011). To match the original resolution of electrode 

localization using the grid method, the volumetric mask was resampled to 2 x 2 x 2 

mm, then binarized to include any voxel with a non-zero probability. A volumetric 

approach was used rather than a surface-based approach because the presence of 

cortical lesions (i.e. the tumour) prevented accurate cortical surface extraction. 
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Table 1. Patient demographics 

Patient 
Age 

range 
Sex 

Tumour 

hemisphere Main location 

1 21-30 Male Left Frontal 

2 21-30 Male Left Frontal 

3 41-50 Female Left Frontal 

4 21-30 Male Left Temporal 

5 51-60 Female Left Frontal 

6 21-30 Female Right Frontal 

7 21-30 Male Right Frontal 

8 41-50 Female Right Frontal 

9 21-30 Male Left Frontal 

10 31-40 Female Left Temporal 

11 21-30 Female Left Temporal 

12 51-60 Female Left Temporal 

13 21-30 Male Left Frontal 
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Figure 1. Intraoperative ECoG setup and electrode localization. (a) Intraoperative setup: 
Patient is awake during the three experimental conditions and the electrophysiological 
signals are simultaneously recorded using electrode strips placed directly on the cortical 
surface. (b) Experimental conditions: one rest (no task) and two verbal counting tasks. 
Easy task involved simple counting from 1 to 20. Hard task involved alternating between 
numbers and letters. (c) Left: Electrode distribution for each patient in a separate colour 
(13 patients, 59 electrodes after bipolar re-referencing). Right: hemispheric distribution of 
electrodes. 
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Results 

Hard>easy contrast reveals local increases in gamma power 

contrasting with widespread decreases in beta power 

First we examined spectral power changes for the hard>easy contrast. As 

discussed above, this contrast commonly shows frontal control regions in fMRI 

studies. Based on previous reports in the literature, we focused on power changes in 

the two gamma bands (HG and LG) and the beta band. For the HG and LG bands, 

statistically significant electrodes showed predominantly HG and LG increases 

(Figure 2a, 2b) and almost all electrodes showing significant LG increases also 

showed HG increases (92.3%) (Figure 2a). In contrast, almost all significant 

changes in the beta band were power decreases (Figure a, 2b). Most electrodes 

showing significant HG and LG increases also showed significant beta decreases 

(85.1% HG, 76.9% LG). While these results suggest that increases in gamma power 

co-occur with decreases in beta power, across all electrodes there were only modest 

correlations between gamma increases and beta decreases (for HG, r=0.64, 

p<0.0001; for LG, r=0.32, p=0.005). 

Next we assessed the spatial distribution of these power modulations. Figure 

2a, b shows circumscribed gamma power increases, while beta decreases are more 

broadly distributed across the recording area. To quantify this observation, we 

compared the Euclidean distances between all pairs of electrodes with significant 

power changes for each of the three bands (unpaired t-test, HG vs beta t877=-7.8, 

p=1.5x10-14, LG vs beta t604=-2.2, p=0.03; unpaired t-test after excluding electrodes 

lying on the motor cortex, HG vs beta t784=-3.5, p=0.00046, LG vs beta t511=-0.98, 

p=0.33). Although this measure is, at least in part, affected by the spatial 

distribution of the electrodes, it nevertheless captures the distributed nature of the 

beta decreases compared to the more focal increases in the gamma range. 

For completeness, we also examined power modulations in the lower 

frequency bands (delta, theta, alpha). These bands showed a similar picture to the 

beta band, with predominantly power decreases though with a patchier spatial 

arrangement (Supplementary Figure 1). Overall, these results show that the 
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common finding of better spatial specificity for higher vs lower frequencies (Crone 

et al., 2006) extends into lateral prefrontal cortex. 

To demonstrate that our selected canonical frequency bands do not bias the 

results, Figure 2c shows the average power spectral density (PSD), for each 

condition, of all the electrodes that showed significant changes in all three bands: 

HG and LG increases as well as beta decreases. Indeed, the power modulations 

computed using canonical frequency bands align closely with observed differences 

in PSDs between hard and easy tasks. Furthermore, the lack of PSD peaks in the 

gamma range suggests that the simultaneous power increases in HG and LG reflect 

a broadband process (Miller et al., 2009). 

Taken together, these results show that, along the lateral frontal cortex, 

increased cognitive demand is associated with a localized increase in high frequency 

power and a spatially distributed decrease in low frequency power. 
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Figure 2. Hard>easy spectral power modulations. (a) Top: Electrodes with significant 
(thresholded at p<0.05, uncorrected) power increases (red), decreases (blue) and non-
significant changes (white). Bottom: Unthresholded average smoothed data. Power for 
each electrode (white dots; including electrodes with non-significant power changes) was 
spatially smoothed by 10 mm and the value at each surface vertex is the average of the 
overlapping powers. (b) Proportion of electrodes (out of a total of 59) showing significant 
power modulations for each of the frequency bands. (c) Average of PSDs of all electrodes 
showing significant changes in all three bands: HG and LG power increases as well as 
beta power decreases. Notch filtered noise frequency bands (see methods) are hidden. 
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High frequency power increases overlap with the fMRI-

defined fronto-parietal network 

The results so far highlight a localized group of electrodes with increases in gamma 

power surrounded by dorsal and posterior electrodes that show little to no power 

modulations (Figure 2a). This spatial pattern is reminiscent of fMRI studies 

identifying localized frontal control-related patches. Here we predicted that gamma 

increases in our data would overlap with a canonical mask of the control-related 

FPN as defined in fMRI data (taken from Yeo et al., 2011b; see Methods). 

In our dataset, 33 electrodes were located within the FPN, while 26 lay 

outside this network (Figure 3a). Of the FPN electrodes, 61.3% showed a 

significant HG increase in the hard>easy contrast, as compared to 28.6% of non-

FPN electrodes (Figure 3b). LG increases showed a similar trend (29% vs 14.3%). 

In contrast, the proportions of electrodes showing beta power decreases were similar 

for FPN and non-FPN (51.6% vs 60.7%). Therefore, while power increases with 

increased demand were more likely within the FPN compared to outside the 

network, decreases in the beta band were equally likely both within and outside the 

network. 

In a subsequent analysis, we examined data across all electrodes, irrespective 

of individual significance. Here too, HG and LG power increases were significantly 

stronger in FPN than in non-FPN electrodes (Figure 3c; unpaired t-test HG 

t57=2.66, p=0.005, LG t57=2.71, p=0.004, p-values are one-tailed due to our 

directional prediction of gamma increases within the FPN). Again, there was no 

significant difference between FPN and non-FPN electrodes for beta power 

decreases (t57=1.2, p=0.2, two tailed as we had no specific directional prediction) 

nor for any of the lower frequency bands (two tailed p>0.6). 

A limitation of the previous analysis is that most effects could be driven by a 

subset of patients. To address this, we used data from all the patients who each had 

electrodes overlapping with both FPN and non-FPN regions to perform a within-

subjects analysis (11 out of the 13 patients). Despite the lower number of patients 

available for this analysis, the results again showed that within the same patient, 

FPN electrodes showed statistically stronger LG power increases compared to non-

FPN electrodes (Wilcoxon signed rank test; p=0.02, one tailed) and no differences 
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(though statistically trending) for the beta power (p=0.08, two tailed). Here, 

however, differences for HG were not significant (p=0.2, one tailed). These results 

hold even after excluding the apparent outlier patient in Figure 3d (HG p=0.19; LG 

p=0.01; both one tailed; beta p=0.049 two tailed).  

Collectively, these results suggest that demand-related power increases in 

high frequency bands co-localize with the fMRI-identified FPN. Thus, results from 

two different modalities (ECoG and fMRI) converge in defining a localized region 

within the lateral frontal lobe related to cognitive control. 
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Figure 3. Broadband gamma power increases overlap with FPN. (a) Electrodes 
coloured based on their overlap with the canonical fMRI FPN mask in volume space. Top 
left inset: A cortical surface visualization of the volumetric canonical fMRI FPN mask 
(Yeo et al., 2011) (Note: this is for illustrative purposes only and may include slight 
distortions resulting from volume-to-surface transformation). (b) Percentage of electrodes 
showing significant power modulations out of all electrodes located within (orange and 
yellow) and outside (dark and light green) the FPN. Darker coloured bars (above the zero 
line) show percentage of electrodes showing power increases. Lighter coloured bars 
(below the zero line) show percentage of electrodes showing power decreases. (c) Power 
modulations of all electrodes within and outside the FPN for each frequency band. 
**p<0.01, one tailed, unpaired t-test. (d) A within-subjects comparison of power changes 
between FPN and non-FPN electrodes. Each dot represents average power across each 
group of electrodes for one patient. *p<0.05, for one tailed tests only, Wilcoxon signed 
rank test. 
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Power modulations in the easy>rest contrast 

Next we sought to assess whether the localized gamma increases, identified in the 

hard>easy contrast where the conditions are matched on multiple aspects (e.g. 

speech, counting), would also replicate in the easy>rest contrast where those aspects 

are not matched.  

The distribution of HG, LG and beta changes in the easy>rest contrast is 

shown in Figure 4a. Across all electrodes, there was no significant correlation 

between gamma power increases for hard>easy and easy>rest (HG: r=-0.07 p=0.53; 

LG: r=-0.09 p=0.42), indicating different topographical arrangement for the gamma 

modulations in the two contrasts. For beta power decreases there was a weak 

correlation (r=0.22, p=0.045). In contrast to the results for the hard>easy contrast, 

the percentage of electrodes with significant gamma increases was similar between 

FPN and non-FPN electrodes (Figure 4b, HG 32.3% vs 39.3%; LG 22.6% vs 

17.9%). Similarly, neither the average power modulations across electrodes (Figure 

4c; unpaired t-test HG t57=-1.28, p=0.90, LG t57=-0.67, p=0.78, one-tailed; beta 

t57=-0.69, p=0.49 two tailed) nor the within-subject analysis (Figure 4d; Wilcoxon 

signed rank test, HG p=0.86, LG p=0.58, one tailed for both; beta p=0.52 two 

tailed,) showed any significant differences between FPN and non-FPN electrodes 

across the three bands. Again these results were stable after excluding the apparent 

outlier patient in Figure 4d (within-subject analysis: Wilcoxon signed rank test, HG 

p=0.99; LG p=0.75, one tailed for both; beta p=0.77 two tailed).  

Interestingly, easy>rest gamma increases were shifted posteriorly to 

hard>easy increases (Figure 4e). To quantify this, we compared y-coordinates 

(anterior-posterior axis) of electrodes showing significant gamma increases between 

hard>easy and easy>rest contrasts. The results confirmed a posterior shift for the 

group of significant HG electrodes in the easy>rest contrast (Wilcoxon signed rank 

test, HG p=0.02, LG p=0.07).  

Altogether, these results confirm that the hard>easy contrast is most suitable 

for revealing localized control-related gamma frontal regions. 
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Figure 4. Power modulations for the easy>rest contrast. (a) Surface projection of power 
modulations for the easy>rest contrast. Remaining details are identical to Figure 2a. (b-d) 
Comparison of easy>rest power changes between FPN and non-FPN electrodes. Details are 
identical to Figure 3(b-d). (e) Box plots of y-coordinate of electrodes with significant 
power increases. Middle black line: mean; darker box limits: 1 SD; lighter box limits: 95% 
CI. *p<0.05 +p=0.07, using Wilcoxon rank sum test.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.21261980doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261980
http://creativecommons.org/licenses/by/4.0/


Discussion 

We recorded LFP signals using ECoG from the lateral frontal surface of human 

patients undergoing awake craniotomies for tumour resections. The results revealed 

a circumscribed frontal region that shows increases in broadband gamma power 

with increased task demands. Localised gamma increases were accompanied by 

spatially broad beta power decreases. Electrodes showing gamma increases 

overlapped with a canonical mask of the fMRI-defined FPN. Our results confirm 

that specific control regions of the lateral frontal surface, previously defined by 

fMRI, can also be identified using clinically-relevant electrophysiological 

recording. 

Delineating lateral frontal control regions using converging 

evidence from ECoG and fMRI 

There is some evidence from previous electrophysiology studies that gamma power 

increases in frontal regions are associated with multiple executive processes such as 

attention, working memory and abstract rules (Fries, 2001; Ray et al., 2008; 

Szczepanski et al., 2014; Helfrich and Knight, 2016). However, invasive human 

studies have rarely systematically assessed the anatomical distribution of gamma 

increases, with most studies reporting isolated findings in individual electrodes 

(Lachaux et al., 2012; Helfrich and Knight, 2016). This lack of detailed 

topographical assessment limits our ability to relate findings across studies and 

across neuroimaging modalities. Here we demonstrate that a circumscribed region 

along the lateral frontal surface robustly shows increases in gamma power during an 

executive task. Although some previous studies have reported different reliabilities 

and putative physiological origins for HG and LG (Crone et al., 2006; Ray and 

Maunsell, 2011; Buzsáki and Wang, 2012; Lachaux et al., 2012), in our data both 

gamma bands were broadly in agreement. 

Our results suggest converging evidence from ECoG and fMRI modalities 

for control-related parcellation of the lateral frontal cortex. We used a task demand 

manipulation similar to the one that was previously shown to recruit control regions 

in fMRI studies (Fedorenko et al., 2013; Assem et al., 2020; Shashidhara et al., 
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2020) and the observed gamma power increases associated with increased demand 

co-localized with a canonical FPN derived from independent resting-state fMRI 

data from healthy participants. Previous studies have linked localized gamma 

increases with corresponding fMRI activations in early cortical regions (Nir et al., 

2007; Engell et al., 2012; Hermes et al., 2012a). Accordingly, gamma increases 

were generally interpreted to reflect localized task-related processing. The current 

results extend these reports to the domain of cognitive control in frontal regions. 

In contrast to focal increases in the gamma range, we observed spatially broad 

decreases in power in the beta band (and other lower frequencies) which were not 

confined to the FPN. It has been previously shown that synchronization in lower 

frequency bands between fronto-parietal regions improved during executive tasks 

e.g. (Voytek et al., 2015). Our findings suggest that increases in beta synchrony 

may be accompanied by decreases in power. Concerning the relation between 

gamma increases and beta decreases, one suggestion is that these reflect two sides 

of the same process, a rotated power spectrum around a middle range frequency 

(Podvalny et al., 2015; Helfrich and Knight, 2016). Recent evidence, however, 

argues against this simple interpretation, showing that depending on the cortical 

region, increases in high gamma power are not necessarily accompanied by 

decreases in low frequency power (Fellner et al., 2019). In line with this, the current 

results also showed that beta decreases were more spatially broad and were not 

necessarily accompanied by gamma increases. Another framework proposes a 

hybrid spiking-synaptic plasticity working memory model, in which bursts of spikes 

(gamma increases) in superficial layers serve to encode and maintain working 

memory content, while beta, which is assumed to have an inhibitory role, is 

suppressed in deeper layers to allow superficial gamma bursts (Lundqvist et al., 

2011; Miller et al., 2018). This model is specific for regions that are involved in 

working memory processes, and our results are in line with this suggestion within 

the control-related areas. As it stands, however, the model does not predict 

decreased beta power in regions outside the FPN. Pending further experimental and 

theoretical studies, our results provide an important constraint for physiologically-

motivated models of executive processes. 

Power modulations in the gamma range for the easy>rest contrast revealed 

posterior shift of gamma increases compared to the hard>easy contrast. One 

possibility is that this shift mirrors fMRI studies showing an anterior-posterior 
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cognitive demand gradient across the lateral frontal surface, with easier tasks 

involving more posterior regions and more challenging tasks recruiting more 

anterior regions (Badre and Nee, 2018; Shashidhara et al., 2019; Assem et al., 

2020). Another possibility is related to the conditions that comprise the two 

contrasts. While the hard>easy contrast compared conditions that are closely 

matched on features such as speech and counting task, the easy>rest contrast is less 

controlled. Accordingly, changes in activity may be related to several differences 

between the conditions, most prominently speech production (e.g., the easy 

condition includes speech while the patient remains silent during the rest condition). 

Plausibly, posterior gamma increases might also reflect articulation or language 

related processing in the posterior inferior frontal gyrus (Basilakos et al., 2018). 

Clinical potential 

Our findings open the door for extending clinical functional mapping to the domain 

of cognitive/executive control during tumour resection surgeries. Damage to control 

regions is associated with disorganized behaviour (Glascher et al., 2010, 2012, 

Woolgar et al., 2010, 2018; Warren et al., 2014) and poorer recovery following 

neurosurgery (Romero-Garcia et al., 2019). During surgeries, electrical stimulation 

is commonly used to map motor and language functions, where activity is confined 

to well-defined areas with clear behavioural responses, so that resection of eloquent 

tissue can be avoided. In higher association areas and in particular for executive 

control regions, the use of stimulation is more challenging, primarily because of the 

complex nature of the mapped functions and the distributed areas that support them. 

In addition, intraoperative stimulation is time-consuming while neurosurgeons 

search for the areas responsive to the tested functions with increased risk of 

seizures. Current mapping approaches to assess executive regions intraoperatively 

are limited, with only sparse evidence where direct electrical stimulation was used 

(Wager et al., 2013; Puglisi et al., 2018, 2019). ECoG has the potential to provide 

complementary information to guide stimulation and clinical decision making, 

especially for executive control functions. Most ECoG studies that investigate 

cognitive control are conducted at the patient’s bedside between two surgeries as 

part of epilepsy treatment, and usually use complex computer-based tasks that are 

not suitable for an intraoperative setting. Here we employed a simple behavioural 
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manipulation based on task demand which was well tolerated by most patients and 

the whole testing was performed in under 10 minutes. The link of increased gamma 

power to the FPN establishes a critical anatomo-functional foundation for this 

approach. These results also suggest the FPN remains relatively intact next to 

tumour tissue. Further, the detected gamma signals are characterized by spatial 

specificity of a few millimetres. For example, nearby electrodes on the same strip 

can show differential gamma responses. This level of neuroanatomical precision is 

vital for guiding neurosurgeons during tumour excision. 

Exploring several future avenues will help scale up this approach for clinical 

mapping. For example, while the current study aimed to detect an index of cognitive 

control processing, only one type of cognitive demand was manipulated. A 

conjunction of activity across several tasks is more likely to focus on core domain-

general control regions (Assem et al., 2020). This will require modifying existing 

paradigms to more surgical theatre friendly versions. One such task could be 

contrasting verb generation with repeating nouns. Relatedly, our electrodes 

coverage was mostly limited to the middle and inferior frontal gyri. It will be 

clinically useful to extend the current findings to other components of the FPN 

(frontal pole, dorsal frontal and lateral parietal), for example in cases of different or 

distributed tumour locations. Similarly, a denser and more distributed set of 

electrodes would allow investigating electrophysiological signals in fMRI-based 

networks neighbouring the FPN. Further, only amplitude modulations were 

investigated in this study. Investigating synchrony within and across frequency 

bands (e.g., phase changes, phase-amplitude coupling) could reveal unique markers 

of FPN dynamics during task execution. Precise neurosurgical resection would also 

benefit from individually specific fMRI defined FPN (Shashidhara et al., 2020). 

This is complicated by our poor understanding of how brain tumours affect BOLD 

signal and shift the topographies of functional networks. Ultimately, integrating 

ECoG with brain stimulation and pre-operative multi-modal brain imaging opens up 

a new exciting phase for comprehensive surgical planning (Hart et al., 2020). 
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Supplementary Figures 

 

 

Supplementary Figure 1. Hard>easy power modulations in lower frequency bands. 
Electrodes with significant (p<0.05, uncorrected) power increases (red), decreases (blue) 
and non-significant changes (white). 
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