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Supplementary analysis 

Analysis of data on neutralisation against variants 

In this study we aimed to determine the factors that influenced the loss of recognition against 

SARS-CoV-2 variants of concern (VOC), and more specifically, whether different vaccines 35 

varied in their recognition of VOC. The loss of recognition of vaccines to VOC is typically 

measured as the ‘drop in neutralisation titre’ against the variants (ie: the change in the 

concentration of serum needed for 50% neutralisation in vitro). Therefore, we obtained data 

from 16 published studies which directly compared neutralisation titre against ancestral 

(Wuhan-like / D614G strains) and the VOC. This included data provided in the original 40 

publications or sent by authors (see Supplementary table 1). We focused primarily on assays 

using live SARS-Cov-2 virus (to reduce the potential variability that might arise from 

different pseudoviral constructs1), with the exception of the NVX-CoV2373 vaccine, for 

which only data from neutralisation assays using a spike-expressing pseudovirus was 

available.  45 

 

When combining data from multiple studies, an important caveat is that different laboratories 

used distinct in vitro assays to measure neutralisation of SARS-CoV-2 (Supplementary table 

1) 1. These assays differ considerably in the mean neutralisation titres and fold-change to 

variants reported, even when considering notionally similar groups of subjects, such as 50 

convalescent serum against the ancestral virus (Figure 1a). To test the extent to which a given 

vaccine platform affects antibody cross reactivity, we calculated the mean drop in 

neutralisation titre across different vaccines and variants (comparing to ancestral virus), while 

accounting for censoring at the assay specific limit of detection (censoring to estimate means 

and in regression analysis is described in supplementary methods). We found a large 55 

variation in drops in titres in vaccine serum between variants, vaccines and laboratories. For 

example, comparing 7 studies reporting the change in neutralisation titre of vaccine sera 

against the beta (B.1.351) variant (compared to ancestral virus) following vaccination, the 

estimated decrease in neutralisation titre ranges from 6-fold2 to 16-fold3, depending on the 

study and the vaccine considered. Superficially, these differences might suggest the vaccines 60 

elicit antibody responses with different levels of cross-reactivity to the VOC. However, many 

studies also included a direct comparison of convalescent sera or included sera from different 

vaccines. When the change in neutralisation titre in vaccinees is compared with the change 

seen in convalescent subjects in the same study, this is usually very similar (Figure S1a, b). 
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The same is true when using a vaccine comparator group instead of convalescent subjects 65 

(Figure S1c).  

 

The variability in results between assays means that we observe several estimates for the 

extent of antibody cross-reactivity against a given variant (Figure 1a). It is not clear if one 

assay is more accurate than another in capturing the biologically relevant change in 70 

neutralisation. Therefore, we estimated the mean drop in neutralisation titre for a given 

variant across the available studies by aggregating all individual data (convalescent and 

vaccine) from each study, and using censoring to account for the differing limit of detections 

of each assay (supplementary methods). We find the mean drop in neutralisation titre is 1.6-

fold for the alpha/B.1.1.7 variant (95% CI = 1.5 -1.7, average of n= 9 studies), 8.8-fold (95% 75 

CI = 8 -9.7, n= 9 studies) for the beta/B.1.351 variant, 3.5-fold (95% CI = 3.1 - 4, n= 3 

studies) for the gamma/P.1 variant and 3.9-fold (95% CI = 3.5 - 4.4, n= 3 studies) for the 

delta/B.1.617.2 variant (Figure S3). 

 

We then performed censored regression to assess the impact of vaccine type on cross-80 

reactivity. We accounted for both variant and laboratory specific effects. The variant specific 

effect was incorporated by including the mean drop in neutralisation titre seen between 

ancestral virus and each variant virus across all studies as described above ( Δ"). A laboratory 

specific effect was incorporated by including a factor for each laboratory (𝐿). We also 

allowed for an additional categorical variable for serum type to be included (𝑆). 𝑆 was a 85 

factor that determined whether the serum came from a convalescent or vaccinated individual, 

and if it was the latter, which vaccine was used. Thus the model was: 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑡	𝑁𝑒𝑢𝑡~𝛼1 + 𝛼3𝐴𝑛𝑐𝑒𝑠𝑡𝑟𝑎𝑙	𝑁𝑒𝑢𝑡 + Δ" + 𝛼8𝐿 + 𝛼9𝑆 

 (Eq S1) 90 

We found that in this model laboratory was a highly significant factor (p<.0001), but after 

including laboratory, serum type (S) was not a significant factor in the model (p=0.256) 

(detailed in supplementary methods). Additionally, the best model (as judged by the model 

with the lowest AIC was one that included 𝐿 but not 𝑆. This does not mean that vaccine sera 

all neutralise VOC equally. That is, vaccinee sera vary considerably in their ability to 95 

neutralise ancestral virus. However, they all tend to lose recognition of a given VOC to a 

similar extent (ie: comparing the drop in titre between ancestral and VOC). This 
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demonstrates that the neutralisation titre of ancestral virus is a very good predictor of 

neutralisation of a variant (Figure 1b, S1a, S2), and that once the initial neutralisation level 

and variation between labs is considered the vaccine platform itself is not a factor in the 100 

model. 

 

We additionally performed censored regression to determine the best predictors of the drop in 

neutralization against a variant (compared to ancestral virus) for each vaccine used. For this 

we modelled   105 

𝐹𝑜𝑙𝑑	𝐷𝑟𝑜𝑝?~𝛼1Δ" + 𝛼3𝐿 + 𝛼8𝜇ABC?D + 𝛼9𝑆 

 (Eq S2) 

Where 𝜇ABC?D was defined as the mean fold-drop in convalescent sera against each variant for 

each laboratory, 𝐿 was once again a categorical factor for the laboratory and 𝑆 was a 

categorical factor for the serum used (however here only vaccinated individuals were 110 

considered in the model, as convalescent individuals were used to normalise the fold-drop by 

laboratory). For this model we allowed only one of 𝛼3 or 𝛼8 to be non-zero (so that there was 

only one laboratory specific effect). We found that once again, after accounting for laboratory 

specific effects, the vaccine used was not a significant factor, regardless of whether 𝛼3 or 𝛼8 

(or neither) were included in the model (p>.07 in all cases, likelihood ratio test). 115 

Additionally, we found that the best model (i.e. the model with the lowest AIC) was one that 

included 𝜇ABC?Dbut did not include 𝐿 or 𝑆. This means that a combination of (i) the mean drop 

in neutralisation titre seen between ancestral virus and each variant virus across all studies 

and (ii) the mean drop in neutralisation titre seen in convalescent sera in the current study are 

the best predictors of the fold drop in neutralisation titre for the serum under consideration. 120 

 

Together, these results suggests that any one study of neutralisation of a variant does not 

provide a reliable estimate of the cross-reactivity of serum to variants, but the best estimate of 

neutralisation against current VOC is obtained from the neutralisation observed against the 

ancestral virus, combined with the average fold drop in neutralisation to the particular variant 125 

observed across multiple studies. 
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Estimating neutralisation after boosting 

To estimate the neutralisation level achieved in individuals after boosting, we used data from 130 

studies of boosting of previously infected individuals or previously vaccinated individuals. 

Studies were included if they contained a comparison with naïve vaccinated individuals 

within the same study or if a similar comparison of vaccination in naïve individuals could be 

made with a separate study by the same laboratory using the same assay (detailed in 

Supplementary table 4). This allowed us to determine the fold increase in neutralisation level 135 

in previously infected/vaccinated individuals compared with naive individuals who received 

the standard two-dose vaccine regimen. All boosted individuals received either BNT162b2, 

mRNA-1273 or CoronaVac. To calculate the neutralisation level in individuals after boosting 

(Figure 3), the neutralisation level reported in naïve individuals in the phase I/II trials for 

each vaccine (as reported in the Supplementary table S3 from reference4) were multiplied by 140 

the fold increase reported in the boosting studies in Supplementary table 3. For some studies 

– naïve or previously infected individuals were reported to have received either BNT162b2 or 

mRNA-1273 - and data on which individuals received which vaccines was not paired with 

the neutralisations titres 5-7. In these cases the geometric mean of the neutralisation reported 

in the phase I/II trials for BNT162b2 and mRNA-1273 was calculated (geometric mean: 3.13 145 

fold of convalescent plasma) and the fold-increase between vaccination in previously infected 

individuals and naïve individuals was multiplied by this geometric mean level for naïve 

individuals receiving one of the two vaccines. This provided a range of estimates of the 

neutralisation level (as a fold of convalescent plasma) after boosting of previously infected 

individuals of between 6.1-28.7, with geometric mean of 12.0 (red shaded region and dashed 150 

line, Figure 3).  

 

Estimating decay in vaccine efficacy 

In this study we aimed to estimate the efficacy against variants over the first year (with and 

without boosting). Modelling the decay in efficacy was performed by determining (from the 155 

inverse of the model in Equation S8 below), the neutralisation titres expected to give an 

initial target efficacy (ie: 95%, 90%, 80% or 70%) against infection with the ancestral virus. 

Neutralisation was assumed to decay over the first 360 days with a half-life of 108 days (as 

estimated in 4, using data from 8). The efficacy at each time point was then determined from 

the neutralisation level after decay until that time point (using Equation S8). Neutralisation to 160 

variants was assumed to be reduced by the same fold change (Figure S3), as titres decayed. 

Boosting was modelled as an increase in the neutralisation level to the mean level determined 
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from studies in previously infected or vaccinated individuals (red dashed line in Figure 3), 

assuming decay rate in neutralisation was the same after boosting as before, and assuming 

that loss of neutralisation to variants was the same fold-change as prior to boosting. The 165 

lower bound on efficacy estimates from the model was determined using the bootstrapping 

approach described in the supplementary methods. 
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Supplementary Methods 170 

In this section we describe the methods used to estimate the average fold-drop in 

neutralisation against each variant and how this was used to predict the efficacy of vaccines 

against each variant. A major focus of these methods is in accounting for censoring of 

neutralisation measurements when they fell below the limit of detection, and standard 

censoring models cannot be used because different assays had different limits of detection. 175 

Another major focus of these methods is to explain how bootstrapping was used to determine 

the error in predictions of vaccine efficacy.  

 

To aid reading of these methods it is worth noting that throughout these methods we will use 

subscripts to refer to the serum type under consideration and superscripts to refer to the virus 180 

type under consideration. A superscript of either a or 0 refers to the special case of ancestral 

virus.  

 

The following letters are paired with these subscripts and superscripts: (i) Neutralisation titre 

for serum i against variant v is depicted by 𝑁E?; (ii) Fold change in neutralisation titre from 185 

variant 𝑣G to variant v for serum i is depicted by 𝐹E
?,?I. Where variant 𝑣G is ancestral virus (i.e. 

𝐹E
?,J) this is shortened to 𝐹E?; (iii) The limit of detection for serum i against variant v is 

depicted by 𝐿E?; (iv) Left and right censoring variables for serum i against variant v are 

denoted by 𝑐KL
?  and 𝑐ML

? , respectively. 

 190 

Estimating the mean fold-change in neutralisation against each variant with censoring at the 

limit of detection 

When estimating the mean fold-change in sera neutralisation of ancestral virus versus a 

SARS-CoV-2 variant (𝐹E?) it was important to adjust for the censoring of data when 

neuralisation against the variant or ancestral virus fell below the limit of detection. When the 195 

neutralisation titres for a serum sample against the ancestral virus (𝑁EJ) and a variant (𝑁E?) 

were both above the limit of detection the fold-change in neutralisation was calculated as 

𝐹E? =
OL
P

OL
Q. When the neutralisation titre declined from a value above the limit of detection 

against the ancestral virus, to below the limit of detection against the variant (𝐿E?), the fold-

change in neutralisation was 𝐹E? ≤
KL
P

OL
Q (this occurred in 98 samples). In this case we set the 200 

left censoring variable, 𝑐KL
?  to be 1. In the uncommon case (2 samples) where the 
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neutralisation against the ancestral virus was below the (𝐿EJ), but the neutralisation against the 

variant was above the limit of detection the fold change was 𝐹E? ≥
OL
P

KL
Q , and this possibility 

accounts for the times when there is a detected increase in neutralisation titre against variant 

compared with ancestral. In this case we set the right censoring variable, 𝑐ML
?  205 

to be 1. In all other cases the left and right censoring variables were set to 0. When the 

neutralisation titre against the ancestral virus and variant were below the limit of detection 

these data were excluded as they provided no information on neutralisation change (29 

samples).  To estimate the mean fold-change in neutralisation against a particular variant (𝑣) 

we assumed a normal distribution for the log-transformed fold changes observed in sera 210 

samples against that variant, (i.e. log31 𝐹E?), and fitted this using maximum likelihood 

estimation. The likelihood function for fitting this normal distribution (including censoring) 

was, 

 

ℒ?(𝑭𝒗, 𝑵𝒗, 𝑵𝒂, 𝑳𝒗, 𝑳𝒂𝑪𝑳𝒗, 𝑪𝑹𝒗 	|	𝜇?, 𝜎?) = 215 

c𝑔(log31(𝐹E?), 𝜇?, 𝜎?)
3efDL

P efgL
P

hP

Ei3

𝐺 klog31 k
𝐿E?

𝑁EJ
	l , 𝜇?, 𝜎?l

fDL
P

 

m1 − 𝐺 klog31 k
𝑁E?

𝐿EJ
l , 𝜇?, 𝜎?lp

fgL
P

 

 (Eq S3) 

where the ith elements of the vectors 𝑭𝒗,𝑵𝒗, 𝑳𝒗, 𝑪𝑳𝒗 and 𝑪𝑹𝒗  vectors are 𝐹E?, 𝑁EJ, 𝑁EJ,	𝐿E?, 𝐿EJ, 𝑐EK 

and 𝑐EM, respectively.	The function 𝑔(𝑥, 𝜇, 𝜎) is the probability density at 𝑥 of a normal 220 

distribution with mean 𝜇 and standard deviation 𝜎. The function	𝐺(𝑥, 𝜇, 𝜎) is the cumulative 

density at 𝑥 of a normal distribution with mean 𝜇 and standard deviation 𝜎. The mean (𝜇?) 

and standard deviation (𝜎?) of the normal distribution that minimise the negative log of this 

likelihood function were found using the nlm function in the R statistical package (version 

4.0.2). 225 

 

Creating a censored regression model to predict neutralisation against variant virus  

In order to predict neutralisation titre against variant virus using the multiple regression 

model in Equation S1, we set up a custom censored regression model. The purpose of this 

custom model is to allow for both neutralisation titre against the variant virus and 230 

neutralisation titre against the ancestral virus to potentially be below the limit of detection for 



 9 

a study. Existing censored regression packages (e.g. CensReg9) were not used as the limit of 

detection was different for different laboratories – though CensReg produced similar results 

in a parallel analysis. 

 235 

We set up a likelihood function to estimate the neutralisation against each variant using the 

neutralisation against ancestral virus. We considered nv different variants, and, using 

Equation S3 we estimated the mean fold change in neutralisation titre against each variant 

(compared to ancestral virus) across all serum samples available, and denoted this, 𝐹r?. Here 

we denote ancestral virus by v=0.  The vector of these fold changes across all variants is 240 

denoted 𝑭s. We also stored the neutralisation titres and limits of detection for each variant / 

serum (including convalescent serum) combination in matrices N and L respectively, with 

𝑵 = (𝑁E?) and 𝑳 = (𝐿E?). For each serum sample we recorded the study (Ai) and serum type 

(Ti) and stored these in vectors A and T respectively. Finally, the lower and upper bounds for 

censoring (due to either variant neutralisation being below the limit of detection or ancestral 245 

virus neutralisation titre being below the limit of detection, as described above) were stored 

in matrices 𝑪𝑳 = t𝐶KL
? v and 𝑪𝑹 = t𝐶ML

? v, respectively. We define a vector of parameter 

estimates 𝜶 as 𝜶 = (𝛼1, 𝛼3, 𝛼8, 𝛼9, 𝛼x); corresponding to the coeffcients in the regression 

model. 

 250 

The likelihood function (including censoring) that we used was  

ℒ?(𝑵, 𝑭s, 𝑳, 𝑨, 𝑻, 𝑪𝑳𝑪𝑹|	𝜶, 𝜎) = 

cc𝑔(log31(𝑁E?), ℎE?, 𝜎?)
3efDL

P efgL
P

hP

Ei3

CP

?i3

𝐺(log31(𝐿E?	) , ℎE?, 𝜎?)
fDL
P

 

|(1 − 𝐺(log31(𝐿E1), ℎE?, 𝜎?)}
fgL
P

. 

 (Eq S4) 255 

Where ℎE? is defined as: 

ℎE? = 𝛼1 + 𝛼3𝑁E1 + 𝐹r? + 𝛼8𝐴E + 𝛼9𝑇E. 

 (Eq S5) 

 

We minimised the negative log of the likelihood function in Equation S4 for models where 260 

neither, one or both of 𝛼9 and 𝛼x	were set to zero using the optim function in the stats 

package of R (version 4.0.2). We then compared models using the likelihood ratio test.  
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Creating a censored regression model to predict fold drop in neutralisation titre for variant 

virus  265 

In a similar way to that described above, we set up a censored regression model to predict the 

fold change in neutralisation titre for each variant. In this case, and using the same notation 

outlined above, the likelihood function (including censoring) that we used was  

ℒ?(𝑭, 𝑭s, 𝑳, 𝑨, 𝑻, 𝑪𝑳𝑪𝑹|	𝜶, 𝜎) = 

cc𝑔(log31(𝐹E?), 𝑘E?, 𝜎?)
3efDL

P efgL
P

hP

Ei3

CP

?i3

𝐺 klog31 k
𝐿E?

𝑁E1
	l , 𝑘E?, 𝜎?l

fDL
P

 270 

m(1 − 𝐺 klog31 k
𝑁E?

𝐿E1
l , 𝑘E?, 𝜎?lp

fgL
P

. 

 (Eq S6) 

Where 𝑘E? is defined as: 

𝑘E? = 𝛼1 + 𝐹r? + 𝛼3𝐹𝐶��
?rrrrrr + 𝛼8𝐴E + 𝛼9𝑇E. 

 (Eq S7) 275 

and 𝐹𝐶��
?rrrrrr represents the average fold drop in convalescent sera for variant v in the lab from 

which serum i comes. As in Equation S2, at most one of 𝛼3 or 𝛼8 were allowed to be non-

zero. 

 

Predicting the efficacy for variants based on previously developed model 280 

Previously, we developed and fitted a model of vaccine efficacy to data on the 

immunogenicity and protective efficacy (against symptomatic and severe COVID-19) of 7 

vaccines from phase I/II and phase III trials, respectively 4. Here we use this model, as 

originally published and parameterised, to predict the efficacy of vaccines against each 

variant, using the fold-change in neutralisation titre estimated against each variant in this 285 

study (Figure S3). The model estimates protective efficacy of a vaccine as, 

𝑃(𝑛�1, 𝑘, 𝜇�?, 𝜎J��) = � 𝐸(𝑛	|	𝑛�1, 𝑘)	𝑓(𝑛	|	𝜇�?, 𝜎J��)
�

e�
	𝑑𝑛 

(Eq S8) 

where 𝜇�? is the (log10) mean neutralisation titre of a vaccine (𝑠) against variant (𝑣) 

(normalised to the mean of convalescent sera against ancestral virus), 𝜎J�� is the standard 290 

deviation in the neutralisation titres across individuals, 𝑓 is the probability density of a 
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normal distribution with mean 𝜇? and standard deviation 𝜎J��, and 𝐸 is a logistic function of 

the form, 

𝐸(𝑛	|	𝑛�1, 𝑘) =
1

1 + 𝑒e�(CeC��)
. 

(Eq S9) 295 

The parameter 𝑛�1 is the (log10) neutralisation level that provides an individual with 50% 

protective efficacy of COVID-19, and 𝑘 is the parameter determining the steepness of the 

logistic relationship.  A number of these parameters were estimated previously for 

symptomatic and severe COVID-19 (Supplementary table 4) 4. 

 300 

To investigate the ability of the previously published model to predict vaccine efficacy 

against variants, we compared our models prediction of vaccine efficacy with the observed 

efficacy for each variant and vaccine combination we identified in the literature (Figure 2). 

To estimate the mean neutralisation level of each vaccine against each variant (where 

efficacy data was available), we calculated 305 

𝜇�? = 𝜇� + 𝐹r? 

 where 𝐹r? is the (log10) mean fold-change in neutralisation titres for each variant (calculated 

above as above) and 𝜇� is the neutralisation level reported for each vaccine (ratio of 

neutralisation titre in vaccinated individuals compared with convalescent individuals) that 

was reported in Phase I/II trials against ancestral virus 4 (Figure 2).  310 

 

Determining the confidence and lower bound of predicted efficacy using parametric 

bootstrapping 

During vaccine development it is useful to know the uncertainty in efficacy predictions as 

measured by the confidence interval for the efficacy estimate. In particular, the lower 315 

confidence bound for efficacy for a given neutralisation level is useful as an estimate of the 

minimum expected level of achieved efficacy (Figure 2). Confidence intervals (and lower 

bounds) of predicted efficacies (shaded regions) in Figures 2, 4 and S4 were generated using 

parametric bootstrapping on the parameters with uncertainty in their estimation 

(Supplementary table 4) as follows. For any neutralisation ratio (i.e. position on the x-axis in 320 

Figure 2 and S4), Equation S8 was first used to estimate the mean corresponding protective 

efficacy against a particular variant. Then the distribution of likely efficacies was estimated 

by repeating the efficacy calculation with Equation S8, using parameter values chosen 

randomly from distributions according to their standard error or covariance matrix (normal 



 12 

and bivariant normal distributions respectively, Supplementary table 4). The sources of 325 

uncertainty include the model parameter uncertainty estimated in the previous study 4, as well 

as the uncertainty in estimates of the neutralisation level and the fold drop in neutralisation to 

each variant (Figure S3). It should be noted that when estimating the neutralisations level for 

each vaccine there is between laboratory uncertainty (i.e. due to differences in laboratory and 

assays used), and within laboratory uncertainty. The between laboratory variability in 330 

estimates of neutralisation level (standard error in estimates 0.18) was determined in this 

study and found to be less than the maximum within laboratory uncertainty (standard error in 

estimates, 0.20). Therefore, we used the largest within study uncertainty as the measure of 

uncertainty in the efficacy estimates (Supplementary table 4).  The distribution in efficacy 

was generated from 10,000 bootstraps for each neutralisation level and the 95% confidence 335 

limits estimated using the percentile method (2.5 and 97.5 percentile for a regular 95% 

confidence interval, Figure 2, 4 and S4).  

 

 

 340 
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