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Abstract 
Clarifying dominant factors determining the immune heterogeneity from non-survivors to 
survivors is crucial for developing therapeutics and vaccines against  COVID-19. The main 
difficulty is quantitatively analyzing the multi-level clinical data, including viral 
dynamics, immune response, and tissue damages. Here, we adopt a top-down modelling 
approach to quantify key functional aspects and their dynamical interplay in the battle 
between the virus and the immune system, yielding an accurate description of real-
time clinical data involving hundreds of patients for the first time. The quantification 
of antiviral responses demonstrates that, compared to antibodies, T cells play a more 
dominant role in virus clearance, especially for mild patients (96.5%). Moreover, the anti-
inflammatory responses, namely the cytokine inhibition and tissue repair rates, also 
positively correlate with T cell number and are significantly suppressed in non-survivors. 
Simulations show that the lack of T cells leads to more significant inflammation, proposing 
an explanation for the monotonous increase of COVID-19 mortality with age and higher 
mortality for males. We conclude that T cells play a crucial role in the immunity against 
COVID-19, which reveals a new direction——improvement of T cell number for 
advancing current prevention and treatment. 

Introduction 
 
The ongoing COVID-19 pandemic has resulted in over two million deaths worldwide. 
Therefore, identifying key factors determining the immune heterogeneity from non-
survivors to survivors is crucial for the current fight against the pandemic. Past clinical 
studies have found a series of host factors associated with severe disease or higher 
mortality via correlation analysis: individual characteristics including older age, male sex, 
and comorbidities1,2; profound lymphopenia, with T cells most significantly affected3–5; 
the elevated level of inflammation markers, like LDH (lactate dehydrogenase) and D-
dimer2,6; excessive release of pro-inflammatory signalling molecules, like IFN − γ, IL-6, 
etc., known as the cytokine storm which is thought likely to be a major cause of 
multiorgan failure4,7. For immune responses, both SARS-CoV-2 specific T cells and 
antibodies are observed in COVID-19 patients6,8. However, the quantitative role of these 
factors in antiviral and anti-inflammatory immune responses is unknown, resulting in 
several unsolved questions about the cause of death and the protective mechanism against 
virus and inflammation: 1. Are T cells and antibodies helpful or harmful9,10, especially in 
severe patients? What are the relative contributions of T cell and antibody response for 
antiviral immunity at different stages? 2. What are the main drivers and suppressors for 
the cytokine storm and multiorgan failure? Most importantly, 3.Are there new directions 
to overcome the heterogeneity of patients, decay of antibody function, and gene mutation 
SARS-CoV-2 in efficient therapeutics and vaccine developments? 
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Beyond correlative analyses, quantitative modelling is a powerful tool to simulate the 
measured dynamical immune response to reveal the relative importance of different 
components11. However, many recent studies focus on the dynamics of the virus and its 
interactions with immune responses12,13and antiviral drugs14–23, without considerations of 
inflammation which is essential in disease progression. On the other hand, some 
multiscale simulations 24–27 incorporate existing knowledge about the viral dynamics, 
immune responses (with inflammation) to simulate the clinical outcomes. However, these 
approaches involve hundreds of model parameters, which have considerable value 
uncertainties that limit the reliability of predictions and systematic comparisons with 
clinical data. Therefore, previous studies either include no inflammation or include too 
many cellular or molecular inflammation components and parameters to clarify the key 
factors dominating death. 
 
In this work, we adopt a top-down modelling to construct a simple and verifiable model 
including both antiviral dynamics and inflammation. The model quantifies crucial 
functional aspects in the virus-immune system battle to overcome the difficulty 
mentioned above. Here, the battle is classified into three kinds of functional behaviours, 
namely, the pathogenic function (e.g., virus and inflammation), the protective function 
(e.g., innate and adaptive immunity), and organ damage. Integrating with the existing 
clinical and immunological knowledge for COVID-19 patients, we establish a dynamical 
motif for a small set of crucial functional variables and their interplays. The antiviral 
inflammation model is used to simulate the systematic progression of COVID-19 patients 
with 19 parameters that can all be estimated from clinical data. These simulations are 
validated with real-time clinical data involving hundreds of patients and then evaluate 
contributions of T cells and antibodies to antiviral immune responses. Subsequently, we 
quantify the difference of anti-inflammatory immune responses from non-survivors to 
survivors and clarify their correlations to T cells. Finally, T cells' dominant role in saving 
the death of COVID-19 and revelation to new therapeutics and vaccine development are 
discussed.  

Causal network of the Antiviral-Inflammation Model 

The difficulty of previous multiscale simulations24–26 due to considerable parameter value 
uncertainties stems from the fact that, in the bottom-up strategy, the immune response to 
infectious disease is modelled as a complex network of numerous factors, resulting in the 
so-called 'curse of dimensionality'28. In contrast, in a recent successful model of a 
classical complex system, namely, fluid turbulence, one of us has demonstrated that the 
global motions composed of numerous components typically display a symmetry-
breaking which can be quantitatively modelled with finite functional variables, called 
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order functions29,30. Here, we use a similar top-down strategy conducted from the human 
body to the molecular level to quantify immune functional aspects in the virus-immune 
system battle.  At the human-body level, we first decompose the system into three 
functional classes: the pathogenic function, the protective function, and the organ 
damage. Then, we specify dominant components at the cellular or molecular level for 
each functional class, ignoring other components. Therefore, this approach captures, by 
intuition, some essential features to observed physiological behaviours and has avoided 
unnecessary complexity, which results in a 'curse of dimensionality with little clinical 
meaning.  
 

 

 

Figure 1. Graphical scheme of COVID-19 antiviral-inflammation model. Key components are 
highlighted. The red arrows mean activation, and the black arrows represent inhibition. Greek letters 
mean the activation/inhibition rates or characteristic time associated with each interaction NAb: 
neutralizing antibody. Non-NAb: non-neutralizing antibody of which the concentration is assumed 
proportional to NAb. M𝜙, NK: macrophage and natural killer cells. IL-6: interleukin 6. IL-1: interleukin 
1. D-dimer: coagulation marker. HSCT: High-sensitivity cardiac troponin I, heart injury marker. ARDS: 
Acute Respiratory Distress Syndrome. MOF: Multi-Organ Failure. 

The model explicitly describes dynamics of five crucial functional quantities that 
determine COVID-19 progression: virus (V) and interleukin 6 (IL-6, I) for pathogenic 
function, effector T cells (Te) and neutralizing antibodies (NAbs, A) for protective 
function, D-dimer (coagulation marker, Sd), and high-sensitivity cardiac troponin I 
(HSCT, heart injury marker, Sh) as examples for multiorgan damage. Other secondary 
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factors modulate their interactions. Fig.1 shows their interplay following time order from 
virus dynamics, immune response to inflammation response, with variable names and 
their mutual interaction represented by Greek letters. Self-replicating virus stimulates 
innate and adaptive immune cells, which can produce antibodies. Effector T cells and 
neutralizing antibodies (NAbs) clear virus directly, either by killing infected cells or 
block the virus from entering into tissue cells; non-neutralizing antibodies (Non-NAbs) 
combines with innate immune cells (macrophages (Mɸ) and nature killers (NK), etc.) and 
induce immunoreaction to clear virus indirectly. The activated immune cells secrets 
cytokines, in which IL-6 has a central role for downstream destructive effect on organs, 
hence, it increases D-dimer and high-sensitivity cardiac troponin I that characterizes 
multiorgan failure (MOF). On the other hand, suppressing immune hyperactivation and 
tissue repair by negative feedback reduces activated immune cells and vessel and heart 
damage, thus reducing IL-6, D-dimer, and high-sensitivity cardiac troponin I. 

Mathematical description of the Antiviral-Inflammation Model 

Quantitatively, a set of ordinary differential equations, Eq. (1)-(5), is constructed to 
describe the antiviral immune response and pathogenesis of inflammation at a specific 
part of the body. The detailed meanings and units of all parameters are provided in SI 
(Supplementary Information), Table S1.  

The antiviral process includes continuous virial replication, dynamical activation of T 
cells to effector T cells by the virus, dynamical secretion of neutralizing antibodies by B 
cells, virus clearance by effector T cells and antibodies, and decay of effector T cells and 
antibodies. Eq. (1)-(3) describes the corresponding dynamical evolutions of 
concentrations of the free virus (V), effector T cells(Te), and neutralizing antibodies(A), 
with concise rate constants and time interval describing global effects of a series of 
microscopic processes, like target cell infection, antigen identification, antigen 
presentation, differentiation of T cells, B cell immunoglobulin class switching, etc. 𝛼( 
describes an effective viral growth rate, which summates both viral replication rate and 
viral clearance rate by the innate response. Here, we adopt a constant assumption for  𝛼(, 
although, in general, it varies in time due to the pathogen lifecycle. This assumption is 
supported by several studies13,15,16,21–23, which showed that, in the early stage, the virus 
increases exponentially at a single rate, indicating 𝛼( is nearly a constant. While in the 
later stage, T cell and antibody response significantly3, indicating that the innate 
immunity is unable to control the virus; thus, its variation is negligible. 𝛿 and 𝜂 represent 
production rate of effector T cells and antibodies, respectively. Their one-day averaged 
values are assumed constants compared to the significant change of viral load across 
several magnitudes.  A delay of antibody response that antibodies rise on the 5-15th day 
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after onset31–33 is observed, later than the viral load peak. On the contrary, the maximum 
variation of the T cell concentration is observed to be close to the viral load peak 
location3, which reveals its delay time may be shorter. Therefore, Eq. (3) for antibody 
response includes a delay, while Eq. (2) for T cell response does not. Besides, in common 
sense, there is no virus-specific effective T cell or antibody before infection34; therefore, 
Te(0) and A(0) should be 0.  

Eq. (4) describes the release and suppression of IL-6. Its production in COVID-19 has 
two stages; namely, the early inflammation begins after the infection, and the latter 
inflammation dynamics stimulated by the antibody response. Our simulation focuses on 
the second stage dynamics for its intimate correlation with severe disease, as shown by 
IL-6 explosion of non-survivors at 13th day after onset35. Therefore, only one production 
term 𝜅𝐴(𝑡) is included, followed by a negative feedback term with the normal value 
before infection3 represent by I0. Eq. (5) describes the release of IL-6 causes damage to 
organs, like thrombus formation and heart injury marked by D-dimer and high-sensitivity 
cardiac troponin I. The construction is based on the common view that cytokine storm is 
very likely to cause multiorgan failure7. The organ damage marker levels are reduced 
when blood vessels and the heart are repaired through negative feedback, shown in Eq. 
(5).  

𝑑𝑉(𝑡)
𝑑𝑡

= [𝛼( − 𝛽𝑇6(𝑡)	 − 𝛾𝐴(𝑡)]𝑉(𝑡) (1) 

𝑑𝑇6(𝑡)	
𝑑𝑡

= 𝛿𝑉(𝑡) − 𝜖𝑇6(𝑡)	 (2) 

𝑑𝐴(𝑡)	
𝑑𝑡

= 𝜂𝑉(𝑡 − 𝜏) − 𝜃𝐴(𝑡) (3) 

𝑑𝐼(𝑡)
𝑑𝑡

= 𝜅𝐴(𝑡) − 𝜆[𝐼(𝑡) − 𝐼B] (4) 

𝑑𝑆E(𝑡)	
𝑑𝑡

= 𝜇E𝐼(𝑡) − 𝜈E𝑆E(𝑡) (5𝑎) 

𝑑𝑆J(𝑡)	
𝑑𝑡

= 𝜇J𝐼(𝑡) − 𝜈J𝑆J(𝑡) (5b) 

Simulations of Eq. (1)-(5) are compared to real-time data with 457 patients involved. 10 
are individuals, and the other 447 patients form mild, severe, survivor, and non-survivor 
groups. For individuals, we fit each patient’s data directly by Eq. (1)-(5). While for 
groups, we fit the median values of each variable by Eq. (1)-(5) for we have shown that 
the group dynamics of patients satisfy a similar set of equations with ensemble-averaged 
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parameters (see SI). For detailed data sources and integration of data from different 
sources, see Methods and SI. We perform the least-square fit of data using the fmincon 
function of MATLAB with the implemented interior-point optimization algorithm and 
perform numerical simulation using the delayed differential equations (DDE). The 
objective function for Eq. (1)-(3), Eq. (4)-(5) are shown by Eq. (10)-(12) in Methods. The 
time axis for simulation is the number of days after symptom onset, with the starting day 
being 0 or several days earlier. For a detailed description of the fitting procedure, see 
Methods and SI.  

Results 
 

Viral dynamics and contributions of T cells and antibodies to antiviral 
responses 
 

Virus, effector T cell, and antibody dynamics are simulated to compare with real-time 
data from 10 individuals31,36 and median values of mild and severe (critical) groups, 
survivors, and non-survivors35,37,38. The concentrations of virus (V) and antibodies (A) are 
assumed proportional to viral load measurement from the respiratory tract and optical 
density or titer of Anti-RBD IgG/Anti-S1 IgG/Anti-NP IgG. For T cell data, due to the 
fact that it’s difficult to obtain systematic data (data that have continuity along time, 
broad severity spectrum, and a large number of patients) of effector T cells, we use CD3+ 
T data in serum from Zhang et al.3 We classify two categories of T cells: the effector T 
cells that function in the organism and the T cells remaining in serum.  Zhang et al.3, 
argued that the decreased T cells remaining in serum move from serum to organs. 
Accordingly, we assume that the simulated effector T cell concentration in organs (Te) is 
proportional to the reduction of T cell in serum (Tserum(t)) from its initial value (T0): Te(t) 
∝ T0 – Tserum(t). In Figure 2a-c, T0 and Tserum come from Ref36, while in 2d they come 
from Ref.3. Besides, in Figure 2a-c, the T cell count is mapped from the original 
lymphocyte count is scaled by 0.589 (Methods) for. Besides, when comparing simulation 
to antibody data, an instrumental baseline value B0 (usually observed in the 
experiment)31,34,37 is added to A(t).  For the integration of data sources for individuals and 
groups, see Methods. 

As shown in Figure 2 and Supplementary Figure 1, simulations show agreement to data 
for all cases; for parameters, parameter uncertainties, and the goodness of fit, see SI. 
Though the fit is done separately for each individual/group with different initial guesses 
due to the limited number of data points and large fluctuations, the parameters for 
different patients and groups are within the same order of magnitude (for example, 𝛼( 
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varies from 0.41 to 1.86). The goodness of fit, defined as 1 - root mean square/maximum 
of the simulation of the variable. The mean of the goodness of fit among all variables and 
patients is 91.8%± 6.6%. Table S8-9 for parameters and goodness of fits of each case. 
This stability implies that the fitting approach is credible. 

 
Figure 2. Viral dynamics, adaptive immune response, and contributions of T cells to antiviral 
responses. a, e, i are fits of the first patient (patient ID labelled as P1); b, f, j are fits of the 
second patient (patient ID labelled as P3); c, g, k are fits of the third patient (patient ID labelled 
as P5)36; d, h, l are fits of the fourth patient (patient ID labelled as 902). Because the fourth 
patient lacks T cell data, we use T cell data from severe group3 as the T cell value for the fourth 
patient.  Mild patients are in blue and severe patients are in green. Red dotted lines are the limit 
of detection31. Black dotted lines are normal ranges3. Viral load is from the nasopharyngeal 
swab.  

Clarifying deterministic factors controlling viral load peak benefits early antiviral 
treatment, vaccination, and epidemiological control39. To understand the main factors that 
determine viral peak, by asymptotic analysis (Methods), we get an analytical solution that 
predicts the peak is determined from virus inhibition by T cells: peak value is the ratio 
between square of virus replication rate, 𝛼( and two times the multiplication of T cell 
activation and virus clearance rate, 𝛿, 𝛽. This gives 10P.RS copy/mL for the viral peak of 
patient P1 in Figure 2 consistent with the simulated value 10P.RT copy/mL. Table S3 in SI 
summarizes the analytical viral peak values compared to the corresponding simulation, 

a b c

Vi
ra
llo

ad
(c
op
y/
m
L)

An
ti-
S1

Ig
G
(O
D
Ra

tio
)

T
ce
ll(
10

9 /L
)

Days after symptom onset

d

e f g h

i j

Days after symptom onset Days after symptom onset

k l

Days after symptom onset

An
ti-
RB

D
Ig
G
(O
D)

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.04.26.21256093doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.26.21256093
http://creativecommons.org/licenses/by/4.0/


 

 

9 

 

which have >90% overlap with each other for all cases. Data agreement gives that for 
patients who survive, on average, 95% of viruses are cleared per day with 109/L T cells 
from blood engaged, revealing strong efficiency of T cells’ virus clearance. In 
conclusion, the consistency between simulation and data clarifies the antiviral dynamics 
for various severities in which adaptive response plays a significant role---first, effector T 
cells are activated, kill infected cells, and induce viral peak; then neutralizing antibodies 
are secreted, finally, clear the virus.  

 

Figure 3. An overall statistic of the fraction of virus killed by T cells (a) and antibodies (b) for all 
cases. Solid markers are individual data, and hollow markers are group data. Error bars 
represent standard errors.  

To clarify the roles of T cells and antibodies in the antiviral process, we define the 
amount of virus cleared by T cells,	𝑁V and antibodies,	𝑁W, are: 𝑁V(𝑡) =
∫ 𝛽𝑇(𝑡′)𝑉(𝑡′)	𝑑𝑡′
Z
[  and 𝑁W(𝑡) = ∫ 𝛾[𝐴(𝑡\) − 𝐴B]𝑉(𝑡′)	𝑑𝑡′

Z
[ . Then, the contribution by T 

cells in adaptive response for clearing virus, 𝐹V, and the contribution of antibodies, 𝐹W, 
are: 𝐹V = ∫ 𝑁V(𝑡)𝑑𝑡/[∫ [𝑁V(𝑡) + 𝑁W(𝑡)]𝑑𝑡], 𝐹W = 1 − 𝐹V.  

For patients of different severities, we compare the quantitative contributions of T cells 
and neutralizing antibodies for virus clearance, as displayed in Figure 3. It shows T-cell 
immunity dominates the total virus clearance for all patients (88.8%) but significantly 
decreases from mild to severe patients, consistent with previously reported less CD4+, 
CD8+ response in severe patients compared to mild patients8. Instead, the antibodies’ 
contributions are 3.3% (mild), 19.4% (severe or critical) and 28.9% (non-survivors), 
respectively. Our simulation finds that the antibody preparation time before secretion is 

Mild
Sev

ere

Non
-su

rvi
vo

rs
0

10

20

30

40

Virus cleared  
by antibodies% 

Mild
Sev

ere

Non
-su

rvi
vo

rs
60

70

80

90

100

Virus killed 
by T cells%  

a b

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.04.26.21256093doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.26.21256093
http://creativecommons.org/licenses/by/4.0/


 

 

10 

 

overall smaller in severe cases (9.42, 5.40-12.79 day) than in mild cases (14.68, 8.45-
20.13 day), revealing antibodies in severe patients secrete earlier and cleared more virus. 
In conclusion, we demonstrate in COVID-19 that T cells have a dominant role in the 
virus clearance relative to antibodies, especially for mild patients. 

Inflammation dynamics associated with death 

To clarify the main driver for the cytokine storm and organ damage of critical illness, we 
compare simulations of Eq. (1)-(5) with real-time, median data of survivors and non-
survivors (Figure 4). The concentration of non-neutralizing antibodies is assumed 
proportional to anti-RBD IgG optical density. For data source and parameter estimation, 
see Methods and SI. The agreement between simulations and data of IL-6, D-dimer, and 
high sensitive cardiac troponin I. The agreement between experiment and group 
demonstrates the validity of Eq. (1)-(5) and allows us to investigate the critical difference 
between survivors and non-survivors. 

IL-6 formation rates are assumed to be the same for both groups. The striking feature of 
non-survivors compared to survivors is the continuous production of IL-6 and organ 
damage, revealed by zero inhibition rates for all three markers (Figure 5b), while the 
difference of formation rates of organ damage markers is not remarkable. Our finding 
reveals that the crucial aspect of death from COVID-19 is the lack of negative feedback 
for anti-inflammatory cytokine inhibition and tissue repair. Besides, the initial IL-6 value 
for survivors is lower than that of non-survivors, which may result from the first stage of 
IL-6 dynamics where non-survivors lack control ability. 
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Figure 4. Comparison of predictions to clinical data of survivors and non-survivors. The data are the 
median of the group with error bars35. For parameter estimation, see Methods and SI. The saturation 
value of Anti-RBD IgG for non-survivors is estimated by assuming its ratio to the maximum of 
survivors’(18 non-critical and three critical) data is close to the ratio of maximums of neutralizing 
antibodies between critical and non-critical patients40.  

Initial T cells as background immunity that reduce mortality 

Our model reveals that virus clearance by T cells, cytokine inhibition, and tissue repair 
are three essential protective functions in COVID-19 that determine disease severity. To 
seek what determines these protective functions, T cells’ contribution of total virus 
clearance, cytokine inhibition rate, and tissue repair rates are plotted with initial T cell 
concentration before infection (equal to T cell baseline, T0) in Figure 5a,b, which shows a 
positive correlation (Figure 5b is based on statistics of 137 non-survivors and 54 
survivors). It shows the importance of sufficient initial T cells for comprehensive 
protection, which comes from an adequate number of effective CD8+ effector T cells that 
kill infected cells, sufficient regulatory T cells, and other subsets that suppress the 
immune response and promote tissue repair41 to reduce over inflammation in non-
survivors. 
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Figure 5. Initial T cell concentration as the background immunity of individuals against SARS-CoV-2 
and reduces mortality. a and b: T cell’s antiviral contribution, IL-6, D-dimer, and high sensitive cardiac 
troponin (HSCT) inhibition rates are positively correlated with initial T cell concentration. R square of 
the linear fit in Figure 5a is 0.33. c: D-dimer dynamics of non-survivors with an increase of initial T cell 
concentration (T0) reduces organ damage at the late stage. The Red dashed line is the normal upper 
limit of the D-dimer, and the grey dashed line is the median value of the non-survivor group from 
reference35. For parameters of the simulation, see Methods. d. Lymphocyte count decreases with 
age and mortality (case fatality rate, CFR) increases with age. Male (dashed line) have higher 
mortality than female (solid line). 

A great public concern is how an individual patient’s background ‘immune health’ 
landscape (simplified as background immunity) shapes responses to SARS-CoV-2 
infection9 and controls the disease's severity. Because of the determining relation of 
initial T cell concentration for protective functions, T cells’ static reserve before infection 
and dominance in population compared to other cells against the virus, we propose 
concentration of initial T cells is a crucial characterization for the background immunity 
against SARS-CoV-2. To verify this hypothesis, we conduct disease progression of 
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patients with different initial T cell concentrations. According to Figure 5a,b, by 
assuming a linear decreasing of T cells’ virus clearing rate, IL-6 and D-dimer inhibition 
rates with decreasing initial T cell concentration, Fig. 4c shows coagulation becomes 
more and more significant, which means lack of initial T cells exacerbates disease 
severity and increase mortality risk.   

Therefore, we conclude that the T cells’  impaired antiviral and anti-inflammation 
functions are the main immune origin of death from COVID-19: the extremely low level 
of initial T cells in non-survivors results in weak antiviral, cytokine inhibition and tissue 
repair abilities as well as low tissue repair function; then it calls the elevated antibodies 
for compensation; as a result, the concomitant large amount of non-neutralizing 
antibodies amplifies the cytokine storm, leading to continued damage. Following this 
casual chain, according to the decrease of lymphocytes (hence decrease of T cells 
assuming T cell count proportional to lymphocyte count) with older age (Figure 5d), we 
predict straightforwardly older patients must have higher mortality than younger patients. 
Also, male patients should have higher mortality than female patients for their lower 
CD4+ T cells37. Our prediction proposes an explanation for the continuous increase of 
COVID-19 mortality with age and higher mortality for males42, shown in Fig. 4d. More 
clinical data are needed to test the validity of the explanation. 

Discussion 

In conclusion, we have quantified the adaptive-immune-response heterogeneity from 
non-survivors to survivors of COVID-19, using a dynamical motif with 19 measurable 
parameters beyond the overcomplication of the previous multiscale model26. For the first 
time, this model provides an accurate description of real-time clinical data involving 
hundreds of patients, which then reliably clarifies T cells' dominant roles in the antiviral 
and anti-inflammatory immune responses. Furthermore, beyond the previous correlation 
analysis for T cell scarcity and disease severity8,9, this work reveals the causal relation 
between death from COVID-19 and impaired T cell immunity, provides an explanation 
for the high mortality of older men. 

According to our discussion (Figure 4a, b) of mild and severe patients, survivors and non-
survivors, a better vaccine or treatment require better protective functions, i.e., higher 
virus clearance rate, cytokine inhibition rate, and tissue repair rate, either before or during 
the infection. Our simulation results in Figure 4c indicate that increasing initial T cell 
concentration (T0) can yield more active T cells and, thus, better protective functions and 
outcomes (e.g., lower D-dimer level at a later stage). Therefore, prevention and treatment 
approaches that improve (active) T cell number before or during the infection are 
expected to give better efficacy.   
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The currently tested drugs target various pathogenesis levels, from antiviral to anti-
inflammatory drugs and antithrombotic agents26, etc. However, there is no proven 
effective therapeutics for COVID-19. One crucial challenge is the lack of broad 
applicability of these drugs to heterogeneous patients with various comorbidities, disease 
severities, and complications43. Our study reveals a new direction will be increasing T 
cell number and functions by both drugs and health care activities, which may benefit 
virus clearance, cytokine inhibition, and tissue repair simultaneously. Firstly, recent 
studies reported the curing effect of drugs to COVID-19 patients by increasing T cell 
number, e.g., recombinant human granulocyte colony-stimulating factor44 
JinHuaQingGanKeLi45. Therefore, we encourage further studies and applications in this 
direction. Second, for the recovery of COVID-19 patients and healthy people's 
prevention, improving background immunity associated with T cells is more important 
and promising. Therefore, we strongly suggest studying the curing and immunity 
improvement effects of health care activities, such as mediation46,47,  Tai Chi48 and 
BaDuanJin49, for previous studies have found they help to increase CD3+ T cell and 
CD4+ T cell concentration and apply to a wide range of age, including older adults.  

On the other hand, in the current development of the vaccine, neutralizing antibody 
immunity plays a crucial role. Unfortunately, the single-strand RNA structure makes 
SARS-CoV-2 easy to mutate, and several lineages have been discovered50. These 
mutations pose a challenge for the long-term effectiveness of antibody immunity, for it is 
on the molecular level targeting specific epitopes of the virus. By contrast, memory T 
cells show strong cross-reactivity and persistence34, and active T cells protect bodies in 
several aspects, including antivirus, suppress immune hyperactivation, and promote tissue 
repair. Therefore, stimulation of T cell response by the vaccine is worth more 
exploration, and we suggest advancing the current combination adjuvant strategy51 that 
elicits potent CD8 and CD4 T cell responses. 

For clinical application, to maximize the curing effect for severe patients, we suggest 
adopting multistage, synthetic protocols incorporating the above therapies. In this case, 
our model provides a strong tool to evaluate the effectiveness of treatments to identify 
individual optimal protocols. The reason is that all parameters can be determined from 
clinical data and quickly predict individual patients' trajectories, which may also advance 
the early prediction algorithm of current artificial intelligence softwares52,53.  

To separate the critical elements from irrelevant details, we here have made some 
assumptions, which should be evaluated in further clinical studies, although they would 
not affect the basic conclusions of the study. For instance, the virus-clearance rate of 
innate immunity is thought to be a constant with negligible variation and is small 
compared to rates of adaptive response, which should be verified by further time-
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dependent measurement of the course of the innate response. The second assumption that 
needs more measurement to test is that, for survivors, the concentration of effector CD8+ 
T cells at the infected part is proportional to the reduction of CD3+ T cells in peripheral 
blood; whether it is strictly obeyed at the most time or not might be intriguing to further 
investigation4. The third questionable assumption is that the temporal profile of non-
neutralizing antibodies is proportional to neutralizing antibodies. Further measurement 
needs to test whether they are secreting at the same pace or not. 

Methods 

§ Extraction of data from published literature  

A software tool WebPlotDigitizer (https://automeris.io/WebPlotDigitizer), was used to extract 
data from fig.2 in ref3, fig.1, and fig.3 in ref36, fig.2 in ref2, fig.1 and fig.3 in ref37 and fig.3 in ref38. 
All extracted data were made available to readers in our GitHub shared folder: 
https://github.com/luhaozhang/covid19 

§ Data source and integration of data from different sources 

There are in total 10 individuals and 4 groups in this work. 4 patients are from Isabella Eckerle’s  
cohort36 and 6 patients from Kelvin To’s cohort54, and the severity classification follows the 
assignments in previous publications. One patient from Kelvin To’s cohort who has not yet been 
identified as being critically ill in the original paper is classified as severe because the probability 
of being critically ill is low (1/6). In all, there are 6 mild and 4 severe (including critical) patients. 
The four groups are mild, severe (including critical), survivors and non-survivors. 

The viral load data are from the oropharyngeal swab/posterior oropharyngeal sample 
/endotracheal aspirates sample measured during the 0th to 30th day after onset. T cell,  
Lymphocyte, antibody, IL-6, D-dimer, and HSCT are measured from serum sample during the 0th 
to 30th day after onset. Lymphocyte data were multiplied by 0.589 to estimate T cell 
concentration (0.589 is the ratio between medians of normal ranges of T cells3 and 
lymphocytes36. See Table S2 for how the virus, T cell, and antibody data for all individuals and 
groups are integrated from various data sources. The IL-6, D-dimer, and HSCT data for survivors 
and non-survivors are all from BinCao’s cohort55.  

§ Least square fit of virus, immune response and inflammation data 

For parameters of simulations in Figure 2 and Figure 4, we adopt a best-fit approach to find the 
parameters which minimize the given objective function: the mean of residual sum of squares 
(RSM) between data points and the corresponding model simulations as used similarly in 
influenza model56. For virus-T cell-antibody dynamics, the objective function is: 
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𝑉j, 𝑇j, 𝐴j  represent values of viral load data, T cell count data and antibody data, respectively. 
𝑉bj, 𝑇bj  and 𝐴̅j  represents the corresponding simulated viral, T cell and antibody value given by our 
model, respectively. 𝑉klm, 𝑇klm and 𝐴klm represent the maximum value among viral load data, 
T cell count data and antibody data, respectively. 𝑛d, 𝑛s, 𝑛u are the total number of viral load, T 
cell count and antibody data points. For the objective function of inflammation response, the 
mean of RSM (Eq. (7)) was used in linear scale for survivors and log scale (Eq. (8)) for non-
survivors. 𝐼j, 𝑆yj, 𝑆Jj  represent values of IL-6 data, D-dimer data and HSCT (High-sensitivity 

cardiac troponin I) data, respectively and 𝐼j̅, 𝑆Ebbbj, 𝑆zbbbj  are the corresponding simulated IL-6, D-
dimer and HSCT value by our model. 𝐼klm, 𝑆Eklm, 𝑆Jklm represent the maximum value among 
IL-6, D-dimer and HSCT value. 
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For simulation of viral load dynamics, when V<10 copy/mL, it is thought to be cleared 
thoroughly at one time without further evolution and is set to be 1 copy/mL. The fit that 
minimizes the objective function with largely fluctuating data points eliminated is called the best 
fit, which gives results in Figure 2 and Figure 4. Table S5 lists the data points used for performing 
the best fit of each case. The principles that we use to eliminate largely fluctuating data points 
are: For virus, data points that represent negative results of the virus are abandoned unless they 
were important indicators of the ending of viral activity; the data points associated with the 
second viral load peak in mild and severe group are abandoned because the phenomenon is not 
observed as the common feature of individual patients. The decay of CD3+ T cells of 902 and 
910 patients after 30 days is not used for fit because of the large 95% CI of the data.  

fmincon function of MATLAB (MathWorks, version 2012 and higher) with the implemented 
interior-point optimization algorithm is used to perform the fits. It requires constraints for the 
parameters to be optimized and an initial guess. An empirical fitting is performed for each 
patient and group to identify initial guess and parameters’ constraints for optimization, shown 
in Table S10 and Table S11. Patients with the same type of data and same severity category are 
set to have similar parameter ranges for optimization. A random initial guess is not suitable here 
because the fit is sensitive to the initial space, probably because of the limited number of data 
points with relatively large fluctuation, especially for viral load. For fits of survivors and non-
survivors, we first fit virus, T cell, and antibody data, then fix relevant parameters and perform 
fit of IL-6, D-dimer, and HSCT data. 

Estimation of the uncertainty of parameters is carried out after the best fit for each case. For 
parameters related to viral dynamics, 𝛼(, 𝑉B, 𝛽, 𝛾, 𝛿, 𝜂, 𝜏, and inflammation-related rates, 𝜅, 𝜆, 𝜇h, 
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𝜈h, 𝜇d, 𝜈d, we use a similar approach to estimate parameter uncertainty as that in Marchingo, J. 
M. et al. Science. 346, 1123–1127 (2014). They use an artificial dataset containing data 
fluctuation to perform fits to obtain parameter distribution, and we use data containing largely 
fluctuating points. The parameter values obtained by best fit with no largely fluctuating data are 
the most probable value. Therefore, the model parameters are identifiable. For other 
parameters, we use a 95% confidence interval of their non-linear fit or normal physical range. 
See Table S4 for a detailed summary of methods that give the uncertainty for each parameter 
and table S6-7 for best fit and uncertainties of parameters for all cases.  

§ Simulation of D-dimer dynamics with different initial T cell concentration 

To study how different initial T cell values, 𝑇B, give different evolutions of D-dimer traces and 
thus influence the disease severity, we assume a linear dependence of T cell activation rate 𝛿 
and inflammation inhibition rates, 𝜆, 𝜈E, 𝜈J with  𝑇B. The parameters include T cell activation 
rate 𝛿, and inflammation inhibition rates, 𝜆, 𝜈E, 𝜈J. When 𝑇B = 0.39 (for non-survivors, 
determined from Figure 4b), Eq. (13)-(16) give non-survivors’ parameter values. When 𝑇B =
0.84 (for survivors, determined from Figure 4b), Eq. (13)-(16) give survivors’ parameter values. 
Simulation in Figure 5c is performed using a series of T0 giving the corresponding  𝛿, 𝜆, 𝜈E, 𝜈J. 
Other parameters take fixed values of those of non-survivors. 

𝛿 = 0.25 + 21.67 × (𝑇B − 0.39) (9) 

𝜆 = 4.62 × (𝑇B − 0.39) (10) 

𝜈E = 0.889 × (𝑇B − 0.39) (11) 

𝜈J = 0.933 × (𝑇B − 0.39) (12) 
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