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S1 Appendix Comparing the Hill and the Weibull functions As discussed 1

in [21] the non-linear dose-response curve is usually described by the Hill function, 2

π(q) =
qh

Qh + qh
, (S1)

which we used in this paper, or by the Weibull distribution, 3

πW (q) = 1− e−(q/K)m . (S2)

These functions can be approximated as π(q) ≈ (q/Q)h and πw(q) ≈ (q/K)m, 4

respectively for q � Q and q � K. Therefore, by doing K = Q and m = h, both 5

functions are indistinguishable for small values of q. However, as can be seen in 6

Fig. S1A and S1B, the shapes of the curves are distinct for large values of q. Besides, 7

the pathogen charge responsible for 50 % response is Q for the Hill curve and is given by 8

QW = K(ln 2)1/m (S3)

for the Weibull distribution. 9

One way of comparing these curves is by choosing K and m that result in similar 10

behavior around a certain response level π̃. This is done by finding the values of q̃, m 11

and K that solve the system of equations 12

π(q̃) = π̃ (S4a)

πw(q̃) = π̃ (S4b)

dπ

dq

∣∣∣∣
q̃

=
dπw
dq

∣∣∣∣
q̃

. (S4c)

Table S1 contains the solution of these equations for some combinations of h and π̃. 13

Figure S1 shows the curves corresponding to the parameters m and K of Table S1. 14

Table S1. Parameters of m and K of the Weibull function, Eq. (S2), that
touches the Hill function, Eq. (S1), at the point (q̃, π̃), defined by
Eq. (S4a-c), for several combinations of π̃ and h. The value of the half
response charge, QW , is given by Eq. (S3).

π̃ = 0 π̃ = 0.25 π̃ = 0.5 π̃ = 0.75 π̃ = 0.95
h m K/Q QW /Q m K/Q QW /Q m K/Q QW /Q m K/Q QW /Q m K/Q QW /Q

0.25 0.25 1.00 0.23 0.22 3.82 0.71 0.18 7.63 1.00 0.14 7.24 0.48 0.08 0.13 0.00
0.50 0.50 1.00 0.48 0.43 1.95 0.84 0.36 2.76 1.00 0.27 2.69 0.69 0.16 0.36 0.04
0.70 0.70 1.00 0.59 0.61 1.61 0.88 0.50 2.07 1.00 0.38 2.03 0.77 0.22 0.48 0.09
1.00 1.00 1.00 0.69 0.87 1.40 0.92 0.72 1.66 1.00 0.54 1.64 0.83 0.32 0.60 0.19
1.40 1.40 1.00 0.77 1.22 1.27 0.94 1.01 1.44 1.00 0.76 1.42 0.88 0.44 0.69 0.30
2.00 2.00 1.00 0.83 1.74 1.18 0.96 1.44 1.29 1.00 1.08 1.28 0.91 0.63 0.77 0.43
4.00 4.00 1.00 0.91 3.48 1.09 0.98 2.89 1.14 1.00 2.16 1.13 0.96 1.27 0.88 0.66

Although it is possible to tune the Weibull function to make it behave like the Hill 15

function over a vicinity of q̃, it is impossible to superpose the functions over the whole 16

range of q due to their distinct shape. For this reason, both functions may fit a narrow 17

data set, but both functions cannot simultaneously describe a broad enough data set. 18

Even if the curves are indistinguishable around the narrow data set they fit, they 19

will have a distinct behavior in other regions. For example, if the data are clustered in 20
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Fig S1. Comparing the Hill and Weibull curves. The Hill (Eq. (S1), continuous
lines) and the Weibull (Eq. (S2), dashed lines) curves corresponding to the parameters
h, m, and K from Table S1. The x-axes of the plots at the left and right sides are,
respectively, linear and logarithmic.
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the vicinity of π̃ ∼ 0.95, Fig. S1(i),(j), the Hill curve and the Weibull will behave 21

distinctly for small values of q. Therefore, data with large values of π provide no 22

information about the behavior of the curve for small values of π if the exact form of 23

the curve is not known, and vice-versa. 24

On the other hand, if the data is clustered around a small value of π̃, the Hill and 25

Weibull curves behave similarly, as can be deduced from Fig. S1A-C and the identical 26

approximations valid for q → 0. In these conditions, both curves provide the same 27

results when describing phenomena involving small values of q, as is the case of low 28

exposition. For example, Table S1 shows that when π̃ ∼ 0.25, the difference between m 29

and h and between Q and QW are slight, and the curves are very similar in the interval 30

0 ≤ q ≤ Q in Fig. S1C-D. 31

S2 Appendix The experimental values of the curve parameters In this 32

section, we review previous works on response curves for several pathogens and 33

outcomes. The goal is to provide an outlook instead of exhaustive coverage of the 34

subject. For each of the studies presented in this section, we fitted Eq. (5) and plotted 35

the corresponding curve along with the experimental data. The legends display the 36

values of the curves’ parameters h and Q. When adjusting the parameters, special 37

attention was paid to the low doses part of the curve (π . 0.5), since the behavior of 38

the curve at this region is responsible for the reduced response when Nc is increased 39

with h > 1. 40

Measuring pathogen doses is often tricky, particularly for human diseases, when 41

controlled contamination is usually unacceptable. For this reason, most works in this 42

direction involve mathematically modeling the dispersion of pathogen as a function of 43

the subjects’ behavior. Thus, the works discussed here involve some mathematical 44

modeling with the exception of [3]. 45

MCKenney, Kurath and Wargo investigated two strains of the infectious 46

hematopoietic necrosis virus (IHNV) with distinct fitness and virulence [3]. The ability 47

to infect a host was determined by exposing juvenile rainbow trout hosts to a wide 48

range of virus doses. The infectivity data obtained by them is shown in Fig. S2. 49

A model that captures the dose-timing pattern was introduced by Mayer et al. in [4] 50

to investigate the empirical time-series data of inhalational anthrax in monkeys. The 51

model captures the time dependence in a manner that incorporates the immune 52

response dynamics to the inhalation data presented by Brachman et al. in [5]. In 53

Fig. S3 we reproduce the plots that summarize their results. 54

In [8], Schiffer et al. developed a mathematical model based on reproducing 55

shedding patterns in transmitting partners to estimate the infectivity of single viral 56

particles. The model was used to inferred probability estimates for transmission at 57

different levels of genital tract viral load in the transmitting partner resulting in the 58

data reproduced in Fig. S4. 59

To assess the risk of transmitting human herpervirus 6 to infants, the virus shedding 60

by mothers and other children cohabiting the house was modeled by Mayer et al. in [7]. 61

These estimates were used to produce the plots shown in Fig. S5. 62
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Fig S2. Parameter h from [3]. Data from [3] relating the probability of infection to
the doses of IHNV received. The green squares and the blue circles refer to the “high
virulence” and “low virulence” strains. From these points, we calculated the mean value
and the error plotted as crosses with error bars. The lines are fittings with Eq. (5), with
the parameters shown in the legend.
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Fig S3. Parameter h from [4]. Reproduction of Fig. 5 of [4], which presents the
best-fit of several models to inhalation anthrax mortality data in monkeys [5]. The red
line is Eq. (5) with parameters in the legend, which presents a good agreement with the
curves at the small values of π.
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Fig S4. Parameter h from [8]. Data points from [8], describing the transmission
probability of herpes simplex virus-2 as a function of the quantity of viral shedding.
Simulations were performed with different values for the parameter describing the
infectivity: high infectivity (orange circles), medium infectivity (red squares), and low
infectivity (blue triangles). The lines are the fitting of Eq. (5) with the parameters
shown as legends.
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Fig S5. Parameter h from [7]. Reproduction of Fig. 3 of [7], which presents the
estimation of human herpesvirus 6 acquisition risk from exposures by week using a
combined exposure model. The infant was exposed to the virus shedding by an infected
mother or a secondary child living in the same home. In both plots, the black lines
depict estimated risk from the model, and the red lines are Eq. (5) with the parameters
adjusted to present a good agreement for small values of π. Risk of an infant being
infected by (a) a secondary child or (b) the mother.
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Fig S6. Binomial distribution with h ≤ 1. Binomial expected response as a
function of Nc. It is calculated as a function of the number of contacts for the binomial
distribution of pathogen charge, Eq. (10)-(11) applied to Eq. (8). Although Nc is an
integer variable, the functions are shown as lines to make the plots less bulky. The
dashed vertical lines are the points of maximum predicted by the approximation
Eq. (14). The hollow circles are the points of maximum of each combination of h, κτ ,
and γ. The filled circles are the values of π̄ at Nc →∞, calculated as π(γκτ), Eq. (15).
(a) κτ = Q, h = 0.25, (b) κτ = Q, h = 0.5, (c) κτ = Q, h = 1, (d) κτ = 2Q, h = 0.25,
(e) κτ = 2Q, h = 0.5, (f) κτ = 2Q, h = 1, (g) κτ = 4Q, h = 0.25, (h) κτ = 4Q, h = 0.5,
(i) κτ = 4Q, h = 1.
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