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Abstract 

Fecal microbiota transplant is a promising therapy for ulcerative colitis. Parameters maximizing 
effectiveness and tolerability are not yet clear, and it is not known to what degree the 
transmission of donor microbes to patients is important. Here (clinicaltrails.gov: NCT03006809) 
we have tested the effects of antibiotic pretreatment (neomycin, vancomycin, and 
metronidazole, 500 mg twice a day for 5 days) and compared two modes of maintenance dose 
delivery, capsules versus enema, in a randomized, pilot, open-label, 2x2 factorial design with 22 
patients analyzed (30 patients randomized) with mild to moderate UC (total Mayo score 4-9). 
Clinically, the treatment was well-tolerated with favorable safety profile. Patients receiving 
antibiotic pretreatment trended toward greater remission after six weeks of treatment (55% 
vs. 18%, p=0.18), and no significant differences were found between maintenance dosing via 
capsules versus enema. In exploratory analyses, microbiome turnover at both the species and 
strain levels was extensive and significantly more pronounced in the pretreated patients. 
Associations were also revealed between taxonomic turnover and changes in the composition 
of primary and secondary bile acids. Together these findings suggest that antibiotic 
pretreatment contributes to microbiome engraftment and possibly clinical effectiveness, and 
validate longitudinal strain tracking as a powerful way to monitor the dynamics and impact of 
microbiota transfer. 

Introduction 

Fecal microbiota transplant (FMT) is recognized as a promising therapy for inflammatory bowel 
disease, in particular ulcerative colitis (UC) (1, 2). According to meta-analyses, half of the UC 
patients receiving FMT display a response to treatment, and one third achieve clinical remission 
of their symptoms. (3–6) after FMT. Across four randomized, placebo-controlled studies (RCTs) 
(7–10), 28% of FMT and only 9% of placebo recipients achieved remission (4). Despite this 
potential, the mechanism by which FMT improves gut health is not known, which hinders 
attempts to increase its efficacy. In addition, the role of the gut microbiome in the etiology of UC 
is unsettled; the composition of the gut microbiome is known to differ in UC cases compared to 
healthy controls but it remains unclear if these differences are a major cause of the disease or a 
result of underlying inflammation (11, 12). Understanding how FMT facilitates remission may 
shed light on the underlying biology of UC and potentially enable the development of novel 
therapies. 

Parameters maximizing the efficacy of FMT for UC have not yet been established, and 
extensive study-to-study variation in treatment protocols has made comparisons challenging. 
Many studies use antibiotic pretreatment to diminish the patients’ own baseline microbiomes 
before FMT (e.g. 13, 14), and a recent meta-analysis has found higher efficacy in studies using 
this approach (6), but none of the four published RCTs used antibiotics in this way (7–10). 

Protocols also vary greatly in the number and method of FMT application. Most include an initial 
dose via colonoscopy, and many follow up with a maintenance dose regimen ranging from just 
once three weeks after the initial dose (7) to five times a week for two months (9). Maintenance 
doses may improve efficacy (6), but their cost and tolerability are substantial challenges. The 
recent development of FMT capsule formulations may make maintenance dosing logistically 
easier and more acceptable to patients (15–17). However, it is unclear if FMT capsules, 
administered orally, are as effective as other delivery modes for transferring the donor’s 
microbiotia. Digestive enzymes, pH fluctuations, bile salts, and other environmental stresses 
may affect which taxa survive transit through the small bowel. Conversely, donor material may 
reach the upper colon more effectively when applied by capsule than by enema. While capsules 
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have been shown to be no less effective for the treatment of recurrent Clostridioides difficile 
infections (15, 18), it is not yet clear whether they have equivalent efficacy for UC. 

Many optimizations of FMT for UC—antibiotic pretreatment, repeated maintenance doses, 
anaerobic preparation, etc.—assume that effectiveness depends on the sustained transfer of 
microbial taxa and their functional capacities (19), although this has not been confirmed. 
Likewise, it is not clear whether a subset of donor communities might be particularly effective. In 
fact, features of the microbiome, in either patients or their donors, that predict FMT efficacy 
have not been convincingly identified (19–21). An important challenge for understanding the role 
of engraftment is in distinguishing taxa originating in donors’ or recipients’ microbiomes (22, 23). 
16S rRNA gene surveys and most tools that operate on shotgun metagenomic libraries cannot 
differentiate between donor and patient populations of the same species, due to limited 
taxonomic resolution (24). The application of recently developed approaches to identifying and 
tracking populations at the level of strains rather than species would both increase the detection 
of transfer events and help elucidate the relationship between community turnover and recovery 
from UC. 

Furthermore, recent work has attempted to identify a link between the metabolic function of the 
gut microbiota and UC (25). Numerous results indicate involvement of bile acids (BAs) in IBD 
and recovery, in particular their transformation to secondary BAs by microbes (26–34). Paired 
BA metabolomics with metagenomic sequencing before, during, and after FMT might help to 
elucidate the importance of these signalling compounds in UC treatment (1, 25). 

Here we experimentally test the impacts of both antibiotic pretreatment and maintenance dosing 
protocols on the microbiome and the efficacy of FMT therapy in patients with mild to moderate 
UC. Along with clinical features, we analyze a longitudinal, multimodal dataset describing the 
taxonomic and functional gene composition of the microbiota, as well as primary and secondary 
BAs in stool. Our data comprise a novel resource pairing strain-level taxonomic resolution and 
BA profiles over a sustained FMT protocol. We find that antibiotic pretreatment substantially 
increases the transfer of host bacteria to patients and is weakly associated with greater FMT 
efficacy. Notably, rates of engraftment and clinical remission were similar with both capsules 
and enemas as maintenance dosing methods. Our results will contribute to optimized protocols 
for the transfer of donor microbes to patients, as well as improved understanding of the role of 
the gut microbiome in UC. 

Results 

Study design and patient demographics 

We conducted a prospective trial of FMT in patients with active, mild to moderate UC (illustrated 
in Fig. 1A). Patients were randomized into arms receiving antibiotic pretreatment (ABX+) or not 
(ABX-), and maintenance doses via either enema (ENMA) or capsules (CAPS). Detailed 
demographics across arms are available in Supplementary Table 1. For both the initial FMT and 
maintenance doses, each participant received screened, prepared stool from just one of four 
healthy donors. Two colonoscopies were performed to assess disease severity and location, 
one concurrent with the initial FMT application (D0), and the second two weeks after the last 
maintenance dose (F1). 

Patients sampled their own stools before the initiation of therapy (baseline sample, B), after the 
end of antibiotic pretreatment, before each of the six maintenance doses (D1-6), and before 
each of the three follow-up appointments (F1-3). Maintenance doses were administered weekly, 
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and follow-up appointments scheduled approximately 2 weeks, 6 weeks, and 14 weeks after the 
last maintenance dose. 

Patients were interviewed for the occurrence of solicited adverse events during each study visit 
and up to 12 months after completion of the study. Minor events included self-limited abdominal 
pain, constipation, diarrhea, vomiting, abdominal discomfort, excessive flatulence and fever. 
Notably, of the three occurrences of vomiting in the CAPS arms, all were linked to the same 
donor (D0485) and happened within a few hours after administration of capsules. No aspiration 
events occurred. Five patients experienced worsening UC during the study period. Two 
withdrew due to a need for escalation of therapy. One UC flare constituted a serious adverse 
event as it required hospitalization but clinicians identified the withdrawal of steroids as a more 
likely cause then the study treatment. Adverse events are detailed in Supplementary Table 2. 

 

 

Figure 1: Study design and primary efficacy endpoint of an experimental FMT treatment for UC, showing 
improved symptoms at follow-up, particularly among patients receiving antibiotics. In our 2x2 factorial 
design, each patient either received antibiotic pretreatment (ABX+) or not (ABX-), and either received 
capsules (CAPS) or enama (ENMA) for maintenance dosing. (A) Major events during the longitudinal 
study, including baseline (B) and subsequent fecal sample collections (grey arrowheads), colonoscopies 
(magnifying glasses), initial FMT (D0, solid blue arrowhead), six weekly maintenance doses (D1-D6, open 
blue arrowheads), and three follow-up appointments (F1-F3). The start of oral antibiotics is represented 
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(purple arrowhead). (B) Change in Mayo scores of each patient between D0 (top) and F1 (bottom). 
Dashed arrows show the D0 Mayo score of patients who withdrew from the study due to worsening 
symptoms. Patient arrows are colored by arm and shifted vertically by a small, arbitrary amount to 
increase visual distinction. The grey dotted line just left of Mayo score 2 marks the remission threshold. 
All patients with a Mayo score ≤2 at F1 also had an endoscopy sub-score that decreased by at least 1 
point; therefore all were considered to be in remission. 

Antibiotic pretreatment may increase FMT efficacy 

We evaluated the clinical impact of treatment using the Mayo score, which compounds 
subscores including the severity of rectal bleeding, stool frequency, and an endoscopic 
assessment of epithelial inflammation (35). Clinical remission, defined as a total Mayo score ≤2 
at the first follow-up (time-point F1) and endoscopic improvement by ≥1, was reached in a total 
of 8 patients out of the 20 who received a follow-up colonoscopy, consistent with past studies of 
FMT for UC (6). Of these, 6 of 9 (67%) ABX+ patients achieved remission, while only 2 of 11 
(18%) did in the ABX- arms (p=0.065 by two-sided Fisher exact test). While short of a traditional 
significance threshold, our results nonetheless suggest increased remission in patients 
receiving antibiotic pretreatment. 

Two additional patients, both in ABX+ arms, dropped out of the study due to a flare of UC 
symptoms before F1. If these patients are included in statistical analyses, the ABX+ remission 
rate drops to 55% (6 of 11), which is not significantly different from ABX- (p=0.18). Tests of 
other treatment covariates—maintenance method and donor—showed no significant effects, 
and more complicated models (e.g. those involving multiple covariates and interactions) could 
not be fit given the small sample size and large number of covariates. Patients were classified 
as “responders”, a less stringent designation than remission, if their total Mayo score decreased 
by 3 or more points. Ten of 22 patients were responders, with no statistical association with 
pretreatment, maintenance method, or donor, tested individually by logistic regression. 

Overall, Mayo scores decreased from initial FMT (D0 time point) to first follow up (F1; p=0.015 
by Wilcoxon signed-rank test, Fig. 1B). However, the magnitude of this change did not appear to 
be related to any of the treatment covariates. For instance, ABX+ patients did not experience a 
greater reduction in Mayo score than did ABX- patients, despite the trend towards a higher rate 
of remission reported above. Since two of four Mayo subscores—for stool frequency and rectal 
bleeding—were assessed at multiple time points, we analyzed the effect of treatment 
parameters on each of these during maintenance and follow-up under a repeated measures 
framework. We found no effect of antibiotics or maintenance methods on either sub-score. 
There was a significant donor effect on rectal bleeding (p<1e-3 by LRT in a General Estimating 
Equations framework), but not on stool frequency (p=0.12). Larger studies may be necessary to 
detect subtle effects of treatment on Mayo scores. 

Metagenomics and metabolomics generate complementary representations of 
patients’ microbiomes before, during, and after treatment 

In order to document the impacts of FMT on the gut microbiome, we longitudinally profiled the 
taxonomic composition and functional capacity of the fecal community in a subset of patients 
using several complementary methods. Surveys of the 16S rRNA taxonomic marker gene were 
paired with shotgun metagenomic sequencing to establish species-level, strain-level, and 
functional gene composition. In addition, primary and secondary BA profiles were collected via 
untargeted metabolomics. Details of which samples and profiles were collected for each patient 
are available in Supplementary Tables 3-6. 
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Sequencing surveys of the 16S rRNA gene revealed 857 unique amplicon sequence variants 
(ASVs). In addition, shotgun metagenomic libraries metagenotyped with GT-PRO (36) identified 
371 species. To increase the resolution of the taxonomic data, we leveraged single nucleotide 
polymorphisms (SNPs) as a means to distinguish strains within the broader species categories. 
Using Strain Finder (22), we identified 3846 strains with detectable abundance in at least two 
samples. The larger number of strains than ASVs or metagenomic species suggests that strain-
level resolution can better differentiate the taxa transferred from donors from those present in 
patients before FMT. 

Functional gene composition was characterized by annotating shotgun metagenomic reads with 
KEGG gene families (KOs), which identified 7587 unique annotations. Metabolomics identified 
and quantified a total of 51 primary and secondary BAs across all samples, reflecting the 
remarkable chemical diversity of these molecules. 

Microbiome features cluster by both patient and donor after FMT 

To determine the extent to which FMT modified the patients’ microbiomes, we examined the 
clustering of genomic and metabolic profiles by patient and by donor during and after FMT 
treatment (see Fig. 2). 

Clustering by donor was detected for several of the profiles (Fig. 2A-E), demonstrating the 
impacts of FMT. Specifically, strain profiles clustered robustly by donor at every time point after 
the initial colonoscopy, while—unsurprisingly—baseline samples showed no such clustering. 
Species profiles, both metagenomic and ASV based, exhibited weaker but also significant 
clustering by donor during maintenance and follow-up time points. For functional gene 
annotations, donor clustering was significant, though far less dramatic. However, since this 
clustering was seen even with baseline samples (ANOSIM R=0.24, p=0.038), clustering at D1 
(R=0.25, p=0.048), D3 (R=0.21, p=0.072), and D5 (R=0.34, p=0.017) might be spurious. The 
limited clustering of functional gene profiles by donor suggests that these are either highly 
similar across donors or less effectively transferred to patients. 

BA profiles showed some signs of clustering by donor at the F1 and F2 time points (R=0.18, 
0.22, and p=0.094, 0.060 respectively), raising the interesting possibility that FMT treatment 
could have a donor-dependent impact on patients’ BA profiles. However, this is not a substantial 
or significant effect; given the small sample size, it is not clear that it reflects a reproducible 
result. 

Despite the perturbation of FMT treatment, clustering by patient across time points was 
observed for all four microbiome profiles (Fig. 2F, Supplementary Fig. 5). This effect was 
strongest at the strain level (R=0.90, p<0.001), followed by species level (R=0.72, p<0.001). 
Intriguingly, both functional annotations (R=0.32, p<0.001) and BA profiles (R=0.52, p<0.001) 
clustered significantly by patient, suggesting that FMT was unable to uniformly affect these 
aspects of patients’ microbiomes, and therefore patient-specific effects may modulate the 
impacts of FMT. 
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Figure 2: Samples cluster within patient and donor groups during and after FMT treatment. (A-D) Non-
metric multidimensional scalings were calculated from pairwise sample comparisons based on BC 
dissimilarity of taxonomic profiles from shotgun metagenomes at strain (A), and species resolution (B), 
and on cosine dissimilarity of functional gene (C) and BA profiles (D). The orientations and scales of axes 
are arbitrary, and proximity on a plot reflects similarity. Markers represent individual fecal samples from 
patients (no black outline) or the mean of all samples from a single donor (black outlines). Shapes and 
colors are matched between patients and their respective donors. Patients’ baseline samples are outlined 
in grey. Identical ordinations colored by individual subjects are available in Supplementary Fig. 5. (E, F) 
ANOSIM R scores, an index of clustering strength based on pairwise sample dissimilarities, for the four 
profiles from (A-D) as well as an additional taxonomic profile based on 16S rRNA gene ASVs. Larger R 
values indicate stronger clustering by donor at each time point (E) or by patient across pooled time points 
(F). Significance, as assessed by ANOSIM permutation test (n=9999): p≤0.1 (•), p≤0.05 (*), p≤0.001 (**). 

 

Taxonomic analysis reveals rapid and extensive transfer of donor species and 
strains to patients 

The clustering of taxonomic profiles by donor indicates effective colonization of patients during 
FMT. To quantify this transfer, we tracked bacteria species that were specific to patients, 
specific to their respective donor, or shared by both. Patients had a median of 77 donor species 
at F1 (representing a median 25% of their total community relative abundance) and 56 (12.3%) 
at F2. The sensitivity of this approach is limited, however, by the preponderance of shared 
species, which make up most of the baseline community: median 56% of species and 73% of 
relative abundance in baseline samples. The fractions of shared taxa estimated from 16S rRNA 
gene amplicon surveys is nearly identical: 55% of ASVs comprising 71% of relative abundance. 

By contrast, only a median of 24% of strains were shared at baseline. Using strains therefore 
creates more opportunities to infer transfer and engraftment and greatly improves the taxonomic 
resolution of our analyses (see Fig. 3). Overall, patients became more populated with donor 
strains over the course of the study (Fig. 3C). Patients had a median of 260 donor strains at F1 
(57% of relative abundance), and 232 (50%) at F2, about six weeks after the end of treatment. 
The introduction of donor strains is concomitant with patient-specific strains dropping from 87% 
of total community abundance at baseline (the remaining 13% shared with their donor) to 12% 
and 20% of the community at F1 and F2, respectively (Fig. 3A). Patients’ BC similarity (1 - BC 
dissimilarity) to donors based on strain profiles increased from a median of 0.01 at baseline to 
0.17 at F1 (p<0.001 by MWU test, (Fig. 3B). Notably, patients’ communities were more similar to 
their respective donor than to their original composition, with a BC similarity to their own 
baseline of 0.09 by F1 (Fig. 3D), indicating that FMT profoundly affects the taxonomic 
composition of patients’ gut microbiomes. 

Donor strains were already detected in patients’ fecal community profiles at the D1 time point, 
prior to the first maintenance dose and just one week after the initial FMT (Fig. 3C). 
Interestingly, the relative abundance of donor strains, or the BC similarity to the donor 
community (Fig. 3D), did not substantially increase at subsequent time points (p>0.05 for all 
comparisons of D1 to D2-F2 by Wilcoxon rank-sum test), suggesting that repeated maintenance 
doses may have only limited importance in ensuring strain transfer. 
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Figure 3: Greater community perturbation and engraftment of donor strains following FMT treatment in 
antibiotic-pretreated patients. (A, C) Abundance of strains specific to each patient’s baseline sample (A) 
or specific to each donor sample (C) relative to the patient’s total strain populations over the course of 
treatment. (B, D) BC similarity (1 - BC dissimilarity) between each patient’s sample and that patient’s own 
baseline (B) or their assigned donor (D). (E) Fraction of donor strains detected in each patient’s fecal 
samples at F1. Each dot represents a patient, colors are as in (A-D). Boxes span the interquartile range 
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with the median also marked (dotted line). In all panels, symbols indicate individual time points (A-D) and 
taxa (E) with p-values less than 0.1 (•) or 0.05 (*) by MWU test for differences between patients who did 
or did not receive antibiotic pretreatment. 

Not all bacterial clades were transferred at the same rate from donors to patients. We estimated 
the overall strain transfer rate as the fraction of all donor-specific strains, summed across all 
donor/patient pairs, that were subsequently found in patients at F1 (Fig. 3E). This transferability 
index differed between some of the most abundant phyla—here defined as in the Genome 
Taxonomy Database (GTDB) (37, 38)—from 29% for Actinobacteriota (98 of 339 opportunities) 
and 26% for Firmicutes A (1138 of 4305 opportunities) to 34% for Bacteroidota (362 of 1062 
opportunities, significantly different from Firmicutes A, p<0.001, by two-sided Fisher exact test). 
Interestingly, the Verrucomicrobiota, represented exclusively by strains of Akkermansia 
muciniphila, had by far the lowest transfer rate at 2.9% (1 of 35 opportunities). Even taking into 
account the small number of donor-specific strains from the species, this was significantly below 
the rate for other phyla (p=0.002, 0.035, and 0.011 for Actinobacteriota, Firmicutes A, and 
Proteobacteria, respectively, and <0.001 for Bacteroidota). A. muciniphila has been shown to be 
depleted in UC patients relative to healthy subjects (39), and to ameliorate colitis in a chemically 
induced mouse model (40). While we are hesitant to speculate based on this observation alone, 
FMT protocols optimized to transfer A. muciniphila might show increased remissions rates if the 
species indeed plays a role in recovery. 

Antibiotics modulate effects of FMT on the microbiome 

We next examined whether maintenance method, donor, and antibiotic pretreatment affected 
the outcomes of FMT. 

Testing each treatment covariate while accounting for this repeated measures design, we found 
that samples taken during maintenance and follow-up time points from patients who had 
received antibiotic pretreatment had lower BC similarity to their own baseline (p<0.001 by LRT 
in the GEE framework), had a smaller total relative abundance of patients’ baseline strains 
(p<0.001), were more similar to donors (p=0.015), and were composed of a larger relative 
abundance of their donors’ strains (p=0.015). Similarly, donor was also a significant predictor of 
all four outcomes: BC similarity to baseline (p=0.021), BC similarity to donor (p<0.001), relative 
abundance of baseline strains (p<0.001), and relative abundance of donor strains (p<0.001). 
When testing the effect of antibiotic pretreatment while also controlling for donor, only the BC 
similarity to baseline and fraction of baseline strains remained significant (p=0.002 and p=0.005, 
respectively), likely due to the small size of the data and the imbalance in the distribution of 
treatment arms across donors. Comparing repeated samples from patients that got different 
maintenance dose formulations showed a small effect (p=0.044) with slightly greater BC 
similarity to donor for individuals who received enemas, but this effect was not sustained when 
controlling for donor. Tests carried out at individual time points showed similar patterns (Fig. 3A-
D), however, this approach does not harness the increased statistical power of combining 
multiple observations for each patient. 

Overall, a slightly larger fraction of donor-specific bacterial strains were found at F1 in patients 
receiving antibiotic pretreatment, but this effect did not rise to the level of statistical significance 
(p=0.134 by MWU). Interestingly, antibiotic pretreatment did not affect the engraftment of all 
bacterial clades equally (Fig. 3E). When broken down at the phylum level, strains classified as 
Firmicutes and Firmicutes A—distinct phyla in the GTDB—both showed higher transmission 
from donors to patients in ABX+ arms (p=0.032 and 0.054, respectively). The phylum 
Actinobacteriota also shared this trend, although it did not approach statistical significance 
(p=0.133), and we did not detect an effect for other abundant phyla. Comparisons between 
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maintenance methods (CAPS vs. ENMA) did not reveal differences in strain engraftment for any 
of the abundant phyla. In total, these results suggest that antibiotic pretreatment increases the 
engraftment of donor strains, and is likely an effective strategy to optimize for this outcome after 
FMT. 

Changes in taxonomic profiles after FMT correlate with changes in functional 
gene and BA profiles. 

Given the dramatic transfer of donor taxa during FMT, we investigated the extent to which this 
taxonomic perturbation was concomitant with perturbations of functional gene and BA profiles. 
To do this, we performed pairwise Mantel tests (see Fig. 4A) among intra-patient dissimilarity 
matrices comparing taxonomic community composition at family, species, and strain levels to 
gene family coverages and BA profiles. 

 

Figure 4: Changes across taxonomic, functional, and BA profiles are correlated. Heatmap tiles depict 
Pearson correlation coefficients between all within-patient pairwise dissimilarity scores, controlling for 
time, with brighter colors indicating a stronger association between profiles. Comparisons are for (A) each 
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pairwise comparison between taxonomic and functional gene profiles with BA and functional gene 
profiles, or (B) BAs, specifically, compared across taxonomic profiles at different resolutions (X-axis) and 
phylum-level subsets (Y-axis). Hatched cells indicate comparisons where p-values are >0.05 by Mantel 
permutation test (n=9999); all other comparisons are significant at or below this threshold. 

All correlations with functional gene profiles were statistically significant with partial correlation 
coefficients greater than 0.5 after controlling for days since FMT. Likewise, the three taxonomic 
profiles also correlated with BA profiles. Changes in functional gene profiles were only weakly 
correlated with BA profiles (partial R = 0.09, p=0.045). Although outside the scope of this study, 
we speculate that this correlation might be higher for the subset of KOs that are related to BA 
metabolism. Nonetheless, all four correlations together demonstrate that various changes to the 
microbiome are interrelated during and after FMT. 

While the correlation between taxonomic and functional gene profiles increased at higher 
taxonomic levels (family > species > strain), the opposite was found for BA profiles (family < 
species ≈ strain). A partial Mantel test did not find a significant correlation with strains after 
controlling for species (partial R = 0.07, p=0.119). The fact that family-level associations were 
weaker than associations at either species or strain levels suggests that intra-family differences 
in association with BAs are likely to be important. 

To narrow down aspects of the microbiome with the strongest potential impact on BA profiles, 
we subsetted the taxonomic composition at the family, species, and strain levels for the six 
bacterial phyla with the highest average abundance across donors and patients at baseline: the 
Firmicutes A (54.0%), Bacteroidota (18.3%), Actinobacteriota (10.4%), Firmicutes (8.1%), 
Proteobacteria (3.6%), and Firmicutes C (2.8%). We then compared changes in each microbial 
community fraction to changes in BAs while controlling for time (Fig. 4B). We found that at each 
level most taxonomic subsets were significantly correlated with BA-profile dissimilarities. 
Interestingly, at the species level the strongest correlation with BAs was found with the highly 
abundant Firmicutes A fraction. This is consistent with the limited phylogenetic distribution of 7α-
dehydroxylation function to this clade (41), understood to be a key step in bacterial BA 
transformation. However, while for the Firmicutes A, Firmicutes C, Firmicutes, and Bacteroidota 
fractions the association is not stronger at strain-level resolution, the correlation for the 
Actinobacteriota fraction rose from 0.075 (p = 0.051) at the species resolution to 0.126 (p = 
0.013) at strain resolution. Consistent with this, there was a correlation between shifts in BA 
profiles and shifts in Actinobacteriota strain profiles even after controlling for the 
Actinobacteriota species profile (partial Mantel R = 0.125, p = 0.038), which could potentially be 
explained by greater intraspecific variation in BA transformation activity in this phylum, perhaps 
due to a heterogeneous distribution of bile salt hydrolases in the clade (42). This result further 
highlights the importance of strain-level analysis for understanding the drivers of functional 
differences in microbiomes during FMT. 

Discussion 

Here we have experimentally tested the effects of antibiotic pretreatment and maintenance 
dosing modalities on the clinical and microbiome impacts of FMT for UC. We collected and 
analyzed a comprehensive, longitudinal, multi-omics dataset, including clinical measurements, 
taxonomic and functional metagenomics, and BAs from fecal samples taken before, during, and 
after treatment. While not statistically significant at a traditional p-value threshold, we find a 
trend towards increased remission rates after FMT in patients receiving antibiotic pretreatment. 
Similarly, we find significantly increased transmission of donor microbiota after FMT in 
pretreated patients, and the possibility that pretreatment could result in a greater transfer of 
microbial functions. 
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These results contribute to a growing literature on potential optimizations for FMT that increase 
efficacy, safety, and tolerability of the therapy. Importantly, in this study, maintenance dosing via 
capsules versus enemas lead to similar strain transmission and remission rates, consistent with 
previous findings on FMT to treat C. difficile infection (15, 18, 43). Meta-analyses have shown 
an association between maintenance dosing and increased remission (6), although the 
frequency and duration has varied considerably, and previous studies with only two 
maintenance doses have also demonstrated the effectiveness of FMT therapy for UC (10). We 
observe rapid conversion of patients’ microbiomes early in treatment, raising the interesting 
possibility that a shorter maintenance regimen may be sufficient to elicit sustained engraftment, 
although this will need to be tested experimentally in future work. 

While our findings suggest that antibiotic pretreatment facilitates the sustained transfer of donor 
microbiota, and this was concomitant with a possible increase in efficacy, we did not find 
compelling support for the widely assumed importance of this microbial transfer for treatment 
efficacy. We also did not find clear evidence for differences in the effectiveness of material from 
different donors (e.g. as described in 44), although our study was not designed to find subtle 
effects of this type if they do exist. 

This pilot study was limited by the small number of participants completing the full protocol, as 
well as the large number of primary and exploratory analyses. Reported statistical significance 
was not corrected for multiple testing. Given these limitations, many of the patterns identified 
here should be validated in larger designs. Of particular importance, future studies will need 
mechanisms to account for patients discontinuing the experimental treatment due to worsening 
symptoms. Interpretation of the metabolomic and metagenomic results presented here is 
limited—necessarily—by the inclusion of only those patients with a follow-up colonoscopy. 
Despite these shortcomings, the application of computational methods designed to maximize 
the value of our comprehensive, longitudinal dataset enabled the detection of differences 
between study arms in taxonomic and functional turnover, among other novel insights. 

We find that the use of strain haplotypes inferred from SNP profiles (22) greatly improved the 
sensitivity of our transmission analysis. While this was expected given the large number of 
shared taxa at the species and 16S rRNA gene amplicon SNV levels, it is surprising that this 
improvement was possible without tuning hyper-parameters of the Strain Finder algorithm. 
Independent validation of the haplotypes and strain abundance estimates would be technically 
challenging, and is outside this study’s scope. However, the conclusions detailed here—most of 
which result from comparisons of identically analyzed samples—are likely robust to variable 
accuracy of strain inferences. The SNP deconvolution approach was of particular value in this 
study, since other available methods for strain tracking (reviewed in 45) either require high 
quality strain reference sets (46), or use heuristics based on dissimilarities between 
metagenotypes that assume species have one dominant strain per sample (47) or ignore the 
possibility of rare strains (e.g. less than 10% in 48). None of these alternative approaches is 
optimal for the tracking of discrete strains in a study where donor and recipient communities are 
intentionally mixed through FMT. Continued development of haplotype deconvolution methods 
will empower further studies of strain-specific functions and ecological dynamics in FMT. 

The conversion of primary bile salts into a diverse assortment of secondary BAs is a microbial 
process of particular interest in UC, among other conditions. Two findings from this study 
contribute to a better understanding of how BA profiles are affected by FMT. First, profiles 
clustered by patient but not significantly by donor. Subject-level clustering after FMT can be 
observed in prior work (49), and indicates that both host and microbial processing of BAs are 
remarkably stable; despite robust transfer of donor microbes, our protocol was unable to 
systematically modulate the concentrations of these metabolites. Second, we nonetheless saw 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.07.21261556doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.07.21261556
http://creativecommons.org/licenses/by/4.0/


14 
 

that the magnitude of changes to BA profiles correlated with the extent of taxonomic turnover. 
These observations suggest that the donor microbiome indeed impacts the patient’s BA profile, 
but that the direction of this effect may depend on properties of the patient and their 
microbiome. Together these results invite further inquiry into the role of BAs and other 
metabolites in UC, and how FMT might be harnessed to modulate them. 

Conclusions 

Here we have shown evidence for a potential increase in the remission of UC and the 
transmission of donor microbes during FMT in patients receiving antibiotic pretreatment. By 
contrast, we do not find a difference in efficacy or transmission due to the maintenance dosing 
protocol, suggesting that capsules may be a viable alternative to enemas. We observe patterns 
consistent with the hypothesis that increased transmission may result in improved outcomes, 
potentially due to changes in the composition and activity of the gut microbiome. This work 
demonstrates the increased sensitivity of strain-resolved metagenomic surveys in tracking 
transmission of donor microbiota, and presents a longitudinal, multi-modal characterization of 
the microbiome that can inform better-powered clinical trials designed to identify optimal 
treatment protocols for clinical use. 

Methods 

Patient recruitment, ethics approval, and concurrent therapies 

Patients aged 18-64 years with a history of UC confirmed by endoscopy and pathology were 
recruited at a single academic center and were considered eligible if they had mild to moderate 
disease activity—a total Mayo score of 4-9 with endoscopic subscore of 1 or 2 assessed by 
flexible sigmoidoscopy or colonoscopy within 12 months of enrollment and reassessed at the 
time of initial colonoscopy for FMT delivery. Patients with prior colectomy, severe 
immunodeficiency, indeterminate colitis, severe UC or history of inflammation limited to distal 
proctitis (distal 5cm) were excluded from participation. See Supplementary Methods for full 
inclusion and exclusion criteria. Disease activity was assessed again at time of initial 
colonoscopy. 

All participants were recruited between March 2017 and March 2020 and provided written 
informed consent for voluntary participation in this institutional review board-approved protocol 
(UCSF IRB study number: 16-20066). FMT was approved for use for this indication under FDA 
Investigational New Drug application (IND 16467). This study was registered at Clinicaltrials.gov 
(NCT03006809). 

Concurrent therapies were allowed during the course of the trial as long as doses were stable 
(mesalamine x 4 weeks, immunomodulators x 3 months and biologics x 3 months). However, 
steroids were minimized to an equivalent dose of no more than 10 mg prednisone/day with 
forced weaning of 2.5 mg/week during the study period. Additionally, rectal therapy was 
discontinued 30 days prior to study treatment and probiotics were held six weeks prior to 
administration of the first FMT dose. 

Study design and clinical details 

Participants were randomized into one of four arms by study coordinators by arbitrary selection 
of unlabeled paper envelopes containing assignments. Unlike study arms, donor material was 
assigned non-randomly based on availability. Study treatments were administered from 
September 2017 to March 2020, and the safety follow-up period continued for one year after the 
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end of treatment. Patients assigned to ABX+ arms were pretreated with neomycin, vancomycin 
and metronidazole 500 mg twice-daily for 5 days, followed by a one-day wash-out period. 
Patients then underwent colonoscopy to confirm eligibility, receiving their first FMT dose (250 
ml) during the procedure. Starting one week later, and over the next six weeks, patients 
received maintenance doses, 30 capsules weekly for patients in the CAPS arm, or a 60-mL 
enema weekly for patients in the ENMA arm. Donor stool was provided by OpenBiome, whose 
screening methods have been previously described (50). Participants were assigned a single 
donor for all doses throughout the study period. Deviations from the prescribed design are 
detailed in Supplementary Table 7. 

To minimize invasiveness, baseline endoscopy for patients in ABX+ arms was performed after 
patients received antibiotics. Past studies have considered antibiotics as a treatment for UC, 
and conceivably these patients may have already experienced amelioration of symptoms after 
their enrollment. This possible confounding seems unlikely, however, both because past work 
has largely not supported the effectiveness of antibiotics (51–54), and due to the short duration 
of antibiotic treatment in this study. 

Baseline data including serum inflammatory markers, infectious stool studies and fecal 
calprotectin were obtained prior to D0 (the initial FMT) and F1. A full list of clinical assessments 
is available in Supplementary Table 8. Colonoscopy for endoscopic restaging and repeat 
biopsies was performed at D0. Adverse events were solicited the day after colonoscopy, weekly 
during the course of maintenance therapy and then monthly until 6 months after initial FMT and 
again at 12 months after initial FMT. Remission at F1 was defined as a total Mayo score ≤2 and 
endoscopic improvement by ≥1 point. 

Detailed descriptions of fecal sample collection and processing are included in the 
Supplementary Methods. Lists of which samples were collected and used for 16S rRNA gene 
V4 region and shotgun metagenomic library sequencing, as well as untargeted metabolomics 
are listed in Supplementary Tables 3-6, respectively. 

Data processing and reproducibility 

Environment and pipeline 

Sequence and metabolite data were analyzed using a reproducible pipeline implemented with 
the Snakemake workflow manager (55). Our computational environment is available as a 
Docker container <https://hub.docker.com/repository/docker/bsmith89/compbio> (56) and uses 
Conda (57) for most software installations. Final analyses were performed and visualized in 
Python and R using the Jupyter Notebook environment (58), and a rendering of our analysis 
notebook is available as a Supplementary Note. Where randomization was used, random 
number generators were seeded with a fixed value for reproducibility. Detailed descriptions of 
the data analysis pipeline is included in the Supplementary Methods. 

Taxonomic profiling 

We applied GT-PRO (36) to count the occurences of reads containing exact k-mers 
representative of previously identified, per-species, bi-allelic positions in the UHGG (59), a 
comprehensive database of human gut bacterial reference genomes. The coverage (sum of 
major and minor allele counts) of these SNP sites was then used to estimate the per-sample 
abundance of each species as the mean of all position coverages observed in any sample, after 
discarding the 5% highest and lowest coverage positions. This trimmed mean makes our 
coverage estimate robust to anomalously high or low coverage positions. Relative abundances 
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were then calculated as the coverage of each species divided by the total coverage of all 
species estimated for that sample. 

The GT-PRO metagenotypes were also used to estimate the abundance of haplotypes (referred 
to as strains above) in each species. This was accomplished using the tool Strain Finder (22), 
run on the major and minor allele coverages at 100 randomly selected positions. Importantly, 
due to the scope of this study and computational limitations, we did not rigorously estimate the 
optimal number of strains in each sample and limited Strain Finder runtime to 60 minutes per 
species. We therefore may not have reached a global optimum in all cases. Instead we allowed 
for a maximum of 20 haplotypes to be fit for each species. Fitting the model in this way could 
result in inferred haplotypes grouping or splitting true strain abundances more than if we had 
also optimized the number of haplotypes and run the random search algorithm for longer. While 
this may have reduced the sensitivity of our analyses, we do not believe that it limited the 
veracity of any of our conclusions, which were primarily based on overall dissimilarity scores 
between samples and tracking of strains in donor/patient pairs. Fractional abundances of each 
strain inferred by strain-finder were then scaled by the previously estimated, per-sample species 
coverages to produce an estimate of strain coverage in each sample. 

We demonstrate improvements in sensitivity to transfer events using this approach in a 
Supplementary Note. 

Statistical analysis 

Patient/sample exclusion and efficacy statistics 

For all analyses, as many patients and samples were included as possible. For instance, 
engraftment comparisons at individual time points include all available samples, ignoring 
patients with missing samples. Metagenomic data for one sample with fewer than 1e6 reads 
was dropped from analysis, as this is much less than all others. Detailed lists of which 
microbiome profiles were collected for each patient are available as Supplementary Tables 3-6. 

Patients were included in remission comparisons if they had both baseline and follow-up 
colonoscopies/Mayo scores. Two additional patients that had withdrawn without follow-up 
colonoscopies were also included as “non-remissions” because they withdrew due to worsening 
symptoms. Differences in remission rates between treatment groups were calculated for 
patients pooled into ABX-/ABX+ or CAPS/ENMA groups, and tested using a two-sided Fisher 
exact test. 

Given the small sample size and exploratory analyses, statistical significance was not corrected 
for multiple testing, throughout. 

Profile comparisons: Dissimilarities, ordination, clustering analysis 

Donor taxonomic and functional profiles were calculated by summing coverage across all 
samples obtained from that donor—10, 31, and 1 samples with metagenomes for D0044, 
D0097, and D0485, respectively. For microbial taxonomic profiles, inferred strain coverages in 
each sample were normalized to sum to one. Then, for higher taxonomic levels, strain relative 
abundances were summed within assignments provided by the UHGG database, which are 
based on the GTDB (37, 38). Likewise, for phylum-specific analyses, taxonomic profiles were 
partitioned based on the UHGG assignment and then renormalized to sum to one. Ordination 
and cluster analyses were performed on pairwise dissimilarities between sample profiles. For all 
taxonomic profiles the BC dissimilarity was used, while for functional gene and BA profiles—
neither of which is strictly compositional—we used the cosine dissimilarity instead. Ordinations 
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were performed using non-metric multidimensional scaling as implemented in the Scikit-Learn 
package for Python (60). Clustering of profiles by donor and patient was tested with ANOSIM 
using 9999 permutations to calculate a p-value. 

Longitudinal data analysis 

For response variables with repeated measures on the same patients, the effects of treatment 
parameters were tested under the general estimating equations framework (implemented in the 
geepack package for R (61)) using a robust, autoregressive covariance structure parameterized 
by the temporal order of samples. Individual tests were carried out for the effects of antibiotic 
pretreatment, maintenance dosing method, and donor identity against a null model that included 
only weeks since initial FMT. Where indicated, donor identity was also included in the null model 
to test for effects of treatment parameters above and beyond this sometimes confounding 
random effect. 

Mantel tests 

Correlations between dissimilarities for pairs of profiles were tested with the Mantel and partial 
Mantel tests. Specifically, dissimilarity matrices were calculated for baseline, maintenance, and 
follow-up samples from each patient (post-antibiotic samples were excluded). These matrices 
were combined as a block-diagonal matrix; no values were included for inter-patient 
comparisons. Mantel tests were performed using pearson correlations or partial correlations, 
and p-values were calculated from 9999 permutations. For tests controlling for time, partial 
correlations were based on the square-root of the time in days between samples being 
collected. While shortcomings of the Mantel test have been documented (62), the method has 
been applied in past studies linking different features of the microbiome (63). In addition, spatial 
and temporal autocorrelation is expected to result in decreased power, making this approach a 
conservative measure of associations across data types. 
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Supplementary Information 

Supplementary Note: Analysis Notebook 

Static rendering of Jupyter notebook with analysis/plotting of relevant results. 

CodeNotebook.html 

Supplementary Results: Patient Demographics 

Table 1: Summary of demographics for 22 patients included in efficacy statistics 

SupplementaryTablesS1-8.xlsx 

Supplementary Results: Adverse Events 

Table 2: Summary of adverse events for all patients enrolled. Numbers indicate number of patients 
experiencing one or more events of each type. Where events are on a three point scale, higher values 
mean more severe events. 

SupplementaryTablesS1-8.xlsx 

Supplementary Table: Samples and Microbiome Profiles Collected by Patient 

Table 3: List of fecal samples collected. 

SupplementaryTablesS1-8.xlsx 

Table 4: List of 16S rRNA gene libraries sequenced. 

SupplementaryTablesS1-8.xlsx 

Table 5: List of shotgun metagenomic libraries sequenced. 

SupplementaryTablesS1-8.xlsx 

Table 6: List of metabolomic profiles collected. 

SupplementaryTablesS1-8.xlsx 

Supplementary Results: Patients Deviating from Initial Study Design 

Table 7: Summary of relevant deviations from main protocol. 

SupplementaryTablesS1-8.xlsx 

Supplementary Data: Ordinations of microbiome profiles colored by patient 
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Figure 5: Clustering of taxonomic, functional, and BA profiles across time points. Ordinations are 
calculated and plotted as in Fig. 2. For (A-C) datatypes where donor samples were also profiled, larger 
points with black outlines represent the mean of all samples from that donor. Samples from each subject 
are differentiated by color and shape as indicated in the legend (bottom left). Patients’ baseline samples 
are outlined in black. The same four ordinations colored by assigned donors are available as Fig. 2A-D. 
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Supplementary Data: Shared ASVs/Species/Strains across Donors 

Comparing taxa across donors presents one way to evaluate the effect of taxonomic resolution 
on the sensitivity of tracking transfers between individuals. That very few strains are found to be 
shared across donor communities (see Supplementary Fig. 5) indicates that false positives—
non-transfer of a donor strain incorrectly inferred to be a transfer—are infrequent. 

 

Figure 6: Overlap between taxa detected in three donors shows that strain-level taxonomic resolution 
increases sensitivity and specificity of engraftment detection. Venn diagrams depict relationships between 
sets of taxa detected in donor samples, and numbers indicate the size of the respective sets. Taxa were 
considered to be detected in a donor if their mean relative abundance across that donor’s samples was 
greater than 0.01%. Circles are colored by donor as in Fig. 2. Species composition was estimated from 

metagenomes based on the mean coverage reported by GT-PRO (36), and was further partitioned into 

strain composition based on haplotype deconvolution with Strain Finder (22). 

Supplementary Methods: Detailed Patient Inclusion/Exclusion Criteria 

Inclusion Criteria 

• Patients with history of mild to moderate Ulcerative Colitis confirmed by endoscopy and 
pathology. 

• Total Mayo score 4-9, endoscopic subscore ≥1; patients who have not had endoscopic 
evaluation within one year of enrollment will have flexible sigmoidoscopy for evaluation. 

• Age 18 – 64 and deemed otherwise healthy at the discretion of the investigator. 

• Concurrent therapies with mesalamine (stable x 4 weeks), immunomodulators (stable x 
3 months), and biologic agents (stable x 3 months) will be allowed to continue during 
study. 

• Prednisone must be ≤ 10 mg/day at the time of treatment and will be weaned by 2.5 
mg/week during the study period. 

Exclusion Criteria 

• Severe or refractory UC defined as Mayo score ≥10, endoscopic disease activity score 3 

• Untreated enteric infection (positive stool test for any of the following: Clostridium 
difficile, Salmonella, Shigella, Yersinia, Campylobacter, enteropathogenic E. coli or other 
enteric infection at the discretion of the investigator. 

• History of colectomy 

• Disease limited to distal proctitis (distal 5 cm) 

• Patients taking probiotics within six weeks of planned FMT therapy. 
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• Severe immunodeficiency, inherited or acquired (e.g. HIV, chemotherapy or radiation 
therapy) 

• Patients with the following laboratory abnormalities: absolute neutrophil count (ANC) < 
1000 /µl, platelets <50 x 10^9 /L, hemoglobin <6.5 g/dL.. 

• History of anaphylaxis (severe allergic reaction) to food allergens (e.g. tree nuts, 
shellfish) 

• Dysphagia (orophyaryngeal, esophageal, functional, neuromuscular) 

• History of recurrent aspiration episodes 

• Documented severe gastroparesis 

• Active intestinal obstruction 

• Patients with renal insufficiency (GFR < 50 ml/min) 

• Allergy to the following generally regarded as safe ingredients (GRAS): glycerol, acid 
resistant HPMC, gellan gum, cocoa butter, titanium dioxide 

• Adverse event attributable to any previous FMT 

• Allergy/intolerance to proton pump inhibitor therapy 

• Allergy/intolerance to vancomycin, metronidazole, or neomycin. 

• Non-steroidal inflammatory medications (NSAIDs) as long-term treatment, defined as 
use for at least 4 days a week each month. 

• Cholestyramine use 

• Any condition in which the investigator thinks the FMT treatment may pose a health risk 
(e.g. severely immunocompromised) 

• Simultaneous participation in another interventional clinical trial 

• Patients who are pregnant, breast feeding or planning pregnancy during study trial 
period. 

• During the trial period until one week after the trial end: Non-use of appropriate 
contraceptives in females of childbearing potential (e.g. condoms, intrauterine device 
(IUD), hormonal contraception, or other means considered adequate by the responsible 
investigator) or in males with a child-fathering potential (condoms, or other means 
considered adequate by the responsible investigator during treatment) or well-founded 
doubt about the patient’s cooperation 

• Patients with any other significant medical condition that could confound or interfere with 
evaluation of safety, tolerability or prevent compliance with the study protocol at the 
discretion of the investigator 

• Life expectancy <6 months 

Supplementary Methods: Stool Sampling Instructions to Patients 

Instructions to patients for stool self-sampling. 

SelfSampling.pdf 

Supplementary Methods: Clinical Laboratory Assessments 

Table 8: List of clinical laboratory assessments 

SupplementaryTablesS1-8.xlsx 

Supplementary Methods: Sample Processing 
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Sample collection and DNA extraction 

Patients were instructed to collect a stool sample into provided sample vials (Sarstedt faeces 
tubes cat. no. 80.734.311) before each study visit and either bring it refrigerated to our clinic in-
person or send it with a frozen cool pack via overnight courier. Upon delivery, stool specimens 
were stored at -80 °C until their analysis. 

DNA extraction from fecal samples was performed using the modified cetyltrimethylammonium 
bromide (CTAB) as previously described (64). In brief, ~0.3 g aliquot was taken from each 
frozen stool sample and suspended in 500 µL CTAB extraction buffer in a Lysing Matrix E tube 
(MP Biomedicals) by vortexing, followed by incubation for 15 minutes at 65 °C. After adding 500 
µL phenol:chloroform:isoamyl alcohol (25:24:1), the solution underwent bead-beating (5.5 m/s 
for 30 seconds), followed by centrifugation (16,000 g for 5 minutes at 4 °C). The resulting 
aqueous phase (approximately 400 µL) was transferred to a new 2 mL 96-well plate. An 
additional 500 µL CTAB extraction buffer was added to the fecal aliquot and both the bead-
beating and centrifugation steps were repeated, resulting in approximately 800 µL. An equal 
volume of chloroform was added and the solution was mixed and centrifuged (3,000 g for 10 
minutes). The aqueous phase (approximately 600 µl) was transferred to another 2 mL 96-well 
plate, combined with 2-volume polyethylene glycol and stored at 4 °C overnight to precipitate 
DNA. Samples were then centrifuged (3,000 g for 60 minutes) to pellet DNA, washed twice with 
cold 70% EtOH, resuspended in sterile water and diluted to 10 ng DNA/µL (Qubit dsDNA BR 
Assay Kit; ThermoFisher Scientific, MA) 

Sequencing 

For 16S rRNA gene profiling, The V4 region was amplified as previously described (64). PCR 
reactions were performed with 0.625 U Hot Start ExTaq and 1x buffer, 200 µM dNTPs, 0.56 
µL/µL BSA, 0.4 µM each forward (F515) and reverse (R806) primers in triplicate 25 µL reactions 
containing 10ng of template gDNA. Thermal cycling was set at: 98 °C for 2 minutes, 30 rounds 
of 98 °C for 20 sec, 50 °C for 30 sec, 72 °C for 45 sec, and a final extension at 72 °C for 10 
minutes. Amplicons were normalized (SequalPrep Normalization Plate Kit; ThermoFisher 
Scientific, MA), quantified (Qubit dsDNA BR Assay Kit; ThermoFisher Scientific, MA), pooled in 
equimolar concentrations, purified (Agencourt AMPure XP System; Beckman-Coulter), 
quantified (KAPA Library Quantification Kit; KAPA Biosystems), and diluted to 2 nM. Equimolar 
PhiX spike-in control was added at 40% final volume, and the samples were sequenced on an 
Illumina NextSeq 500 Platform. 

For metagenomic sequencing, an aliquot of the extracted DNA was sent to QB3 at the 
University of California, Berkeley <https://qb3.berkeley.edu/> for sequencing on the NovaSeq 
6000 platform using the 150PE Flow Cell S4 format. 

Metabolomics 

For metabolomics profiling, 112 fecal samples (200 mg) were provided to Metabolon (Durham, 
NC) who performed Ultrahigh Performance Liquid Chromotography/Tandem Mass Spectrometry 
(UPLC-MS/MS) and Gas Chromatography-Mass Spectrometry (GC-MS) based on standardized 
published protocol <http://www.metabolon.com/>. Detected molecules were identified through 
Metabolon’s library of purified standards, which encompasses >3,300 commercially available 
compounds. This yielded 1050 distinct metabolites among the samples, from which the 51 
metabolites identified as primary and secondary bile acids were analyzed for this study. For 
each identified BA, peak intensities were normalized by the root mean squared intensity of that 
peak across samples before downstream analysis. 
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Supplementary Methods: Microbiome profiling 

16S rRNA gene amplicon analysis 

Raw amplicon sequencing data was processed as in (64). Briefly, sequencer output was 
converted to fastq with bcl2fastq v2.16.0.10 
<https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-
software.html> and demultiplexed by barcode with QIIME (65). Quality-filtering via DADA2 (66) 
was performed using the recommended settings with the following adjustments – maximum 
expected errors allowed ≤ 3, truncation length of 150 bases for R1 and 140 for R2; chimeric 
sequences were found using minFoldParentOverAbundance = 8. Taxonomy was assigned with 
SILVA database V132 (67, 68) to amplicon sequence variants (ASV). Contaminant ASV were 
identified with the decontam (69) package for R. ASV with >2% of total read sums contributed 
by controls and those with < 0.001% total read count across all samples were excluded. A 
phylogenetic tree was constructed using the phangorn (70, 71), msa (72), and DECIPHER (73) 
packages for R. Amplicon sequencing resulted in an average of 3.4e5 paired reads per sample 
after processing. 

Metagenomic reads pre-processing 

Metagenomic sequences were deduplicated using FastUniq (74), any contaminating adapter 
sequence removed using Scythe (75), and then quality trimmed with Sickle (76). Any cleaned 
reads that mapped to the human reference genome (GRCh38 77) using Bowtie2 (78) were 
removed. Shotgun metagenomic sequencing resulted in 4.9e7 paired reads per sample after 
processing. 

Functional gene profiling 

Reads were annotated with presumed functions by first identifying homology to the UHGP-50 
(50% identity clusters, (59)) reference database using DIAMOND (79), a fast implementation of 
the BLASTX algorithm (80). All top hits to this database were tallied for each sample. UHGP-50 
hits were subsequently annotated with KEGG Orthology (KO) numbers based on assignments 
previously generated for the UHGP using EggNOG-mapper (81). Tallies of reads mapping to 
these annotations were not corrected for gene length. 
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