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Abstract 

COVID-19 is detected using reverse transcription polymerase chain reaction (RT-

PCR) of nasal swabs. A very sensitive and rapid detection technique using easily-

collected fluids like saliva must be developed for safe and precise mass testing. 

Here, we introduce a metasurface platform for direct sensing of COVID-19 from 

unprocessed saliva. We computationally screen gold metasurfaces out of a pattern 

space of 2100 combinations for strongly-enhanced light-virus interaction with machine 

learning and use it to investigate the presence and concentration of the SARS-CoV-

2. We use machine learning to identify the virus from Raman spectra with 95.2% 

sensitivity and specificity on 36 PCR positive and 33 negative clinical samples and to 

distinguish wild-type, alpha, and beta variants. Our results could pave the way for 

effective, safe and quantitative preventive screening and identification of variants. 
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Main 

Detecting SARS-CoV-2 and its variants rapidly and accurately is an urgent challenge due to 

the COVID-19 pandemic. The state-of-the-art detection technique for the virus is reverse 

transcription polymerase chain reaction (RT-PCR) testing. This test is commonly done using 

nasopharyngeal (NP) swabs, which might not be safe 1 or effective 2 if not collected properly. 

Since this test requires expert medical staff and relies on a limited number of certified test 

laboratories, turnaround times may extend to multiple days 3,4. The sensitivities of 

commercial virus or antigen tests might also be as low as 20% depending on viral load 2,5. 

Food and Drug Administration data on Emergency Use Authorization SARS-CoV-2 virology 

tests revealed a wide range of limits of detection (LoD), spanning more than 5 orders of 

magnitude differences. Since each 10-fold increase in the LoD of a COVID-19 viral 

diagnostic test is expected to increase the false negative rate by 13% 6, developing 

biosensors with high accuracy and a very low LoD is not only important for research but also 

critical for identifying asymptomatic cases. An important ratio of the cases was found to be 

asymptomatic and may spread the virus without being detected or isolated 7. New SARS-

CoV-2 variants started emerging as a significant public health challenge, especially among 

the unvaccinated. Rapid detection of variants became critical for timely response against 

potentially immune-evading mutations 8. Hence, a highly sensitive and rapid detection 

technique based on easily-collected body fluids (saliva) must be introduced for mass 

screening and variant detection regardless of symptoms.  

 

The vast majority of the current SARS-CoV-2 clinical tests 9,10 target the viral RNA using RT-

PCR 11 or the viral antigens using lateral flow assays 2. Emerging methods include aptamer 

probes 12-14, Raman-based sensors 3,15,16, electrochemical sensing 17, field-effect transistors 

18, plasmonic antibody testing 19, waveguide interferometers 20, CRISPR 21, photothermal 22 

or resistive sensing 23, matrix-assisted laser desorption/ionization time of flight mass 
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spectrometry (MALDI-TOF) 24 and deep learning classification of x-ray tomography scans 25. 

While machine learning-driven molecular screening techniques have significantly 

accelerated drug discovery and the COVID-19 vaccine development 26-29, a similar approach 

is yet to be applied for developing groundbreaking viral sensing technologies.  

 

We developed and applied a genetic algorithm-based nanostructure screening technique for 

enhancing the Raman and fluorescent scattering cross-section of a DNA aptamer-bound 

metasurface by more than a few orders of magnitude and developed machine learning 

classifier models capable of identifying the SARS-CoV-2-specific Raman peaks from clinical 

saliva samples. Surface-enhanced Raman spectra (SERS) contain molecular fingerprints 

down to a single nucleotide sensitivity 30. Furthermore, unsupervised clustering of these 

spectra could help identify the emergence of new variants during mass screening. Our 

unsupervised clustering model identifies the presence of variants B.1.1.7 (alpha, first 

detected in the UK), B.1.351 (beta, first detected in South Africa), and the wild-type strains. 

 

Figure 1 shows the architecture and the operational workflow of our SARS-CoV-2 saliva 

biosensor. The sensor consists of a plasmonic 20 nm-thick gold nanopattern on silicon 

where gold is functionalized with thiol-modified primary DNA aptamers (Fig. 1a). 

Unprocessed clinical saliva or inactivated SARS-CoV-2 samples were mixed with Cy5.5-

modified fluorescent secondary DNA aptamers and they were allowed to bind for 15 

minutes. Next, the solution was drop cast on the chip (2 µL) and left for drying (Fig. 1b). 

After drying, the chips were rinsed with double-distilled water and phosphate buffer saline 

(PBS). Finally, Raman shift spectra within 548–1620 cm-1 were measured after exciting the 

chips with a 633 nm laser (Fig. 1c). The spectra obtained were entered as input into multiple 

machine learning classifier algorithms to identify the presence, concentration, and the 

variants of the virus (Fig. 1d). The primary DNA aptamer in Fig. 1a is a spike-specific 
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sequence obtained with the SELEX technique 13. The primary DNA is immobilized on the 

gold metasurface using a thiol attachment. The secondary DNA aptamer includes a Cy5.5 

fluorescent marker which yields stronger emission due to localized optical modes built into 

the metasurface design through the genetic algorithm (See Supplementary Information). 

Thus, the aptamer-bound surface and the secondary DNA aptamer confine the virus as a 

sandwich assay for strong light-matter interaction and emission (Supplementary Fig. S1).  

Fig. 1 | Operation of the SARS-CoV-2 metasurface biosensor with double DNA 

aptamers and machine learning classification. a, The metasurface sensor chip is 

functionalized using a thiol-modified primary DNA aptamer that is specific for SARS-CoV-2 

spike glycoproteins. b, Unprocessed COVID-19 patient saliva or inactive SARS-CoV-2 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.07.21261749doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.07.21261749


sample is mixed with fluorescent secondary aptamer, resulting in virus-secondary aptamer 

complex. 2 µL of the mixture is dropped onto the metasurface modified with the primary 

aptamer to form the sandwich structure (primary aptamer, SARS-CoV-2, secondary 

aptamer). c, Aptamers capture the SARS-CoV-2 by binding to virus glycoproteins, form a 

sandwich structure yielding strong plasmonic enhancement of the virus-specific fluorescent 

and Raman emissions. d, These Raman spectra are then used in the machine learning 

classifier model for viral presence, concentration, and the variant type. 

 

 

Fig. 2 | Genetic algorithm-driven computational screening and fabrication of the 

nanoplasmonic surface-enhanced Raman spectroscopy (SERS) biosensor chip. The 

genetic algorithm and the flowchart for computational screening of periodic nanostructures 

for maximizing the Raman cross-section of the metasurface are shown. The electron beam 

lithography fabrication for the optimized periodic gold nanopattern over 200×200 µm2 is 

shown. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.07.21261749doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.07.21261749


Results 

Development of SERS metasurfaces 

A nanostructured metasurface pattern could enhance Raman scattering and help identify a 

wide dynamic range of viral concentrations. Fig. 2 shows the high-throughput screening 

technique for finding the nanostructured metasurface geometries for enhancing the average 

electric field and fluorescence intensities by at least two orders of magnitude. In our 

computational screening, we start with an 80-nm square unit cell with 10 × 10 = 100 binary-

coded subpixels (1 for gold, 0 for air). We optimize the unit cell for the strongest Raman and 

fluorescent emission cross-section enhancement while keeping the features large enough 

for fabrication (Supplementary Fig. S2). A brute force calculation of 3D electromagnetic 

fields and the fitness functions for all 2100 possible unit cells would take 2100 × 3 

hours/simulation ~ 4.3×1026 years. Running exhaustive parametric screening would take 

much longer than the time since the Big Bang (13.7 billion years). Thus, a more efficient 

approach must be used for the high-throughput screening of metasurfaces for sensing. 

Hence, we used our genetic algorithm to significantly accelerate our screening process.  

Sensor characterization and limit of detection 
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Fig. 3 | Sensor detection characteristics, cross-sensitivity, and spectrum 

classification. a, The Raman spectra and fluorescence measured for the inactivated 

aptamer-virus sandwich assay yields distinct features which help identify the presence of the 

virus (inset: Pure isolated SARS-CoV-2 virus with 108 pfu/ml on CaF2 substrate shows the 

peak near 1575 cm-1 attributed to the virus). b, Increasing the concentrations of inactivated 

SARS-CoV-2 (102-108 pfu/ml) manifests clear distinctions in the Raman spectra, fluorescent 

slope, and emission strength. c, Normalized Raman spectra and the error ranges for the 

rhinovirus, human coronavirus, and inactivated SARS-CoV-2 show the background and peak 

contrasts, indicating the distinctions in Raman emission characteristics. d, The confusion 

matrix for the machine learning classification of the Raman spectra obtained for each 

different chip with different inactive viral concentrations (103 to 107 pfu/ml) shows the high 

detection accuracy of the model based on the Raman spectral features. 

 

Figure 3 shows the sensor’s detection characteristics. Raman spectra measured for the 

primary aptamer bound to the chip surface, primary aptamer after adding 2 µl of SARS-CoV-

2 virus at 108 pfu/ml concentration, and the sandwich assay, which consists of primary 

aptamer, SARS-CoV-2, and the fluorescent secondary DNA aptamer (Fig. 3a). While virus 

binding suppresses some of the Raman emission from the aptamer, the fluorescent 

secondary aptamer amplifies multiple peaks over the entire band of interest (Raman shifts 

within 600-1700 cm-1; 658-710 nm). The Raman spectra of the sensors loaded with 102-108 

pfu/ml show a monotonic increase in the emitted peak intensities with higher viral 

concentrations (Fig. 3b). The peak centered at 970 cm-1 (within 920-1020 cm-1) is attributed 

to the silicon substrate’s strong transverse optical phonon line31,32 (Supplementary Fig. S3). 

This peak does not overlap with the higher Raman shift peaks, which are essential for 

identifying the virus.  

Cross-sensitivity tests 

To test cross-sensitivity, we loaded our chips with rhinovirus, human coronavirus, and 

SARS-CoV-2 and found highly different Raman emissions in the normalized spectra, 

suggesting the aptamer binding to only SARS-CoV-2 (Fig. 3c). A support vector machine 
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(SVM) classification model was trained and tested using these spectra and could identify 

and distinguish these viruses with 99.7% cumulative variance (Supplementary Fig. S4). 

Fig. 3d shows the confusion matrix output for the machine learning model that we trained to 

classify a total of 1235 spectra measured for 103 to 107 pfu/ml concentrations. For each 

concentration, Raman spectra were measured from 1000 different locations on the chips and 

our nonlinear machine learning model accounts for non-monotonic or other complex peak 

intensity changes with concentration and wavelength.  

 

Clinical trial results 

Fig. 4 | Clinical trial results and variant detection with the sensor. a, The histogram of 

the PCR cycle threshold (CT) values of the clinical samples shows a viral load range of  103-

107 pfu/ml used in testing our COVID-19 sensor. b, Optimized classification model yields a 

confusion matrix with only one false positive and one false negative case, yielding 95.2% 

sensitivity and 95.2% specificity. c, Unsupervised clustering model segregates the Raman 
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spectra of inactivated Alpha (B.1.1.7), Beta (B.1.351), and wild-type variants. d, Receiver 

operating characteristics curves show that the unsupervised clustering algorithm 

distinguishes the variants. The legend shows the area under curve (AUC) values. 

 

 

The sensor characterization in Fig. 3 yields about 99% sensitivity and specificity for the 

multi-class classification of the viral concentrations and the presence of the virus. The 

clinical validation of the sensor (Fig. 4) using unprocessed saliva also yields a similar 

sensitivity and specificity of 95.2% each. Fig. 4a shows the histogram of the PCR cycle 

threshold (CT) values of the saliva samples, indicating a clinical viral load range of 103-107 

pfu/ml 33. While saliva maintains a neutral pH within 6.2-7.5, the composition may 

significantly vary among clinical samples and yield a complex Raman background. As a 

result, we use a support vector machine and linear discriminant analysis for classifying the 

spectra as COVID-19 positive or negative. The confusion matrix of our model, Fig. 4b, 

shows only 1 false positive and 1 false negative with a 95.2% sensitivity and 95.2% 

specificity out of 69 clinical samples in a variety of training/testing configurations 

(Supplementary Fig. S5, S6).  

 

Variant classification results 

We developed an unsupervised clustering method for grouping Alpha (B.1.1.7) and Beta 

(B.1.351) variant samples as shown in Fig. 4c. The clustering results indicate that the 

Raman spectral features might help distinguish the samples as different variants of the virus 

without next-generation sequencing. A support vector machine model was trained and tested 

to yield near-perfect accuracy (99.7% cumulative variance) in variant detection 

(Supplementary Fig. S4). 
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Discussion 

This study presents a versatile and rapid viral detection technique for SARS-CoV-2 from 

unprocessed saliva, which might be useful in eliminating the need for collecting 

nasopharyngeal swabs and in increasing the negative predictive value of the viral tests. In 

this work; the presence, viral concentration and the variant type of SARS-CoV-2 could be 

identified from the machine learning classification of Raman spectra of the primary DNA 

aptamer, the virus and the fluorescent secondary DNA aptamer sandwich assay. Since 

SERS helps identify the mutations at even a single nucleotide level 30, the technique is 

fundamentally capable of identifying the variants of the virus such as Alpha, Beta (and 

potentially Delta) by using machine learning classifier models. Hence, the techniques 

presented here could be used for detecting the emergence of new variants to complement 

national-wide or global variant screening efforts through whole genome sequencing 34. 

Machine learning also helps eliminate mislabeling of the Raman signals from other viral 

infections such as rhinovirus or human coronavirus. The Raman spectral features obtained 

for each virus type is different due to the cross-reactivity of these viruses with the aptamer 

sandwich assays. Thus, SARS-CoV-2 could be detected and distinguished effectively. 

 

While the focus is on SARS-CoV-2, Raman-based viral detection and machine learning 

classification technique presented here could be applied for a variety of different viruses and 

other pathogens. By regularly updating the machine learning classifier models for different 

viruses or SARS-CoV-2 variants, the detection platform and technique might be used for 

universal identification of different coronaviruses. Although the DNA aptamers are optimized 

for SARS-CoV-2 13, the Raman spectral features obtained for each variant in this study have 

been distinct enough for identification without aptamer replacement. Aptamers can be 

optimized for any target virus using the SELEX technique and the detection chips could be 

functionalized with the new DNA or RNA optimal aptamers. Hence, viral detection via 
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machine learning could become mostly a software or machine learning model update and 

consumable chips might also be updated with new optimized aptamers. 

 

For clinical and point-of-care adoption of the Raman-based detection system presented 

here, a few key challenges might need to be addressed. First, the detection optics might 

need to be miniaturized and automated for practical point-of-care testing in pharmacies or 

other places with high population densities. Miniaturized Raman spectroscopy systems have 

been demonstrated to have excellent or lab-equivalent performance 35 and optimizing these 

systems for SARS-CoV-2 detection might be feasible. For mass screening purposes, multi-

sample trays could be introduced and a digital micromirror device 36 or a laser scanner 37 

might be used for rapid Raman probing and identification of the virus among many clinical 

samples. 

 

Second important challenge is saliva sample processing. Since the oral bacterial flora could 

contain more than 700 bacterial species or phylotypes 38, saliva sample compositions and 

their respective Raman spectra might vary dramatically among different people with different 

oral hygiene practices. In this case, introducing oral rinse steps before saliva sample 

collection could help reduce the Raman background that could originate from a diverse oral 

bacterial flora. In addition, Raman spectrum acquisition from multiple points over the saliva 

samples and additional image and Raman spectrum filtering could help eliminate 

contaminated background. Thus, the detection accuracies in larger clinical cohorts might be 

enhanced by introducing a combined methodology of sample preprocessing and spectrum 

post-processing. 

 

Overall, infrared spectroscopy of biomolecules on photonic metasurfaces aided by machine 

or deep learning has been a highly promising area with key breakthroughs for sensing, 
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including detection of all major biomolecules 39, protein fingerprinting 40, early sepsis 

detection 41,42. By adding SERS, we significantly broaden the palette of applications available 

for medical diagnostics. 

Conclusions 

Our results show that COVID-19 and the emergence of its variants can be detected rapidly 

with high sensitivity and specificity using machine learning and SERS metasurfaces 

functionalized with DNA aptamers. The ability to optimize for the highest figures of merit over 

any multi-objective photonic functionality using the genetic algorithm screening presented 

here also enables new possibilities for massively accelerating materials and device 

geometry screening for new sensor development. The machine learning and unsupervised 

clustering models presented here could help identify emerging variants or off-seasonal 

increases 43 of other respiratory viruses during population-scale tests 8. 

Methods 

SARS-CoV-2 Isolation from Clinical Samples 

Nasopharyngeal and oropharyngeal swab and saliva samples from SARS-CoV-2 

polymerase chain reaction (PCR) positive patients were collected with synthetic swabs on 

the third day after diagnosis. Each swab was placed in a separate sterile tube containing 3 

ml of viral transport medium and sent to the Biosafety Level 3 (BSL-3) Laboratory at Koç 

University Hospital for virus isolation. In the BSL-3 laboratory, samples were aliquoted in 1 

ml volume and frozen at -80°C until the virus isolation and all the virus isolation studies were 

performed in BSL-3 laboratories.  

 

Vero CCL-81 cells grown in Dulbecco minimal essential medium (DMEM) 

supplemented with antibiotic/antimycotic (GIBCO) and heat-inactivated fetal bovine serum 

(5% or 10%) were used for SARS-CoV-2 isolation and first passage. Vero cells were 
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adjusted to 2.5 × 105 cells/ml in DMEM containing 10% FBS and antibiotic/antimycotic. 

Serial dilutions of the clinical nasopharynx and oropharynx samples were prepared in 96-well 

plates at 100 μl volume with DMEM. Then, 100 μl of Vero cell suspension was added on to 

serial dilutions of the clinical samples. Inoculated cultures were monitored for cytopathic 

effect (CPE) daily for 5 days at 37°C and 5% CO2. At the end of the five-day incubation, the 

virus titer in the clinical sample was determined as the highest dilution in which the 

cytopathic effect was inhibited. TCID50 (tissue culture inhibition dose) values were 

determined by the Carber Method. After the observation of the cytopathic effect, monolayer 

cells were scraped with a pipette tip and 5 µl of viral lysate was used for nucleic acid 

isolation for sequencing and reverse transcription PCR (RT-PCR) studies. 

 

Virus inactivation protocol and validation of virus inactivation 

For virus inactivation, β-propiolactone (Sigma-Aldrich, USA) was used 44. For this 

purpose, cell cultures containing the virus were treated with β-propiolactone (1:1000 v:v) at 

4°C for 24 hours, and the cultures were kept at room temperature for one more day to 

remove β-propiolactone residues. Virus inactivation was confirmed by the absence of 

cytopathic effect in two consecutive passages in the VeroE6 cell lines and the inability to 

demonstrate amplification by quantitative RT-PCR. For quantitative RT-PCR, Center for 

Disease Control (CDC) test protocols and probes that amplify the N1, N2, and RdRp regions 

of the virus genome were used 45.  

 

Whole Genome Sequencing (WGS) 

Genome sequencing was performed by using Illumina MiSeq system with the Burrows-

Wheeler Aligner MEM algorithm (BWAMEM) 0.7.5a-r405 method. Whole genome was 

amplified by using primers specific to the open reading frame (ORF1b) and N region of 

SARS-CoV-2. The whole-genome sequence was obtained with the alignment of the 

overlapping PCR products. The amplicon size for the ORF1b gene region is 132 bp, and 110 
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bp for the N gene region and the new genome sequence was obtained by matching with the 

SARS-CoV-2 reference genomes and variant virus genomes. For aptamer design together 

with the wild-type virus, Alpha (B.1.1.7) and Beta (B.1.351) variants were provided as well. 

Poor-quality bases found in the raw data were removed using Trimmomatic 0.36 (-phred33, 

LEADING:20, TRAILING:20, SLID INGWINDOW:4:20, MINLEN:40). FastQC 0.11.8 was 

used to evaluate the sequence quality to prevent errors that may occur before cleaning and 

after the alignment. 

 

 

Aptamer modification and design 

Aptamers are the short oligonucleotide sequences used in our SARS-CoV-2 biosensor 

for ensuring that the virus is detected specifically and with high fluorescent amplitude. Fig. 

S1 shows the parts used: The primary DNA aptamer (Fig. S1a) 13 is an oligonucleotide with 

high affinity (low nM) to bind on the receptor-binding domain of SARS-CoV-2 spike 

glycoproteins. This aptamer has a thiol termination (Fig. S1c) for binding to the gold 

metasurface. The secondary DNA aptamer is modified with Cy5.5, a fluorescent marker 

(Fig. S1b).  

Fig. S2 shows our experimental confirmation of the virus binding of CoV-2-RBD-4C 

DNA aptamer 13. This aptamer has been modified using Cy5.5 fluorescent marker to be used 

as the secondary aptamer in this sensor study. 

 

 

SARS-CoV-2 Binding Assay 

0.5 μM of 4RBD-4C was incubated at room temperature for 10 minutes with only 

DMEM, or 2×104 or 1×105 of virus particles stored in DMEM without FBS. After collecting 

bound 4RBD-4C on nitrocellulose filter with vacuum, DNA is extracted with 1M urea and 

precipitated with 0.3M Sodium acetate and 50% isopropanol. The precipitate was 
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resuspended in RNase free water and PCR with 13 cycles (Denaturation: at 93°C for 3 

minutes; Annealing: 93°C for 30 seconds, 65°C for 1 minute, 72°C for 1 minute; Final 

Extension: 72°C for 10 min) was carried out. Finally, PCR products were separated on 2% 

agarose gel in 1X TAE Buffer. 

Forward and reverse primer sequences are given as follows: 

Oligo3908: ATC CAG AGT GAC GCA GCA 

Oligo3909: ACG TGT CCA TAT CCG CAA T 

 

SARS-CoV-2 characterization using Raman spectroscopy 

A 5µl of inactivated SARS-CoV-2 virus was dropped onto a CaF2 slide (Crystran, 

CAFP76-26-1U) and the Raman spectrum of inactivated SARS-CoV-2 was recorded 

applying 50% laser power and 10 seconds of exposure, during 1 Raman scan. The peak 

around 1575 cm-1 in Fig. 3A’s inset is attributed to the virus since there is no other possible 

peak source in that sample. 

 

Nanoplasmonic chip design using genetic algorithms and electromagnetic modeling 

A nanostructured metasurface pattern could enhance Raman scattering and help 

identify a wide dynamic range of viral concentrations. To calculate the optimal metasurface 

geometry that yields the highest average electric field intensity enhancement in Fig. 2, we 

developed a genetic algorithm that generates and “evolves” metasurface geometries and 

used finite-difference time-domain (FDTD) modeling iteratively to refine the metasurface for 

the highest figure of merit. We defined the figure of merit or the fitness value η as the 

average electric field enhancement over a unit cell of the metasurface:  

 

 η = |E|4/|E0|
4 (1) 
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where E0 is the total incident electric field and E is the total local electric field summed 

over all of the meshes in the simulated unit cell. The average field enhancement is a 

measure for increasing the fluorescence and Raman cross-section of the aptamers and the 

virus on our chips.  

Lumerical FDTD and MATLAB were used for implementing and running the 

electromagnetic and genetic algorithm models, respectively. In our computational 

nanostructure screening technique (Fig. 2), we started with an 80 nm-long square unit cell 

and divided it into a grid of 10 × 10 subpixels (the pixel size and number is limited by 

electron beam lithography resolution). These subpixels are binary encoded (1 for gold, 0 for 

air), but they could be numbered differently to include multi-material optimization. The unit 

cell geometry must be refined to yield the strongest electric field, Raman and fluorescent 

cross-section enhancement while remaining large enough for fabrication.  

The genetic algorithm shown in Fig. 2 randomly generates a number of binary 

sequences (population of synthetic nanostructures) and the electric field profiles are 

calculated for each corresponding nanostructure. The “fitness” values of the structures are 

calculated, which are the average electric field enhancement values across each unit cell. 

The nanostructures with the top 20% fitness scores descend to the next “generation” of 

nanostructures. In preparing the next generation, the structures are mixed and matched with 

a crossover step and mutations are added as random single or few bit variabilities over the 

binary sequences. The electric field profiles for the new generation of nanostructures are 

calculated again and their fitness scores are obtained. The refining procedure is iterated for 

30 generations when the enhancement no longer increases. Fig. S3 shows the evolution of 

the fitness value stops increasing after 13 generations. The resulting geometry is fabricated 

as a 20 nm thick gold periodic metasurface pattern using electron beam lithography and lift-

off, as shown in Fig. 2. 

 

Nanofabrication of sensor chips 
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The nanoplasmonic sensor chips were fabricated in Sabancı University 

Nanotechnology Research and Application Center (SUNUM) Cleanrooms. 4’’ Si wafers were 

spin-coated with 950 Poly (methyl methacrylate) (PMMA) A4 at 4000 rpm (rotation per 

minute). The resist thickness is ~120 nm. Next, the wafer was exposed with Raith 

EBPG5000 plusES 100 kV electron beam lithography system with a low/small spot size 

current (~ 100 pA) and high-resolution parameters at 625 µC cm-2 e-beam dose included 

proximity effect correction (PEC) e-beam module (BEAMER, GenISys GmbH). After 

exposure, the wafer was developed in 1:3 (by volume) MIBK: IPA (MIBK: methyl isobutyl 

ketone; IPA: isopropanol) for 1 minute and 1:1 (by volume) concentration MIBK: IPA for 10 

seconds, respectively. The wafer was then dipped into IPA for 30 seconds to stop the 

development, rinsed with IPA, and blow-dried with nitrogen. To eliminate any PMMA resist 

residues in the exposed areas after development, 7 seconds of oxygen plasma was 

performed at 50 Watt, 20 sccm O2 flow rate, and 37.5 mTorr chamber pressure. After 

development and plasma cleaning, 2 nm Cr / 20 nm Au layers were thermally evaporated on 

the wafer. The wafer was dipped in acetone overnight for lift-off. The chips were 

ultrasonicated in a bath for a short time, rinsed with acetone, isopropanol respectively then 

blow-dried with nitrogen. Last, the 4” wafer was diced into 5×5 mm2 samples where each 

piece contains a 200 × 200 µm2 nanoplasmonic patterned area at the center. 

 

 

Surface functionalization of the biosensor chips using oligonucleotides and RNA 

aptamers and validation using Raman spectroscopy 

5’ Thiol C6 S-S modified primary aptamer 3897 (IDT DNA Technologies, 290169003) 

was activated by incubating with previously prepared 20 µM TCEP (BP Biotechnologies) 

solution in 1:1 ratio. Aptamer+TCEP solution was diluted with 1X DPBS (BIOWEST, L0615-

500) and added to the SERS surface (~2 µl) with 1 µM of final concentration. SERS 

substrate was kept under laminar flow for an hour and was washed to remove unbounded 

aptamers from the surface. SERS substrate was kept in the laminar hood for 15 minutes 
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until it dries. 1M 6-Mercapto 1-hexanol (Sigma-Aldrich, 725226) was added (~5 µl) to the 

SERS surface to prevent non-specific binding and SERS substrate was kept under the 

laminar flow for an hour. The surface was washed with 70% ethanol and rinsed with ddH2O.  

The Raman spectra of aptamer 3897 were recorded (Fig. S4) using a previously 

calibrated Renishaw InVia™ Raman Microscope equipped with 633 nm excitation 

wavelength, and 50x objective (Leica 50x/0.75). 10 seconds of laser exposure and 50% 

laser power (max. of ~1 mW·μm-2 power density) were applied during 1 Raman scan. 

Cosmic ray removal was performed using Wire 4.4 Software.  

Following Raman spectra recording, 5’ Cy5.5™ modified secondary aptamer 1 µM of 

3898 (IDT DNA Technologies, 290169004) was added to SERS surface and incubated for 

binding with primary aptamer 3897 for an hour under laminar flow. SERS surface was 

washed with 1X DPBS and rinsed with ddH2O. The Raman spectra of aptamer 3897 linked 

3898 were recorded (Fig. S4) in previously described settings. In Fig. S4a contains the 

background Raman spectrum measurements on silicon, planar gold, and SERS metasurface 

substrates. The primary and secondary aptamers and their Raman spectra are shown in Fig. 

S4b. 

 

Nanoplasmonic sensor chip testing under different concentrations of the inactive 

virus using Raman spectroscopy  

Inactive SARS-CoV-2 virus solution with a concentration of ~1.5x108 pfu/ml was 

incubated with 1 µM secondary aptamer 3898 for 15 minutes. The stock virus solution was 

serially diluted to 102 pfu/ml concentration (Fig. 3b). Each SARS-CoV-2 sample (within the 

concentration range of 102-108 pfu/ml, which were incubated with the secondary aptamer 

3898) was added on the primary aptamer bonded SERS surface for 15 minutes. The SERS 

substrates with different concentrations of SARS-CoV-2 were left to dry for 15 minutes. 

SERS surfaces were washed with DPBS and rinsed with ddH2O. Upon removal of unbound 

particles from the surface, Raman spectra of SARS-CoV-2 were recorded for each 

concentration. 
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Clinical sample collection and screening 

Nasopharyngeal and saliva samples were collected from the patients at Koc University 

Hospital by Koç University Clinical Trial Unit according to the Koç University Institutional 

Review Board approval number 2020.112.IRB1.023. Nasopharyngeal samples were tested 

with PCR as a part of the clinical routine. Saliva samples of the nasopharyngeal COVID-19 

PCR positive patients were also tested with PCR and both saliva and the nasal swabs of 

those patients were ensured to be COVID-19 PCR positive. For 36 patients, both saliva and 

nasopharyngeal swabs tested COVID-19 positive in PCR. Those 36 PCR positive samples 

were used in this study to test their saliva with our biosensor. As a negative control, saliva 

samples of 33 PCR negative healthy voluntary people were collected. Their saliva samples 

were tested with PCR and have been verified to be COVID-19 negative.  

 

 

 

Clinical validation of the functionalized nanoplasmonic sensor chips 

All samples were given to the research team for biosensor measurements by the 

clinical trials unit in a blunted form of PCR result. Saliva from 69 samples incubated with 

secondary aptamer 3898 within the ratio of 1:1 in a virus hood in the BSL-2 laboratory. Upon 

incubation, 2µl of saliva+secondary aptamer 3898 mixture was added onto previously 

activated primary aptamer 3897 bonded SERS metasurface for 15 minutes. Then, the SERS 

surface was washed with DPBS and rinsed with ddH2O. After wash, Raman spectra of 

SERS substrates with patient samples were recorded by applying previously described 

measurement settings.  

 

Machine learning classifier for characterization of the sensor’s limit of detection 

The dataset is gathered by collecting Raman spectra from 6 different samples, each 

having different virus concentrations. There are 1000 spectra from the virus-free sample, 
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1225 spectra from each sample with virus concentrations of 103, 104 and 105 pfu/ml, 1000 

spectra from the sample with 106 pfu/ml concentration and 500 spectra from the sample with 

107 pfu/ml concentration (Fig. 3d). 

%80 of the collected dataset is used for training and the remaining 20% is used for 

tests. A variety of preprocessing pipelines is applied to the data and the classification 

accuracies of these pipelines are compared with each other. Applying spectra-wise 

normalization and Principal Component Analysis (explaining 90% of the data with 127 

components) yielded the highest accuracy results, hence were chosen to be the 

preprocessing method. After that, a Support Vector Machine (SVM) model with a linear 

kernel is trained on the training set with 5-fold cross-validation. The optimal “C” value of the 

SVM is determined as 0.1, and the decision function shape is chosen to be “One versus One 

(OVO)”. The training accuracy is recorded as 88.76%. The confusion matrix regarding the 

test results of the model is given in Figure 3d. 

 

 

Machine learning classifier for cross-sensitivity 

We used different metasurface chips for SARS-CoV-2, human rhinovirus 1B (ATCC® 

VR-1645™), and human coronavirus 229E (ATCC® VR-740™) to measure their Raman 

spectra on 425 or 500 different points from each chip. Each spectrum contains 1020 data 

points. For each virus (SARS-CoV-2, rhino, human CoV); 425, 425 and 500 spectra were 

measured, respectively. 80% of the dataset was used for training while 20% was used for 

testing. 5-fold cross-validation was used. A support vector machine with a linear kernel was 

used with C = 0.1 (Fig. 3c and Fig.S5) 

To identify the virus type, we used feature scaling and principal component analysis. 

Only two principal components are sufficient to yield 99.7% cumulative explained variance. 

Similar results are obtained when the preprocessing method is changed from feature scaling 

to sample-wise normalization and hence, the classification method is robust under the given 
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measurement conditions. Fig. S5 shows the results for the cross-sensitivity analysis. Fig. 

S5a shows the principal components I and II and how the spectra are distributed based on 

this analysis. Fig. S5b shows the confusion matrix for this model, where the horizontal axis 

shows the predicted label and the vertical axis is for the true label. The figure shows that 

SARS-CoV-2 and human rhinovirus are distinguished perfectly from the others, while human 

coronavirus slightly overlaps with human rhinovirus. This overlap does not necessarily 

reduce the identification capability for the viruses since a number of spectra (100 or more) 

are measured per sample and a virus classification score is given based on all of the 

measured spectra. Since each virus can be identified with 94.1% or 100% recall rates, we 

can essentially identify perfectly all three viruses at the concentrations and Raman 

measurement conditions explained above. 

 

Machine learning classifier for clinical tests  

36 COVID-19 PCR positive and 33 PCR negative saliva samples were collected and 

tested with our Raman metasurface sensor to analyze the clinical diagnostic accuracy of our 

machine learning models. 200 Raman spectra with 1020 spectral points in each within 600-

1700 cm-1 were measured from each chip with the sandwich assay (primary aptamer-saliva-

secondary aptamer). 15 PCR positive and 12 PCR negative samples (5400 spectra) were 

used for training the model. A variety of preprocessing methods were applied to the data and 

the classification accuracies were compared. For Raman spectrum preprocessing, 

spectrum-wise intensity normalization and feature scaling were implemented. To reduce the 

number of features, linear discriminant analysis (LDA) was implemented. After LDA, a 

support vector machine (SVM) algorithm with a linear kernel was implemented. Since 200 

spectra were collected for each sample, the test result was calculated using the accuracy 

score. The percentage of the virus-labeled spectra over the entire spectra gave the overall 

label of the sample. The optimal “C” value is determined as 0.1, and the decision function 

shape has been chosen to be “One versus One (OVO)”  
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The samples have different viral loads which are analyzed using PCR’s CT values 33 as 

the ground truth (or gold standard). The classification performance of the algorithm is related 

to the variety of CT values in the training and test datasets. Fig. S6 shows the receiver 

operating characteristic curves for clinical classification. Here, the different curves 

correspond to different clinical training sets with various CT distributions and shuffling. 

Random shuffling of the samples causes the unbalanced distribution of the CT values, which 

may slightly reduce the classification accuracy (Fig S6). To test an extreme case, one 

balanced and one unbalanced training sets were assembled manually and their test 

accuracies have been compared. The histograms of these two sets are given in Fig S7. The 

network with a balanced train set has specificity above 90% (Fig. S7b). If the network is 

trained with an unbalanced training dataset (Fig. S7a), the specificity results deteriorate 

significantly (< 50%). Therefore, a balanced training set must be used for improved test 

accuracy and hence diagnostic sensitivity and specificity.  

Our results indicate that our machine learning model can classify the presence of 

SARS-CoV-2 with 95.2% sensitivity and 92.2% specificity (Fig. 4b) when trained with a 

balanced training dataset. Further extension of the dataset with new clinical samples should 

improve the robustness of the machine learning model. 

 

Variant classifier details 

3 different variants of SARS-Cov-2 were used to analyze the chip’s and the machine 

learning models’ ability to distinguish the variants (Fig. 4c-d). Specifically, Alpha (B.1.1.7), 

Beta (B.1.351), and wild-type variants have been used in our chips to measure their Raman 

spectra. A total of 3225 Raman spectra with 1020 spectrum points in each spectrum were 

measured in total. There are 1000 spectra from the Alpha variant, 1000 spectra from the 

Beta variant, and 1225 spectra from the wild-type SARS-CoV-2. The variants were clustered 

using the t-SNE model 46 with the learning rate of 10, component number of 2, perplexity of 

30, and the number of iterations of 5000.  
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The clustering performance of the variant measurements proves Raman spectroscopy 

as a method that can be used for variant discrimination. In addition to the clustering 

methods, the classification of the variants was also carried out with the help of supervised 

machine learning algorithms. After applying spectrum-wise normalization, feature scaling, 

and principal component analysis (cumulative explained variance of 95% of the data with 

474 components), the variants were classified using an SVM algorithm. The optimal C value 

is determined to be 0.1, gamma is 0.1, the kernel is linear, and the decision function shape 

has been chosen to be one-versus-one (OVO). 2580 spectra were used for training the 

network, 645 spectra were reserved for tests (75%:25% training/test dataset ratio). The 

classification accuracy of test spectra is 98.9%. The sensitivity and the specificity for the 

alpha variant are 98.4% and 98.9%, for the beta variant are 98.9% and 97.5%, and for the 

wild-type are 99.2% and 100%, respectively.  
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